FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
f_ebur128.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 Clément Bœsch
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 
21 /**
22  * @file
23  * EBU R.128 implementation
24  * @see http://tech.ebu.ch/loudness
25  * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26  * @todo True Peak
27  * @todo implement start/stop/reset through filter command injection
28  * @todo support other frequencies to avoid resampling
29  */
30 
31 #include <math.h>
32 
33 #include "libavutil/avassert.h"
34 #include "libavutil/avstring.h"
37 #include "libavutil/opt.h"
38 #include "libavutil/timestamp.h"
39 #include "audio.h"
40 #include "avfilter.h"
41 #include "formats.h"
42 #include "internal.h"
43 
44 #define MAX_CHANNELS 63
45 
46 /* pre-filter coefficients */
47 #define PRE_B0 1.53512485958697
48 #define PRE_B1 -2.69169618940638
49 #define PRE_B2 1.19839281085285
50 #define PRE_A1 -1.69065929318241
51 #define PRE_A2 0.73248077421585
52 
53 /* RLB-filter coefficients */
54 #define RLB_B0 1.0
55 #define RLB_B1 -2.0
56 #define RLB_B2 1.0
57 #define RLB_A1 -1.99004745483398
58 #define RLB_A2 0.99007225036621
59 
60 #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
61 #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
62 #define HIST_GRAIN 100 ///< defines histogram precision
63 #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
64 
65 /**
66  * An histogram is an array of HIST_SIZE hist_entry storing all the energies
67  * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
68  * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
69  * This fixed-size system avoids the need of a list of energies growing
70  * infinitely over the time and is thus more scalable.
71  */
72 struct hist_entry {
73  int count; ///< how many times the corresponding value occurred
74  double energy; ///< E = 10^((L + 0.691) / 10)
75  double loudness; ///< L = -0.691 + 10 * log10(E)
76 };
77 
78 struct integrator {
79  double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
80  int cache_pos; ///< focus on the last added bin in the cache array
81  double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
82  int filled; ///< 1 if the cache is completely filled, 0 otherwise
83  double rel_threshold; ///< relative threshold
84  double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
85  int nb_kept_powers; ///< number of sum above absolute threshold
86  struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
87 };
88 
89 struct rect { int x, y, w, h; };
90 
91 typedef struct {
92  const AVClass *class; ///< AVClass context for log and options purpose
93 
94  /* video */
95  int do_video; ///< 1 if video output enabled, 0 otherwise
96  int w, h; ///< size of the video output
97  struct rect text; ///< rectangle for the LU legend on the left
98  struct rect graph; ///< rectangle for the main graph in the center
99  struct rect gauge; ///< rectangle for the gauge on the right
100  AVFilterBufferRef *outpicref; ///< output picture reference, updated regularly
101  int meter; ///< select a EBU mode between +9 and +18
102  int scale_range; ///< the range of LU values according to the meter
103  int y_zero_lu; ///< the y value (pixel position) for 0 LU
104  int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
105 
106  /* audio */
107  int nb_channels; ///< number of channels in the input
108  double *ch_weighting; ///< channel weighting mapping
109  int sample_count; ///< sample count used for refresh frequency, reset at refresh
110 
111  /* Filter caches.
112  * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
113  double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
114  double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
115  double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
116 
117 #define I400_BINS (48000 * 4 / 10)
118 #define I3000_BINS (48000 * 3)
119  struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
120  struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
121 
122  /* I and LRA specific */
123  double integrated_loudness; ///< integrated loudness in LUFS (I)
124  double loudness_range; ///< loudness range in LU (LRA)
125  double lra_low, lra_high; ///< low and high LRA values
127 
128 #define OFFSET(x) offsetof(EBUR128Context, x)
129 #define A AV_OPT_FLAG_AUDIO_PARAM
130 #define V AV_OPT_FLAG_VIDEO_PARAM
131 #define F AV_OPT_FLAG_FILTERING_PARAM
132 static const AVOption ebur128_options[] = {
133  { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
134  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
135  { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
136  { NULL },
137 };
138 
139 AVFILTER_DEFINE_CLASS(ebur128);
140 
141 static const uint8_t graph_colors[] = {
142  0xdd, 0x66, 0x66, // value above 0LU non reached
143  0x66, 0x66, 0xdd, // value below 0LU non reached
144  0x96, 0x33, 0x33, // value above 0LU reached
145  0x33, 0x33, 0x96, // value below 0LU reached
146  0xdd, 0x96, 0x96, // value above 0LU line non reached
147  0x96, 0x96, 0xdd, // value below 0LU line non reached
148  0xdd, 0x33, 0x33, // value above 0LU line reached
149  0x33, 0x33, 0xdd, // value below 0LU line reached
150 };
151 
152 static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
153 {
154  const int below0 = y > ebur128->y_zero_lu;
155  const int reached = y >= v;
156  const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
157  const int colorid = 4*line + 2*reached + below0;
158  return graph_colors + 3*colorid;
159 }
160 
161 static inline int lu_to_y(const EBUR128Context *ebur128, double v)
162 {
163  v += 2 * ebur128->meter; // make it in range [0;...]
164  v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
165  v = ebur128->scale_range - v; // invert value (y=0 is on top)
166  return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
167 }
168 
169 #define FONT8 0
170 #define FONT16 1
171 
172 static const uint8_t font_colors[] = {
173  0xdd, 0xdd, 0x00,
174  0x00, 0x96, 0x96,
175 };
176 
177 static void drawtext(AVFilterBufferRef *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
178 {
179  int i;
180  char buf[128] = {0};
181  const uint8_t *font;
182  int font_height;
183  va_list vl;
184 
185  if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
186  else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
187  else return;
188 
189  va_start(vl, fmt);
190  vsnprintf(buf, sizeof(buf), fmt, vl);
191  va_end(vl);
192 
193  for (i = 0; buf[i]; i++) {
194  int char_y, mask;
195  uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
196 
197  for (char_y = 0; char_y < font_height; char_y++) {
198  for (mask = 0x80; mask; mask >>= 1) {
199  if (font[buf[i] * font_height + char_y] & mask)
200  memcpy(p, color, 3);
201  else
202  memcpy(p, "\x00\x00\x00", 3);
203  p += 3;
204  }
205  p += pic->linesize[0] - 8*3;
206  }
207  }
208 }
209 
210 static void drawline(AVFilterBufferRef *pic, int x, int y, int len, int step)
211 {
212  int i;
213  uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
214 
215  for (i = 0; i < len; i++) {
216  memcpy(p, "\x00\xff\x00", 3);
217  p += step;
218  }
219 }
220 
221 static int config_video_output(AVFilterLink *outlink)
222 {
223  int i, x, y;
224  uint8_t *p;
225  AVFilterContext *ctx = outlink->src;
226  EBUR128Context *ebur128 = ctx->priv;
227  AVFilterBufferRef *outpicref;
228 
229  /* check if there is enough space to represent everything decently */
230  if (ebur128->w < 640 || ebur128->h < 480) {
231  av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
232  "minimum size is 640x480\n", ebur128->w, ebur128->h);
233  return AVERROR(EINVAL);
234  }
235  outlink->w = ebur128->w;
236  outlink->h = ebur128->h;
237 
238 #define PAD 8
239 
240  /* configure text area position and size */
241  ebur128->text.x = PAD;
242  ebur128->text.y = 40;
243  ebur128->text.w = 3 * 8; // 3 characters
244  ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
245 
246  /* configure gauge position and size */
247  ebur128->gauge.w = 20;
248  ebur128->gauge.h = ebur128->text.h;
249  ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
250  ebur128->gauge.y = ebur128->text.y;
251 
252  /* configure graph position and size */
253  ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
254  ebur128->graph.y = ebur128->gauge.y;
255  ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
256  ebur128->graph.h = ebur128->gauge.h;
257 
258  /* graph and gauge share the LU-to-pixel code */
259  av_assert0(ebur128->graph.h == ebur128->gauge.h);
260 
261  /* prepare the initial picref buffer */
263  ebur128->outpicref = outpicref =
265  outlink->w, outlink->h);
266  if (!outpicref)
267  return AVERROR(ENOMEM);
268  outlink->sample_aspect_ratio = (AVRational){1,1};
269 
270  /* init y references values (to draw LU lines) */
271  ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
272  if (!ebur128->y_line_ref)
273  return AVERROR(ENOMEM);
274 
275  /* black background */
276  memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
277 
278  /* draw LU legends */
279  drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
280  for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
281  y = lu_to_y(ebur128, i);
282  x = PAD + (i < 10 && i > -10) * 8;
283  ebur128->y_line_ref[y] = i;
284  y -= 4; // -4 to center vertically
285  drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
286  "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
287  }
288 
289  /* draw graph */
290  ebur128->y_zero_lu = lu_to_y(ebur128, 0);
291  p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
292  + ebur128->graph.x * 3;
293  for (y = 0; y < ebur128->graph.h; y++) {
294  const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
295 
296  for (x = 0; x < ebur128->graph.w; x++)
297  memcpy(p + x*3, c, 3);
298  p += outpicref->linesize[0];
299  }
300 
301  /* draw fancy rectangles around the graph and the gauge */
302 #define DRAW_RECT(r) do { \
303  drawline(outpicref, r.x, r.y - 1, r.w, 3); \
304  drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
305  drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
306  drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
307 } while (0)
308  DRAW_RECT(ebur128->graph);
309  DRAW_RECT(ebur128->gauge);
310 
311  return 0;
312 }
313 
314 static int config_audio_output(AVFilterLink *outlink)
315 {
316  int i;
317  AVFilterContext *ctx = outlink->src;
318  EBUR128Context *ebur128 = ctx->priv;
320 
321 #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
322  AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT)
323 
324  ebur128->nb_channels = nb_channels;
325  ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
326  if (!ebur128->ch_weighting)
327  return AVERROR(ENOMEM);
328 
329  for (i = 0; i < nb_channels; i++) {
330 
331  /* channel weighting */
332  if ((outlink->channel_layout & 1ULL<<i) == AV_CH_LOW_FREQUENCY)
333  continue;
334  if (outlink->channel_layout & 1ULL<<i & BACK_MASK)
335  ebur128->ch_weighting[i] = 1.41;
336  else
337  ebur128->ch_weighting[i] = 1.0;
338 
339  /* bins buffer for the two integration window (400ms and 3s) */
340  ebur128->i400.cache[i] = av_calloc(I400_BINS, sizeof(*ebur128->i400.cache[0]));
341  ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
342  if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
343  return AVERROR(ENOMEM);
344  }
345 
346  return 0;
347 }
348 
349 #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
350 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
351 
352 static struct hist_entry *get_histogram(void)
353 {
354  int i;
355  struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
356 
357  for (i = 0; i < HIST_SIZE; i++) {
358  h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
359  h[i].energy = ENERGY(h[i].loudness);
360  }
361  return h;
362 }
363 
364 static av_cold int init(AVFilterContext *ctx, const char *args)
365 {
366  int ret;
367  EBUR128Context *ebur128 = ctx->priv;
368  AVFilterPad pad;
369 
370  ebur128->class = &ebur128_class;
371  av_opt_set_defaults(ebur128);
372 
373  if ((ret = av_set_options_string(ebur128, args, "=", ":")) < 0)
374  return ret;
375 
376  // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
377  // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
378  ebur128->scale_range = 3 * ebur128->meter;
379 
380  ebur128->i400.histogram = get_histogram();
381  ebur128->i3000.histogram = get_histogram();
382 
383  ebur128->integrated_loudness = ABS_THRES;
384  ebur128->loudness_range = 0;
385 
386  /* insert output pads */
387  if (ebur128->do_video) {
388  pad = (AVFilterPad){
389  .name = av_strdup("out0"),
390  .type = AVMEDIA_TYPE_VIDEO,
391  .config_props = config_video_output,
392  };
393  if (!pad.name)
394  return AVERROR(ENOMEM);
395  ff_insert_outpad(ctx, 0, &pad);
396  }
397  pad = (AVFilterPad){
398  .name = av_asprintf("out%d", ebur128->do_video),
399  .type = AVMEDIA_TYPE_AUDIO,
400  .config_props = config_audio_output,
401  };
402  if (!pad.name)
403  return AVERROR(ENOMEM);
404  ff_insert_outpad(ctx, ebur128->do_video, &pad);
405 
406  /* summary */
407  av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
408 
409  return 0;
410 }
411 
412 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
413 
414 /* loudness and power should be set such as loudness = -0.691 +
415  * 10*log10(power), we just avoid doing that calculus two times */
416 static int gate_update(struct integrator *integ, double power,
417  double loudness, int gate_thres)
418 {
419  int ipower;
420  double relative_threshold;
421  int gate_hist_pos;
422 
423  /* update powers histograms by incrementing current power count */
424  ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
425  integ->histogram[ipower].count++;
426 
427  /* compute relative threshold and get its position in the histogram */
428  integ->sum_kept_powers += power;
429  integ->nb_kept_powers++;
430  relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
431  if (!relative_threshold)
432  relative_threshold = 1e-12;
433  integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
434  gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
435 
436  return gate_hist_pos;
437 }
438 
439 static int filter_frame(AVFilterLink *inlink, AVFilterBufferRef *insamples)
440 {
441  int i, ch;
442  AVFilterContext *ctx = inlink->dst;
443  EBUR128Context *ebur128 = ctx->priv;
444  const int nb_channels = ebur128->nb_channels;
445  const int nb_samples = insamples->audio->nb_samples;
446  const double *samples = (double *)insamples->data[0];
447  AVFilterBufferRef *pic = ebur128->outpicref;
448 
449  for (i = 0; i < nb_samples; i++) {
450  const int bin_id_400 = ebur128->i400.cache_pos;
451  const int bin_id_3000 = ebur128->i3000.cache_pos;
452 
453 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
454  ebur128->i##time.cache_pos++; \
455  if (ebur128->i##time.cache_pos == I##time##_BINS) { \
456  ebur128->i##time.filled = 1; \
457  ebur128->i##time.cache_pos = 0; \
458  } \
459 } while (0)
460 
463 
464  for (ch = 0; ch < nb_channels; ch++) {
465  double bin;
466 
467  if (!ebur128->ch_weighting[ch])
468  continue;
469 
470  /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
471 #define FILTER(Y, X, name) do { \
472  double *dst = ebur128->Y + ch*3; \
473  double *src = ebur128->X + ch*3; \
474  dst[2] = dst[1]; \
475  dst[1] = dst[0]; \
476  dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \
477  - dst[1]*name##_A1 - dst[2]*name##_A2; \
478 } while (0)
479 
480  ebur128->x[ch * 3] = *samples++; // set X[i]
481 
482  // TODO: merge both filters in one?
483  FILTER(y, x, PRE); // apply pre-filter
484  ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
485  ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
486  FILTER(z, y, RLB); // apply RLB-filter
487 
488  bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
489 
490  /* add the new value, and limit the sum to the cache size (400ms or 3s)
491  * by removing the oldest one */
492  ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
493  ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
494 
495  /* override old cache entry with the new value */
496  ebur128->i400.cache [ch][bin_id_400 ] = bin;
497  ebur128->i3000.cache[ch][bin_id_3000] = bin;
498  }
499 
500  /* For integrated loudness, gating blocks are 400ms long with 75%
501  * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
502  * (4800 samples at 48kHz). */
503  if (++ebur128->sample_count == 4800) {
504  double loudness_400, loudness_3000;
505  double power_400 = 1e-12, power_3000 = 1e-12;
506  AVFilterLink *outlink = ctx->outputs[0];
507  const int64_t pts = insamples->pts +
508  av_rescale_q(i, (AVRational){ 1, inlink->sample_rate },
509  outlink->time_base);
510 
511  ebur128->sample_count = 0;
512 
513 #define COMPUTE_LOUDNESS(m, time) do { \
514  if (ebur128->i##time.filled) { \
515  /* weighting sum of the last <time> ms */ \
516  for (ch = 0; ch < nb_channels; ch++) \
517  power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
518  power_##time /= I##time##_BINS; \
519  } \
520  loudness_##time = LOUDNESS(power_##time); \
521 } while (0)
522 
523  COMPUTE_LOUDNESS(M, 400);
524  COMPUTE_LOUDNESS(S, 3000);
525 
526  /* Integrated loudness */
527 #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
528 
529  if (loudness_400 >= ABS_THRES) {
530  double integrated_sum = 0;
531  int nb_integrated = 0;
532  int gate_hist_pos = gate_update(&ebur128->i400, power_400,
533  loudness_400, I_GATE_THRES);
534 
535  /* compute integrated loudness by summing the histogram values
536  * above the relative threshold */
537  for (i = gate_hist_pos; i < HIST_SIZE; i++) {
538  const int nb_v = ebur128->i400.histogram[i].count;
539  nb_integrated += nb_v;
540  integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
541  }
542  if (nb_integrated)
543  ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
544  }
545 
546  /* LRA */
547 #define LRA_GATE_THRES -20
548 #define LRA_LOWER_PRC 10
549 #define LRA_HIGHER_PRC 95
550 
551  /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
552  * specs is ">" */
553  if (loudness_3000 >= ABS_THRES) {
554  int nb_powers = 0;
555  int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
556  loudness_3000, LRA_GATE_THRES);
557 
558  for (i = gate_hist_pos; i < HIST_SIZE; i++)
559  nb_powers += ebur128->i3000.histogram[i].count;
560  if (nb_powers) {
561  int n, nb_pow;
562 
563  /* get lower loudness to consider */
564  n = 0;
565  nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
566  for (i = gate_hist_pos; i < HIST_SIZE; i++) {
567  n += ebur128->i3000.histogram[i].count;
568  if (n >= nb_pow) {
569  ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
570  break;
571  }
572  }
573 
574  /* get higher loudness to consider */
575  n = nb_powers;
576  nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
577  for (i = HIST_SIZE - 1; i >= 0; i--) {
578  n -= ebur128->i3000.histogram[i].count;
579  if (n < nb_pow) {
580  ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
581  break;
582  }
583  }
584 
585  // XXX: show low & high on the graph?
586  ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
587  }
588  }
589 
590 #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU"
591 
592  /* push one video frame */
593  if (ebur128->do_video) {
594  int x, y, ret;
595  uint8_t *p;
596 
597  const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
598  const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400 + 23);
599 
600  /* draw the graph using the short-term loudness */
601  p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
602  for (y = 0; y < ebur128->graph.h; y++) {
603  const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
604 
605  memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
606  memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
607  p += pic->linesize[0];
608  }
609 
610  /* draw the gauge using the momentary loudness */
611  p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
612  for (y = 0; y < ebur128->gauge.h; y++) {
613  const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
614 
615  for (x = 0; x < ebur128->gauge.w; x++)
616  memcpy(p + x*3, c, 3);
617  p += pic->linesize[0];
618  }
619 
620  /* draw textual info */
621  drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
622  LOG_FMT " ", // padding to erase trailing characters
623  loudness_400, loudness_3000,
624  ebur128->integrated_loudness, ebur128->loudness_range);
625 
626  /* set pts and push frame */
627  pic->pts = pts;
628  ret = ff_filter_frame(outlink, avfilter_ref_buffer(pic, ~AV_PERM_WRITE));
629  if (ret < 0)
630  return ret;
631  }
632 
633  av_log(ctx, ebur128->do_video ? AV_LOG_VERBOSE : AV_LOG_INFO,
634  "t: %-10s " LOG_FMT "\n", av_ts2timestr(pts, &outlink->time_base),
635  loudness_400, loudness_3000,
636  ebur128->integrated_loudness, ebur128->loudness_range);
637  }
638  }
639 
640  return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
641 }
642 
644 {
645  EBUR128Context *ebur128 = ctx->priv;
648  AVFilterLink *inlink = ctx->inputs[0];
649  AVFilterLink *outlink = ctx->outputs[0];
650 
652  static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
653  static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
654 
655  /* set input audio formats */
656  formats = ff_make_format_list(sample_fmts);
657  if (!formats)
658  return AVERROR(ENOMEM);
659  ff_formats_ref(formats, &inlink->out_formats);
660 
661  layouts = ff_all_channel_layouts();
662  if (!layouts)
663  return AVERROR(ENOMEM);
664  ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
665 
666  formats = ff_make_format_list(input_srate);
667  if (!formats)
668  return AVERROR(ENOMEM);
669  ff_formats_ref(formats, &inlink->out_samplerates);
670 
671  /* set optional output video format */
672  if (ebur128->do_video) {
673  formats = ff_make_format_list(pix_fmts);
674  if (!formats)
675  return AVERROR(ENOMEM);
676  ff_formats_ref(formats, &outlink->in_formats);
677  outlink = ctx->outputs[1];
678  }
679 
680  /* set audio output formats (same as input since it's just a passthrough) */
681  formats = ff_make_format_list(sample_fmts);
682  if (!formats)
683  return AVERROR(ENOMEM);
684  ff_formats_ref(formats, &outlink->in_formats);
685 
686  layouts = ff_all_channel_layouts();
687  if (!layouts)
688  return AVERROR(ENOMEM);
689  ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
690 
691  formats = ff_make_format_list(input_srate);
692  if (!formats)
693  return AVERROR(ENOMEM);
694  ff_formats_ref(formats, &outlink->in_samplerates);
695 
696  return 0;
697 }
698 
699 static av_cold void uninit(AVFilterContext *ctx)
700 {
701  int i;
702  EBUR128Context *ebur128 = ctx->priv;
703 
704  av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
705  " Integrated loudness:\n"
706  " I: %5.1f LUFS\n"
707  " Threshold: %5.1f LUFS\n\n"
708  " Loudness range:\n"
709  " LRA: %5.1f LU\n"
710  " Threshold: %5.1f LUFS\n"
711  " LRA low: %5.1f LUFS\n"
712  " LRA high: %5.1f LUFS\n",
713  ebur128->integrated_loudness, ebur128->i400.rel_threshold,
714  ebur128->loudness_range, ebur128->i3000.rel_threshold,
715  ebur128->lra_low, ebur128->lra_high);
716 
717  av_freep(&ebur128->y_line_ref);
718  av_freep(&ebur128->ch_weighting);
719  av_freep(&ebur128->i400.histogram);
720  av_freep(&ebur128->i3000.histogram);
721  for (i = 0; i < ebur128->nb_channels; i++) {
722  av_freep(&ebur128->i400.cache[i]);
723  av_freep(&ebur128->i3000.cache[i]);
724  }
725  for (i = 0; i < ctx->nb_outputs; i++)
726  av_freep(&ctx->output_pads[i].name);
728 }
729 
730 static const AVFilterPad ebur128_inputs[] = {
731  {
732  .name = "default",
733  .type = AVMEDIA_TYPE_AUDIO,
734  .get_audio_buffer = ff_null_get_audio_buffer,
735  .filter_frame = filter_frame,
736  },
737  { NULL }
738 };
739 
741  .name = "ebur128",
742  .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
743  .priv_size = sizeof(EBUR128Context),
744  .init = init,
745  .uninit = uninit,
747  .inputs = ebur128_inputs,
748  .outputs = NULL,
749  .priv_class = &ebur128_class,
750 };