FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
takdec.c
Go to the documentation of this file.
1 /*
2  * TAK decoder
3  * Copyright (c) 2012 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * TAK (Tom's lossless Audio Kompressor) decoder
25  * @author Paul B Mahol
26  */
27 
28 #include "libavutil/samplefmt.h"
29 #include "tak.h"
30 #include "avcodec.h"
31 #include "dsputil.h"
32 #include "internal.h"
33 #include "unary.h"
34 
35 #define MAX_SUBFRAMES 8 ///< max number of subframes per channel
36 #define MAX_PREDICTORS 256
37 
38 typedef struct MCDParam {
39  int8_t present; ///< decorrelation parameter availability for this channel
40  int8_t index; ///< index into array of decorrelation types
41  int8_t chan1;
42  int8_t chan2;
43 } MCDParam;
44 
45 typedef struct TAKDecContext {
46  AVCodecContext *avctx; ///< parent AVCodecContext
47  AVFrame frame; ///< AVFrame for decoded output
50  GetBitContext gb; ///< bitstream reader initialized to start at the current frame
51 
52  int uval;
53  int nb_samples; ///< number of samples in the current frame
55  unsigned int decode_buffer_size;
56  int32_t *decoded[TAK_MAX_CHANNELS]; ///< decoded samples for each channel
57 
59  int8_t sample_shift[TAK_MAX_CHANNELS]; ///< shift applied to every sample in the channel
61  int nb_subframes; ///< number of subframes in the current frame
62  int16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
64 
65  int8_t dmode; ///< channel decorrelation type in the current frame
66 
67  MCDParam mcdparams[TAK_MAX_CHANNELS]; ///< multichannel decorrelation parameters
68 
69  int8_t coding_mode[128];
71  DECLARE_ALIGNED(16, int16_t, residues)[544];
73 
74 static const int8_t mc_dmodes[] = { 1, 3, 4, 6, };
75 
76 static const uint16_t predictor_sizes[] = {
77  4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256, 0,
78 };
79 
80 static const struct CParam {
81  int init;
82  int escape;
83  int scale;
84  int aescape;
85  int bias;
86 } xcodes[50] = {
87  { 0x01, 0x0000001, 0x0000001, 0x0000003, 0x0000008 },
88  { 0x02, 0x0000003, 0x0000001, 0x0000007, 0x0000006 },
89  { 0x03, 0x0000005, 0x0000002, 0x000000E, 0x000000D },
90  { 0x03, 0x0000003, 0x0000003, 0x000000D, 0x0000018 },
91  { 0x04, 0x000000B, 0x0000004, 0x000001C, 0x0000019 },
92  { 0x04, 0x0000006, 0x0000006, 0x000001A, 0x0000030 },
93  { 0x05, 0x0000016, 0x0000008, 0x0000038, 0x0000032 },
94  { 0x05, 0x000000C, 0x000000C, 0x0000034, 0x0000060 },
95  { 0x06, 0x000002C, 0x0000010, 0x0000070, 0x0000064 },
96  { 0x06, 0x0000018, 0x0000018, 0x0000068, 0x00000C0 },
97  { 0x07, 0x0000058, 0x0000020, 0x00000E0, 0x00000C8 },
98  { 0x07, 0x0000030, 0x0000030, 0x00000D0, 0x0000180 },
99  { 0x08, 0x00000B0, 0x0000040, 0x00001C0, 0x0000190 },
100  { 0x08, 0x0000060, 0x0000060, 0x00001A0, 0x0000300 },
101  { 0x09, 0x0000160, 0x0000080, 0x0000380, 0x0000320 },
102  { 0x09, 0x00000C0, 0x00000C0, 0x0000340, 0x0000600 },
103  { 0x0A, 0x00002C0, 0x0000100, 0x0000700, 0x0000640 },
104  { 0x0A, 0x0000180, 0x0000180, 0x0000680, 0x0000C00 },
105  { 0x0B, 0x0000580, 0x0000200, 0x0000E00, 0x0000C80 },
106  { 0x0B, 0x0000300, 0x0000300, 0x0000D00, 0x0001800 },
107  { 0x0C, 0x0000B00, 0x0000400, 0x0001C00, 0x0001900 },
108  { 0x0C, 0x0000600, 0x0000600, 0x0001A00, 0x0003000 },
109  { 0x0D, 0x0001600, 0x0000800, 0x0003800, 0x0003200 },
110  { 0x0D, 0x0000C00, 0x0000C00, 0x0003400, 0x0006000 },
111  { 0x0E, 0x0002C00, 0x0001000, 0x0007000, 0x0006400 },
112  { 0x0E, 0x0001800, 0x0001800, 0x0006800, 0x000C000 },
113  { 0x0F, 0x0005800, 0x0002000, 0x000E000, 0x000C800 },
114  { 0x0F, 0x0003000, 0x0003000, 0x000D000, 0x0018000 },
115  { 0x10, 0x000B000, 0x0004000, 0x001C000, 0x0019000 },
116  { 0x10, 0x0006000, 0x0006000, 0x001A000, 0x0030000 },
117  { 0x11, 0x0016000, 0x0008000, 0x0038000, 0x0032000 },
118  { 0x11, 0x000C000, 0x000C000, 0x0034000, 0x0060000 },
119  { 0x12, 0x002C000, 0x0010000, 0x0070000, 0x0064000 },
120  { 0x12, 0x0018000, 0x0018000, 0x0068000, 0x00C0000 },
121  { 0x13, 0x0058000, 0x0020000, 0x00E0000, 0x00C8000 },
122  { 0x13, 0x0030000, 0x0030000, 0x00D0000, 0x0180000 },
123  { 0x14, 0x00B0000, 0x0040000, 0x01C0000, 0x0190000 },
124  { 0x14, 0x0060000, 0x0060000, 0x01A0000, 0x0300000 },
125  { 0x15, 0x0160000, 0x0080000, 0x0380000, 0x0320000 },
126  { 0x15, 0x00C0000, 0x00C0000, 0x0340000, 0x0600000 },
127  { 0x16, 0x02C0000, 0x0100000, 0x0700000, 0x0640000 },
128  { 0x16, 0x0180000, 0x0180000, 0x0680000, 0x0C00000 },
129  { 0x17, 0x0580000, 0x0200000, 0x0E00000, 0x0C80000 },
130  { 0x17, 0x0300000, 0x0300000, 0x0D00000, 0x1800000 },
131  { 0x18, 0x0B00000, 0x0400000, 0x1C00000, 0x1900000 },
132  { 0x18, 0x0600000, 0x0600000, 0x1A00000, 0x3000000 },
133  { 0x19, 0x1600000, 0x0800000, 0x3800000, 0x3200000 },
134  { 0x19, 0x0C00000, 0x0C00000, 0x3400000, 0x6000000 },
135  { 0x1A, 0x2C00000, 0x1000000, 0x7000000, 0x6400000 },
136  { 0x1A, 0x1800000, 0x1800000, 0x6800000, 0xC000000 },
137 };
138 
139 static int set_bps_params(AVCodecContext *avctx)
140 {
141  switch (avctx->bits_per_raw_sample) {
142  case 8:
143  avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
144  break;
145  case 16:
147  break;
148  case 24:
150  break;
151  default:
152  av_log(avctx, AV_LOG_ERROR, "invalid/unsupported bits per sample: %d\n",
153  avctx->bits_per_raw_sample);
154  return AVERROR_INVALIDDATA;
155  }
156 
157  return 0;
158 }
159 
161 {
162  TAKDecContext *s = avctx->priv_data;
163  int shift = 3 - (avctx->sample_rate / 11025);
164  shift = FFMAX(0, shift);
165  s->uval = FFALIGN(avctx->sample_rate + 511 >> 9, 4) << shift;
166  s->subframe_scale = FFALIGN(avctx->sample_rate + 511 >> 9, 4) << 1;
167 }
168 
170 {
171  TAKDecContext *s = avctx->priv_data;
172 
173  ff_tak_init_crc();
174  ff_dsputil_init(&s->dsp, avctx);
175 
176  s->avctx = avctx;
178  avctx->coded_frame = &s->frame;
180 
181  set_sample_rate_params(avctx);
182 
183  return set_bps_params(avctx);
184 }
185 
186 static void decode_lpc(int32_t *coeffs, int mode, int length)
187 {
188  int i;
189 
190  if (length < 2)
191  return;
192 
193  if (mode == 1) {
194  int a1 = *coeffs++;
195  for (i = 0; i < length - 1 >> 1; i++) {
196  *coeffs += a1;
197  coeffs[1] += *coeffs;
198  a1 = coeffs[1];
199  coeffs += 2;
200  }
201  if (length - 1 & 1)
202  *coeffs += a1;
203  } else if (mode == 2) {
204  int a1 = coeffs[1];
205  int a2 = a1 + *coeffs;
206  coeffs[1] = a2;
207  if (length > 2) {
208  coeffs += 2;
209  for (i = 0; i < length - 2 >> 1; i++) {
210  int a3 = *coeffs + a1;
211  int a4 = a3 + a2;
212  *coeffs = a4;
213  a1 = coeffs[1] + a3;
214  a2 = a1 + a4;
215  coeffs[1] = a2;
216  coeffs += 2;
217  }
218  if (length & 1)
219  *coeffs += a1 + a2;
220  }
221  } else if (mode == 3) {
222  int a1 = coeffs[1];
223  int a2 = a1 + *coeffs;
224  coeffs[1] = a2;
225  if (length > 2) {
226  int a3 = coeffs[2];
227  int a4 = a3 + a1;
228  int a5 = a4 + a2;
229  coeffs += 3;
230  for (i = 0; i < length - 3; i++) {
231  a3 += *coeffs;
232  a4 += a3;
233  a5 += a4;
234  *coeffs = a5;
235  coeffs++;
236  }
237  }
238  }
239 }
240 
241 static int decode_segment(TAKDecContext *s, int8_t mode, int32_t *decoded, int len)
242 {
243  struct CParam code;
244  GetBitContext *gb = &s->gb;
245  int i;
246 
247  if (!mode) {
248  memset(decoded, 0, len * sizeof(*decoded));
249  return 0;
250  }
251 
252  if (mode > FF_ARRAY_ELEMS(xcodes))
253  return AVERROR_INVALIDDATA;
254  code = xcodes[mode - 1];
255 
256  for (i = 0; i < len; i++) {
257  int x = get_bits_long(gb, code.init);
258  if (x >= code.escape && get_bits1(gb)) {
259  x |= 1 << code.init;
260  if (x >= code.aescape) {
261  int scale = get_unary(gb, 1, 9);
262  if (scale == 9) {
263  int scale_bits = get_bits(gb, 3);
264  if (scale_bits > 0) {
265  if (scale_bits == 7) {
266  scale_bits += get_bits(gb, 5);
267  if (scale_bits > 29)
268  return AVERROR_INVALIDDATA;
269  }
270  scale = get_bits_long(gb, scale_bits) + 1;
271  x += code.scale * scale;
272  }
273  x += code.bias;
274  } else
275  x += code.scale * scale - code.escape;
276  } else
277  x -= code.escape;
278  }
279  decoded[i] = (x >> 1) ^ -(x & 1);
280  }
281 
282  return 0;
283 }
284 
285 static int decode_residues(TAKDecContext *s, int32_t *decoded, int length)
286 {
287  GetBitContext *gb = &s->gb;
288  int i, mode, ret;
289 
290  if (length > s->nb_samples)
291  return AVERROR_INVALIDDATA;
292 
293  if (get_bits1(gb)) {
294  int wlength, rval;
295 
296  wlength = length / s->uval;
297 
298  rval = length - (wlength * s->uval);
299 
300  if (rval < s->uval / 2)
301  rval += s->uval;
302  else
303  wlength++;
304 
305  if (wlength <= 1 || wlength > 128)
306  return AVERROR_INVALIDDATA;
307 
308  s->coding_mode[0] = mode = get_bits(gb, 6);
309 
310  for (i = 1; i < wlength; i++) {
311  int c = get_unary(gb, 1, 6);
312 
313  switch (c) {
314  case 6:
315  mode = get_bits(gb, 6);
316  break;
317  case 5:
318  case 4:
319  case 3: {
320  /* mode += sign ? (1 - c) : (c - 1) */
321  int sign = get_bits1(gb);
322  mode += (-sign ^ (c - 1)) + sign;
323  break;
324  }
325  case 2:
326  mode++;
327  break;
328  case 1:
329  mode--;
330  break;
331  }
332  s->coding_mode[i] = mode;
333  }
334 
335  i = 0;
336  while (i < wlength) {
337  int len = 0;
338 
339  mode = s->coding_mode[i];
340  do {
341  if (i >= wlength - 1)
342  len += rval;
343  else
344  len += s->uval;
345  i++;
346 
347  if (i == wlength)
348  break;
349  } while (s->coding_mode[i] == mode);
350 
351  if ((ret = decode_segment(s, mode, decoded, len)) < 0)
352  return ret;
353  decoded += len;
354  }
355  } else {
356  mode = get_bits(gb, 6);
357  if ((ret = decode_segment(s, mode, decoded, length)) < 0)
358  return ret;
359  }
360 
361  return 0;
362 }
363 
365 {
366  if (get_bits1(gb))
367  return get_bits(gb, 4) + 1;
368  else
369  return 0;
370 }
371 
372 static int decode_subframe(TAKDecContext *s, int32_t *decoded,
373  int subframe_size, int prev_subframe_size)
374 {
375  GetBitContext *gb = &s->gb;
376  int tmp, x, y, i, j, ret = 0;
377  int dshift, size, filter_quant, filter_order;
378  int tfilter[MAX_PREDICTORS];
379 
380  if (!get_bits1(gb))
381  return decode_residues(s, decoded, subframe_size);
382 
383  filter_order = predictor_sizes[get_bits(gb, 4)];
384 
385  if (prev_subframe_size > 0 && get_bits1(gb)) {
386  if (filter_order > prev_subframe_size)
387  return AVERROR_INVALIDDATA;
388 
389  decoded -= filter_order;
390  subframe_size += filter_order;
391 
392  if (filter_order > subframe_size)
393  return AVERROR_INVALIDDATA;
394  } else {
395  int lpc_mode;
396 
397  if (filter_order > subframe_size)
398  return AVERROR_INVALIDDATA;
399 
400  lpc_mode = get_bits(gb, 2);
401  if (lpc_mode > 2)
402  return AVERROR_INVALIDDATA;
403 
404  if ((ret = decode_residues(s, decoded, filter_order)) < 0)
405  return ret;
406 
407  if (lpc_mode)
408  decode_lpc(decoded, lpc_mode, filter_order);
409  }
410 
411  dshift = get_bits_esc4(gb);
412  size = get_bits1(gb) + 6;
413 
414  filter_quant = 10;
415  if (get_bits1(gb)) {
416  filter_quant -= get_bits(gb, 3) + 1;
417  if (filter_quant < 3)
418  return AVERROR_INVALIDDATA;
419  }
420 
421  s->predictors[0] = get_sbits(gb, 10);
422  s->predictors[1] = get_sbits(gb, 10);
423  s->predictors[2] = get_sbits(gb, size) << (10 - size);
424  s->predictors[3] = get_sbits(gb, size) << (10 - size);
425  if (filter_order > 4) {
426  tmp = size - get_bits1(gb);
427 
428  for (i = 4; i < filter_order; i++) {
429  if (!(i & 3))
430  x = tmp - get_bits(gb, 2);
431  s->predictors[i] = get_sbits(gb, x) << (10 - size);
432  }
433  }
434 
435  tfilter[0] = s->predictors[0] << 6;
436  for (i = 1; i < filter_order; i++) {
437  int32_t *p1 = &tfilter[0];
438  int32_t *p2 = &tfilter[i - 1];
439 
440  for (j = 0; j < (i + 1) / 2; j++) {
441  x = *p1 + (s->predictors[i] * *p2 + 256 >> 9);
442  *p2 += s->predictors[i] * *p1 + 256 >> 9;
443  *p1++ = x;
444  p2--;
445  }
446 
447  tfilter[i] = s->predictors[i] << 6;
448  }
449 
450  x = 1 << (32 - (15 - filter_quant));
451  y = 1 << ((15 - filter_quant) - 1);
452  for (i = 0, j = filter_order - 1; i < filter_order / 2; i++, j--) {
453  tmp = y + tfilter[j];
454  s->filter[j] = x - ((tfilter[i] + y) >> (15 - filter_quant));
455  s->filter[i] = x - ((tfilter[j] + y) >> (15 - filter_quant));
456  }
457 
458  if ((ret = decode_residues(s, &decoded[filter_order],
459  subframe_size - filter_order)) < 0)
460  return ret;
461 
462  for (i = 0; i < filter_order; i++)
463  s->residues[i] = *decoded++ >> dshift;
464 
465  y = FF_ARRAY_ELEMS(s->residues) - filter_order;
466  x = subframe_size - filter_order;
467  while (x > 0) {
468  tmp = FFMIN(y, x);
469 
470  for (i = 0; i < tmp; i++) {
471  int v = 1 << (filter_quant - 1);
472 
473  if (!(filter_order & 15)) {
474  v += s->dsp.scalarproduct_int16(&s->residues[i], s->filter,
475  filter_order);
476  } else if (filter_order & 4) {
477  for (j = 0; j < filter_order; j += 4) {
478  v += s->residues[i + j + 3] * s->filter[j + 3] +
479  s->residues[i + j + 2] * s->filter[j + 2] +
480  s->residues[i + j + 1] * s->filter[j + 1] +
481  s->residues[i + j ] * s->filter[j ];
482  }
483  } else {
484  for (j = 0; j < filter_order; j += 8) {
485  v += s->residues[i + j + 7] * s->filter[j + 7] +
486  s->residues[i + j + 6] * s->filter[j + 6] +
487  s->residues[i + j + 5] * s->filter[j + 5] +
488  s->residues[i + j + 4] * s->filter[j + 4] +
489  s->residues[i + j + 3] * s->filter[j + 3] +
490  s->residues[i + j + 2] * s->filter[j + 2] +
491  s->residues[i + j + 1] * s->filter[j + 1] +
492  s->residues[i + j ] * s->filter[j ];
493  }
494  }
495  v = (av_clip(v >> filter_quant, -8192, 8191) << dshift) - *decoded;
496  *decoded++ = v;
497  s->residues[filter_order + i] = v >> dshift;
498  }
499 
500  x -= tmp;
501  if (x > 0)
502  memcpy(s->residues, &s->residues[y], 2 * filter_order);
503  }
504 
505  emms_c();
506 
507  return 0;
508 }
509 
510 static int decode_channel(TAKDecContext *s, int chan)
511 {
512  AVCodecContext *avctx = s->avctx;
513  GetBitContext *gb = &s->gb;
514  int32_t *decoded = s->decoded[chan];
515  int left = s->nb_samples - 1;
516  int i = 0, ret, prev = 0;
517 
518  s->sample_shift[chan] = get_bits_esc4(gb);
519  if (s->sample_shift[chan] >= avctx->bits_per_raw_sample)
520  return AVERROR_INVALIDDATA;
521 
522  *decoded++ = get_sbits(gb, avctx->bits_per_raw_sample - s->sample_shift[chan]);
523  s->lpc_mode[chan] = get_bits(gb, 2);
524  s->nb_subframes = get_bits(gb, 3) + 1;
525 
526  if (s->nb_subframes > 1) {
527  if (get_bits_left(gb) < (s->nb_subframes - 1) * 6)
528  return AVERROR_INVALIDDATA;
529 
530  for (; i < s->nb_subframes - 1; i++) {
531  int v = get_bits(gb, 6);
532 
533  s->subframe_len[i] = (v - prev) * s->subframe_scale;
534  if (s->subframe_len[i] <= 0)
535  return AVERROR_INVALIDDATA;
536 
537  left -= s->subframe_len[i];
538  prev = v;
539  }
540 
541  if (left <= 0)
542  return AVERROR_INVALIDDATA;
543  }
544  s->subframe_len[i] = left;
545 
546  prev = 0;
547  for (i = 0; i < s->nb_subframes; i++) {
548  if ((ret = decode_subframe(s, decoded, s->subframe_len[i], prev)) < 0)
549  return ret;
550  decoded += s->subframe_len[i];
551  prev = s->subframe_len[i];
552  }
553 
554  return 0;
555 }
556 
557 static int decorrelate(TAKDecContext *s, int c1, int c2, int length)
558 {
559  GetBitContext *gb = &s->gb;
560  int32_t *p1 = s->decoded[c1] + 1;
561  int32_t *p2 = s->decoded[c2] + 1;
562  int i;
563  int dshift, dfactor;
564 
565  switch (s->dmode) {
566  case 1: /* left/side */
567  for (i = 0; i < length; i++) {
568  int32_t a = p1[i];
569  int32_t b = p2[i];
570  p2[i] = a + b;
571  }
572  break;
573  case 2: /* side/right */
574  for (i = 0; i < length; i++) {
575  int32_t a = p1[i];
576  int32_t b = p2[i];
577  p1[i] = b - a;
578  }
579  break;
580  case 3: /* side/mid */
581  for (i = 0; i < length; i++) {
582  int32_t a = p1[i];
583  int32_t b = p2[i];
584  a -= b >> 1;
585  p1[i] = a;
586  p2[i] = a + b;
587  }
588  break;
589  case 4: /* side/left with scale factor */
590  FFSWAP(int32_t*, p1, p2);
591  case 5: /* side/right with scale factor */
592  dshift = get_bits_esc4(gb);
593  dfactor = get_sbits(gb, 10);
594  for (i = 0; i < length; i++) {
595  int32_t a = p1[i];
596  int32_t b = p2[i];
597  b = dfactor * (b >> dshift) + 128 >> 8 << dshift;
598  p1[i] = b - a;
599  }
600  break;
601  case 6:
602  FFSWAP(int32_t*, p1, p2);
603  case 7: {
604  int length2, order_half, filter_order, dval1, dval2;
605  int tmp, x, code_size;
606 
607  if (length < 256)
608  return AVERROR_INVALIDDATA;
609 
610  dshift = get_bits_esc4(gb);
611  filter_order = 8 << get_bits1(gb);
612  dval1 = get_bits1(gb);
613  dval2 = get_bits1(gb);
614 
615  for (i = 0; i < filter_order; i++) {
616  if (!(i & 3))
617  code_size = 14 - get_bits(gb, 3);
618  s->filter[i] = get_sbits(gb, code_size);
619  }
620 
621  order_half = filter_order / 2;
622  length2 = length - (filter_order - 1);
623 
624  /* decorrelate beginning samples */
625  if (dval1) {
626  for (i = 0; i < order_half; i++) {
627  int32_t a = p1[i];
628  int32_t b = p2[i];
629  p1[i] = a + b;
630  }
631  }
632 
633  /* decorrelate ending samples */
634  if (dval2) {
635  for (i = length2 + order_half; i < length; i++) {
636  int32_t a = p1[i];
637  int32_t b = p2[i];
638  p1[i] = a + b;
639  }
640  }
641 
642 
643  for (i = 0; i < filter_order; i++)
644  s->residues[i] = *p2++ >> dshift;
645 
646  p1 += order_half;
647  x = FF_ARRAY_ELEMS(s->residues) - filter_order;
648  for (; length2 > 0; length2 -= tmp) {
649  tmp = FFMIN(length2, x);
650 
651  for (i = 0; i < tmp; i++)
652  s->residues[filter_order + i] = *p2++ >> dshift;
653 
654  for (i = 0; i < tmp; i++) {
655  int v = 1 << 9;
656 
657  if (filter_order == 16) {
658  v += s->dsp.scalarproduct_int16(&s->residues[i], s->filter,
659  filter_order);
660  } else {
661  v += s->residues[i + 7] * s->filter[7] +
662  s->residues[i + 6] * s->filter[6] +
663  s->residues[i + 5] * s->filter[5] +
664  s->residues[i + 4] * s->filter[4] +
665  s->residues[i + 3] * s->filter[3] +
666  s->residues[i + 2] * s->filter[2] +
667  s->residues[i + 1] * s->filter[1] +
668  s->residues[i ] * s->filter[0];
669  }
670 
671  v = (av_clip(v >> 10, -8192, 8191) << dshift) - *p1;
672  *p1++ = v;
673  }
674 
675  memcpy(s->residues, &s->residues[tmp], 2 * filter_order);
676  }
677 
678  emms_c();
679  break;
680  }
681  }
682 
683  return 0;
684 }
685 
686 static int tak_decode_frame(AVCodecContext *avctx, void *data,
687  int *got_frame_ptr, AVPacket *pkt)
688 {
689  TAKDecContext *s = avctx->priv_data;
690  GetBitContext *gb = &s->gb;
691  int chan, i, ret, hsize;
692 
693  if (pkt->size < TAK_MIN_FRAME_HEADER_BYTES)
694  return AVERROR_INVALIDDATA;
695 
696  init_get_bits(gb, pkt->data, pkt->size * 8);
697 
698  if ((ret = ff_tak_decode_frame_header(avctx, gb, &s->ti, 0)) < 0)
699  return ret;
700 
701  if (avctx->err_recognition & AV_EF_CRCCHECK) {
702  hsize = get_bits_count(gb) / 8;
703  if (ff_tak_check_crc(pkt->data, hsize)) {
704  av_log(avctx, AV_LOG_ERROR, "CRC error\n");
705  return AVERROR_INVALIDDATA;
706  }
707  }
708 
709  if (s->ti.codec != TAK_CODEC_MONO_STEREO &&
711  av_log(avctx, AV_LOG_ERROR, "unsupported codec: %d\n", s->ti.codec);
712  return AVERROR_PATCHWELCOME;
713  }
714  if (s->ti.data_type) {
715  av_log(avctx, AV_LOG_ERROR,
716  "unsupported data type: %d\n", s->ti.data_type);
717  return AVERROR_INVALIDDATA;
718  }
719  if (s->ti.codec == TAK_CODEC_MONO_STEREO && s->ti.channels > 2) {
720  av_log(avctx, AV_LOG_ERROR,
721  "invalid number of channels: %d\n", s->ti.channels);
722  return AVERROR_INVALIDDATA;
723  }
724  if (s->ti.channels > 6) {
725  av_log(avctx, AV_LOG_ERROR,
726  "unsupported number of channels: %d\n", s->ti.channels);
727  return AVERROR_INVALIDDATA;
728  }
729 
730  if (s->ti.frame_samples <= 0) {
731  av_log(avctx, AV_LOG_ERROR, "unsupported/invalid number of samples\n");
732  return AVERROR_INVALIDDATA;
733  }
734 
735  if (s->ti.bps != avctx->bits_per_raw_sample) {
736  avctx->bits_per_raw_sample = s->ti.bps;
737  if ((ret = set_bps_params(avctx)) < 0)
738  return ret;
739  }
740  if (s->ti.sample_rate != avctx->sample_rate) {
741  avctx->sample_rate = s->ti.sample_rate;
742  set_sample_rate_params(avctx);
743  }
744  if (s->ti.ch_layout)
745  avctx->channel_layout = s->ti.ch_layout;
746  avctx->channels = s->ti.channels;
747 
749  : s->ti.frame_samples;
750 
751  s->frame.nb_samples = s->nb_samples;
752  if ((ret = ff_get_buffer(avctx, &s->frame)) < 0)
753  return ret;
754 
755  if (avctx->bits_per_raw_sample <= 16) {
756  int buf_size = av_samples_get_buffer_size(NULL, avctx->channels,
757  s->nb_samples,
758  AV_SAMPLE_FMT_S32P, 0);
759  av_fast_malloc(&s->decode_buffer, &s->decode_buffer_size, buf_size);
760  if (!s->decode_buffer)
761  return AVERROR(ENOMEM);
763  s->decode_buffer, avctx->channels,
765  if (ret < 0)
766  return ret;
767  } else {
768  for (chan = 0; chan < avctx->channels; chan++)
769  s->decoded[chan] = (int32_t *)s->frame.extended_data[chan];
770  }
771 
772  if (s->nb_samples < 16) {
773  for (chan = 0; chan < avctx->channels; chan++) {
774  int32_t *decoded = s->decoded[chan];
775  for (i = 0; i < s->nb_samples; i++)
776  decoded[i] = get_sbits(gb, avctx->bits_per_raw_sample);
777  }
778  } else {
779  if (s->ti.codec == TAK_CODEC_MONO_STEREO) {
780  for (chan = 0; chan < avctx->channels; chan++)
781  if (ret = decode_channel(s, chan))
782  return ret;
783 
784  if (avctx->channels == 2) {
785  s->nb_subframes = get_bits(gb, 1) + 1;
786  if (s->nb_subframes > 1) {
787  s->subframe_len[1] = get_bits(gb, 6);
788  }
789 
790  s->dmode = get_bits(gb, 3);
791  if (ret = decorrelate(s, 0, 1, s->nb_samples - 1))
792  return ret;
793  }
794  } else if (s->ti.codec == TAK_CODEC_MULTICHANNEL) {
795  if (get_bits1(gb)) {
796  int ch_mask = 0;
797 
798  chan = get_bits(gb, 4) + 1;
799  if (chan > avctx->channels)
800  return AVERROR_INVALIDDATA;
801 
802  for (i = 0; i < chan; i++) {
803  int nbit = get_bits(gb, 4);
804 
805  if (nbit >= avctx->channels)
806  return AVERROR_INVALIDDATA;
807 
808  if (ch_mask & 1 << nbit)
809  return AVERROR_INVALIDDATA;
810 
811  s->mcdparams[i].present = get_bits1(gb);
812  if (s->mcdparams[i].present) {
813  s->mcdparams[i].index = get_bits(gb, 2);
814  s->mcdparams[i].chan2 = get_bits(gb, 4);
815  if (s->mcdparams[i].index == 1) {
816  if ((nbit == s->mcdparams[i].chan2) ||
817  (ch_mask & 1 << s->mcdparams[i].chan2))
818  return AVERROR_INVALIDDATA;
819 
820  ch_mask |= 1 << s->mcdparams[i].chan2;
821  } else if (!(ch_mask & 1 << s->mcdparams[i].chan2)) {
822  return AVERROR_INVALIDDATA;
823  }
824  }
825  s->mcdparams[i].chan1 = nbit;
826 
827  ch_mask |= 1 << nbit;
828  }
829  } else {
830  chan = avctx->channels;
831  for (i = 0; i < chan; i++) {
832  s->mcdparams[i].present = 0;
833  s->mcdparams[i].chan1 = i;
834  }
835  }
836 
837  for (i = 0; i < chan; i++) {
838  if (s->mcdparams[i].present && s->mcdparams[i].index == 1)
839  if (ret = decode_channel(s, s->mcdparams[i].chan2))
840  return ret;
841 
842  if (ret = decode_channel(s, s->mcdparams[i].chan1))
843  return ret;
844 
845  if (s->mcdparams[i].present) {
846  s->dmode = mc_dmodes[s->mcdparams[i].index];
847  if (ret = decorrelate(s,
848  s->mcdparams[i].chan2,
849  s->mcdparams[i].chan1,
850  s->nb_samples - 1))
851  return ret;
852  }
853  }
854  }
855 
856  for (chan = 0; chan < avctx->channels; chan++) {
857  int32_t *decoded = s->decoded[chan];
858 
859  if (s->lpc_mode[chan])
860  decode_lpc(decoded, s->lpc_mode[chan], s->nb_samples);
861 
862  if (s->sample_shift[chan] > 0)
863  for (i = 0; i < s->nb_samples; i++)
864  decoded[i] <<= s->sample_shift[chan];
865  }
866  }
867 
868  align_get_bits(gb);
869  skip_bits(gb, 24);
870  if (get_bits_left(gb) < 0)
871  av_log(avctx, AV_LOG_DEBUG, "overread\n");
872  else if (get_bits_left(gb) > 0)
873  av_log(avctx, AV_LOG_DEBUG, "underread\n");
874 
875  if (avctx->err_recognition & AV_EF_CRCCHECK) {
876  if (ff_tak_check_crc(pkt->data + hsize,
877  get_bits_count(gb) / 8 - hsize)) {
878  av_log(avctx, AV_LOG_ERROR, "CRC error\n");
879  return AVERROR_INVALIDDATA;
880  }
881  }
882 
883  /* convert to output buffer */
884  switch (avctx->sample_fmt) {
885  case AV_SAMPLE_FMT_U8P:
886  for (chan = 0; chan < avctx->channels; chan++) {
887  uint8_t *samples = (uint8_t *)s->frame.extended_data[chan];
888  int32_t *decoded = s->decoded[chan];
889  for (i = 0; i < s->nb_samples; i++)
890  samples[i] = decoded[i] + 0x80;
891  }
892  break;
893  case AV_SAMPLE_FMT_S16P:
894  for (chan = 0; chan < avctx->channels; chan++) {
895  int16_t *samples = (int16_t *)s->frame.extended_data[chan];
896  int32_t *decoded = s->decoded[chan];
897  for (i = 0; i < s->nb_samples; i++)
898  samples[i] = decoded[i];
899  }
900  break;
901  case AV_SAMPLE_FMT_S32P:
902  for (chan = 0; chan < avctx->channels; chan++) {
903  int32_t *samples = (int32_t *)s->frame.extended_data[chan];
904  for (i = 0; i < s->nb_samples; i++)
905  samples[i] <<= 8;
906  }
907  break;
908  }
909 
910  *got_frame_ptr = 1;
911  *(AVFrame *)data = s->frame;
912 
913  return pkt->size;
914 }
915 
917 {
918  TAKDecContext *s = avctx->priv_data;
919 
920  av_freep(&s->decode_buffer);
921 
922  return 0;
923 }
924 
926  .name = "tak",
927  .type = AVMEDIA_TYPE_AUDIO,
928  .id = AV_CODEC_ID_TAK,
929  .priv_data_size = sizeof(TAKDecContext),
933  .capabilities = CODEC_CAP_DR1,
934  .long_name = NULL_IF_CONFIG_SMALL("TAK (Tom's lossless Audio Kompressor)"),
935  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
939 };