FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
proresdec_lgpl.c
Go to the documentation of this file.
1 /*
2  * Apple ProRes compatible decoder
3  *
4  * Copyright (c) 2010-2011 Maxim Poliakovski
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26  * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
27  *
28  * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
29  */
30 
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32 
33 #include <stdint.h>
34 
35 #include "libavutil/intmath.h"
36 #include "avcodec.h"
37 #include "internal.h"
38 #include "proresdata.h"
39 #include "proresdsp.h"
40 #include "get_bits.h"
41 
42 typedef struct {
43  const uint8_t *index; ///< pointers to the data of this slice
44  int slice_num;
45  int x_pos, y_pos;
47  int prev_slice_sf; ///< scalefactor of the previous decoded slice
48  DECLARE_ALIGNED(16, DCTELEM, blocks)[8 * 4 * 64];
49  DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64];
50  DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64];
52 
53 typedef struct {
57  int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
58 
59  int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
60  int pic_format; ///< 2 = 422, 3 = 444
61  uint8_t qmat_luma[64]; ///< dequantization matrix for luma
62  uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
63  int qmat_changed; ///< 1 - global quantization matrices changed
64  int total_slices; ///< total number of slices in a picture
66  int pic_num;
69  int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
74  int num_x_mbs;
75  int num_y_mbs;
78 
79 
81 {
82  ProresContext *ctx = avctx->priv_data;
83 
84  ctx->total_slices = 0;
85  ctx->slice_data = NULL;
86 
88  ff_proresdsp_init(&ctx->dsp, avctx);
89 
90  avctx->coded_frame = &ctx->picture;
93  ctx->picture.key_frame = 1;
94 
95  ctx->scantable_type = -1; // set scantable type to uninitialized
96  memset(ctx->qmat_luma, 4, 64);
97  memset(ctx->qmat_chroma, 4, 64);
98 
99  return 0;
100 }
101 
102 
103 static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
104  const int data_size, AVCodecContext *avctx)
105 {
106  int hdr_size, version, width, height, flags;
107  const uint8_t *ptr;
108 
109  hdr_size = AV_RB16(buf);
110  if (hdr_size > data_size) {
111  av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
112  return AVERROR_INVALIDDATA;
113  }
114 
115  version = AV_RB16(buf + 2);
116  if (version >= 2) {
117  av_log(avctx, AV_LOG_ERROR,
118  "unsupported header version: %d\n", version);
119  return AVERROR_INVALIDDATA;
120  }
121 
122  width = AV_RB16(buf + 8);
123  height = AV_RB16(buf + 10);
124  if (width != avctx->width || height != avctx->height) {
125  av_log(avctx, AV_LOG_ERROR,
126  "picture dimension changed: old: %d x %d, new: %d x %d\n",
127  avctx->width, avctx->height, width, height);
128  return AVERROR_INVALIDDATA;
129  }
130 
131  ctx->frame_type = (buf[12] >> 2) & 3;
132  if (ctx->frame_type > 2) {
133  av_log(avctx, AV_LOG_ERROR,
134  "unsupported frame type: %d\n", ctx->frame_type);
135  return AVERROR_INVALIDDATA;
136  }
137 
138  ctx->chroma_factor = (buf[12] >> 6) & 3;
139  ctx->mb_chroma_factor = ctx->chroma_factor + 2;
140  ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
141  switch (ctx->chroma_factor) {
142  case 2:
143  avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
144  break;
145  case 3:
146  avctx->pix_fmt = AV_PIX_FMT_YUV444P10;
147  break;
148  default:
149  av_log(avctx, AV_LOG_ERROR,
150  "unsupported picture format: %d\n", ctx->pic_format);
151  return AVERROR_INVALIDDATA;
152  }
153 
154  if (ctx->scantable_type != ctx->frame_type) {
155  if (!ctx->frame_type)
158  else
161  ctx->scantable_type = ctx->frame_type;
162  }
163 
164  if (ctx->frame_type) { /* if interlaced */
165  ctx->picture.interlaced_frame = 1;
166  ctx->picture.top_field_first = ctx->frame_type & 1;
167  }
168 
169  avctx->color_primaries = buf[14];
170  avctx->color_trc = buf[15];
171  avctx->colorspace = buf[16];
172 
173  ctx->alpha_info = buf[17] & 0xf;
174  if (ctx->alpha_info)
175  av_log_missing_feature(avctx, "Alpha channel", 0);
176 
177  ctx->qmat_changed = 0;
178  ptr = buf + 20;
179  flags = buf[19];
180  if (flags & 2) {
181  if (ptr - buf > hdr_size - 64) {
182  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
183  return AVERROR_INVALIDDATA;
184  }
185  if (memcmp(ctx->qmat_luma, ptr, 64)) {
186  memcpy(ctx->qmat_luma, ptr, 64);
187  ctx->qmat_changed = 1;
188  }
189  ptr += 64;
190  } else {
191  memset(ctx->qmat_luma, 4, 64);
192  ctx->qmat_changed = 1;
193  }
194 
195  if (flags & 1) {
196  if (ptr - buf > hdr_size - 64) {
197  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
198  return -1;
199  }
200  if (memcmp(ctx->qmat_chroma, ptr, 64)) {
201  memcpy(ctx->qmat_chroma, ptr, 64);
202  ctx->qmat_changed = 1;
203  }
204  } else {
205  memset(ctx->qmat_chroma, 4, 64);
206  ctx->qmat_changed = 1;
207  }
208 
209  return hdr_size;
210 }
211 
212 
213 static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
214  const int data_size, AVCodecContext *avctx)
215 {
216  int i, hdr_size, pic_data_size, num_slices;
217  int slice_width_factor, slice_height_factor;
218  int remainder, num_x_slices;
219  const uint8_t *data_ptr, *index_ptr;
220 
221  hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
222  if (hdr_size < 8 || hdr_size > data_size) {
223  av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
224  return AVERROR_INVALIDDATA;
225  }
226 
227  pic_data_size = AV_RB32(buf + 1);
228  if (pic_data_size > data_size) {
229  av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
230  return AVERROR_INVALIDDATA;
231  }
232 
233  slice_width_factor = buf[7] >> 4;
234  slice_height_factor = buf[7] & 0xF;
235  if (slice_width_factor > 3 || slice_height_factor) {
236  av_log(avctx, AV_LOG_ERROR,
237  "unsupported slice dimension: %d x %d\n",
238  1 << slice_width_factor, 1 << slice_height_factor);
239  return AVERROR_INVALIDDATA;
240  }
241 
242  ctx->slice_width_factor = slice_width_factor;
243  ctx->slice_height_factor = slice_height_factor;
244 
245  ctx->num_x_mbs = (avctx->width + 15) >> 4;
246  ctx->num_y_mbs = (avctx->height +
247  (1 << (4 + ctx->picture.interlaced_frame)) - 1) >>
248  (4 + ctx->picture.interlaced_frame);
249 
250  remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
251  num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
252  ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
253 
254  num_slices = num_x_slices * ctx->num_y_mbs;
255  if (num_slices != AV_RB16(buf + 5)) {
256  av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
257  return AVERROR_INVALIDDATA;
258  }
259 
260  if (ctx->total_slices != num_slices) {
261  av_freep(&ctx->slice_data);
262  ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
263  if (!ctx->slice_data)
264  return AVERROR(ENOMEM);
265  ctx->total_slices = num_slices;
266  }
267 
268  if (hdr_size + num_slices * 2 > data_size) {
269  av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
270  return AVERROR_INVALIDDATA;
271  }
272 
273  /* parse slice table allowing quick access to the slice data */
274  index_ptr = buf + hdr_size;
275  data_ptr = index_ptr + num_slices * 2;
276 
277  for (i = 0; i < num_slices; i++) {
278  ctx->slice_data[i].index = data_ptr;
279  ctx->slice_data[i].prev_slice_sf = 0;
280  data_ptr += AV_RB16(index_ptr + i * 2);
281  }
282  ctx->slice_data[i].index = data_ptr;
283  ctx->slice_data[i].prev_slice_sf = 0;
284 
285  if (data_ptr > buf + data_size) {
286  av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
287  return -1;
288  }
289 
290  return pic_data_size;
291 }
292 
293 
294 /**
295  * Read an unsigned rice/exp golomb codeword.
296  */
297 static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
298 {
299  unsigned int rice_order, exp_order, switch_bits;
300  unsigned int buf, code;
301  int log, prefix_len, len;
302 
303  OPEN_READER(re, gb);
304  UPDATE_CACHE(re, gb);
305  buf = GET_CACHE(re, gb);
306 
307  /* number of prefix bits to switch between Rice and expGolomb */
308  switch_bits = (codebook & 3) + 1;
309  rice_order = codebook >> 5; /* rice code order */
310  exp_order = (codebook >> 2) & 7; /* exp golomb code order */
311 
312  log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
313 
314  if (log < switch_bits) { /* ok, we got a rice code */
315  if (!rice_order) {
316  /* shortcut for faster decoding of rice codes without remainder */
317  code = log;
318  LAST_SKIP_BITS(re, gb, log + 1);
319  } else {
320  prefix_len = log + 1;
321  code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
322  LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
323  }
324  } else { /* otherwise we got a exp golomb code */
325  len = (log << 1) - switch_bits + exp_order + 1;
326  code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
327  LAST_SKIP_BITS(re, gb, len);
328  }
329 
330  CLOSE_READER(re, gb);
331 
332  return code;
333 }
334 
335 #define LSB2SIGN(x) (-((x) & 1))
336 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
337 
338 /**
339  * Decode DC coefficients for all blocks in a slice.
340  */
341 static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
342  int nblocks)
343 {
344  DCTELEM prev_dc;
345  int i, sign;
346  int16_t delta;
347  unsigned int code;
348 
349  code = decode_vlc_codeword(gb, FIRST_DC_CB);
350  out[0] = prev_dc = TOSIGNED(code);
351 
352  out += 64; /* move to the DC coeff of the next block */
353  delta = 3;
354 
355  for (i = 1; i < nblocks; i++, out += 64) {
356  code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]);
357 
358  sign = -(((delta >> 15) & 1) ^ (code & 1));
359  delta = (((code + 1) >> 1) ^ sign) - sign;
360  prev_dc += delta;
361  out[0] = prev_dc;
362  }
363 }
364 
365 
366 /**
367  * Decode AC coefficients for all blocks in a slice.
368  */
369 static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out,
370  int blocks_per_slice,
371  int plane_size_factor,
372  const uint8_t *scan)
373 {
374  int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
375  int max_coeffs, bits_left;
376 
377  /* set initial prediction values */
378  run = 4;
379  level = 2;
380 
381  max_coeffs = blocks_per_slice << 6;
382  block_mask = blocks_per_slice - 1;
383 
384  for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
385  run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)];
386  lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)];
387 
388  bits_left = get_bits_left(gb);
389  if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
390  return;
391 
392  run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]);
393 
394  bits_left = get_bits_left(gb);
395  if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
396  return;
397 
398  level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1;
399 
400  pos += run + 1;
401  if (pos >= max_coeffs)
402  break;
403 
404  sign = get_sbits(gb, 1);
405  out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
406  (level ^ sign) - sign;
407  }
408 }
409 
410 
411 /**
412  * Decode a slice plane (luma or chroma).
413  */
415  const uint8_t *buf,
416  int data_size, uint16_t *out_ptr,
417  int linesize, int mbs_per_slice,
418  int blocks_per_mb, int plane_size_factor,
419  const int16_t *qmat, int is_chroma)
420 {
421  GetBitContext gb;
422  DCTELEM *block_ptr;
423  int mb_num, blocks_per_slice;
424 
425  blocks_per_slice = mbs_per_slice * blocks_per_mb;
426 
427  memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
428 
429  init_get_bits(&gb, buf, data_size << 3);
430 
431  decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
432 
433  decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
434  plane_size_factor, ctx->scantable.permutated);
435 
436  /* inverse quantization, inverse transform and output */
437  block_ptr = td->blocks;
438 
439  if (!is_chroma) {
440  for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
441  ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
442  block_ptr += 64;
443  if (blocks_per_mb > 2) {
444  ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
445  block_ptr += 64;
446  }
447  ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
448  block_ptr += 64;
449  if (blocks_per_mb > 2) {
450  ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
451  block_ptr += 64;
452  }
453  }
454  } else {
455  for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
456  ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
457  block_ptr += 64;
458  ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
459  block_ptr += 64;
460  if (blocks_per_mb > 2) {
461  ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
462  block_ptr += 64;
463  ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
464  block_ptr += 64;
465  }
466  }
467  }
468 }
469 
470 
471 static int decode_slice(AVCodecContext *avctx, void *tdata)
472 {
473  ProresThreadData *td = tdata;
474  ProresContext *ctx = avctx->priv_data;
475  int mb_x_pos = td->x_pos;
476  int mb_y_pos = td->y_pos;
477  int pic_num = ctx->pic_num;
478  int slice_num = td->slice_num;
479  int mbs_per_slice = td->slice_width;
480  const uint8_t *buf;
481  uint8_t *y_data, *u_data, *v_data;
482  AVFrame *pic = avctx->coded_frame;
483  int i, sf, slice_width_factor;
484  int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size;
485  int y_linesize, u_linesize, v_linesize;
486 
487  buf = ctx->slice_data[slice_num].index;
488  slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
489 
490  slice_width_factor = av_log2(mbs_per_slice);
491 
492  y_data = pic->data[0];
493  u_data = pic->data[1];
494  v_data = pic->data[2];
495  y_linesize = pic->linesize[0];
496  u_linesize = pic->linesize[1];
497  v_linesize = pic->linesize[2];
498 
499  if (pic->interlaced_frame) {
500  if (!(pic_num ^ pic->top_field_first)) {
501  y_data += y_linesize;
502  u_data += u_linesize;
503  v_data += v_linesize;
504  }
505  y_linesize <<= 1;
506  u_linesize <<= 1;
507  v_linesize <<= 1;
508  }
509 
510  if (slice_data_size < 6) {
511  av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
512  return AVERROR_INVALIDDATA;
513  }
514 
515  /* parse slice header */
516  hdr_size = buf[0] >> 3;
517  y_data_size = AV_RB16(buf + 2);
518  u_data_size = AV_RB16(buf + 4);
519  v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) :
520  slice_data_size - y_data_size - u_data_size - hdr_size;
521 
522  if (hdr_size + y_data_size + u_data_size + v_data_size > slice_data_size ||
523  v_data_size < 0 || hdr_size < 6) {
524  av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
525  return AVERROR_INVALIDDATA;
526  }
527 
528  sf = av_clip(buf[1], 1, 224);
529  sf = sf > 128 ? (sf - 96) << 2 : sf;
530 
531  /* scale quantization matrixes according with slice's scale factor */
532  /* TODO: this can be SIMD-optimized a lot */
533  if (ctx->qmat_changed || sf != td->prev_slice_sf) {
534  td->prev_slice_sf = sf;
535  for (i = 0; i < 64; i++) {
536  td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
537  td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
538  }
539  }
540 
541  /* decode luma plane */
542  decode_slice_plane(ctx, td, buf + hdr_size, y_data_size,
543  (uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize +
544  (mb_x_pos << 5)), y_linesize,
545  mbs_per_slice, 4, slice_width_factor + 2,
546  td->qmat_luma_scaled, 0);
547 
548  /* decode U chroma plane */
549  decode_slice_plane(ctx, td, buf + hdr_size + y_data_size, u_data_size,
550  (uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize +
551  (mb_x_pos << ctx->mb_chroma_factor)),
552  u_linesize, mbs_per_slice, ctx->num_chroma_blocks,
553  slice_width_factor + ctx->chroma_factor - 1,
554  td->qmat_chroma_scaled, 1);
555 
556  /* decode V chroma plane */
557  decode_slice_plane(ctx, td, buf + hdr_size + y_data_size + u_data_size,
558  v_data_size,
559  (uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize +
560  (mb_x_pos << ctx->mb_chroma_factor)),
561  v_linesize, mbs_per_slice, ctx->num_chroma_blocks,
562  slice_width_factor + ctx->chroma_factor - 1,
563  td->qmat_chroma_scaled, 1);
564 
565  return 0;
566 }
567 
568 
569 static int decode_picture(ProresContext *ctx, int pic_num,
570  AVCodecContext *avctx)
571 {
572  int slice_num, slice_width, x_pos, y_pos;
573 
574  slice_num = 0;
575 
576  ctx->pic_num = pic_num;
577  for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
578  slice_width = 1 << ctx->slice_width_factor;
579 
580  for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
581  x_pos += slice_width) {
582  while (ctx->num_x_mbs - x_pos < slice_width)
583  slice_width >>= 1;
584 
585  ctx->slice_data[slice_num].slice_num = slice_num;
586  ctx->slice_data[slice_num].x_pos = x_pos;
587  ctx->slice_data[slice_num].y_pos = y_pos;
588  ctx->slice_data[slice_num].slice_width = slice_width;
589 
590  slice_num++;
591  }
592  }
593 
594  return avctx->execute(avctx, decode_slice,
595  ctx->slice_data, NULL, slice_num,
596  sizeof(ctx->slice_data[0]));
597 }
598 
599 
600 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
601 
602 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
603  AVPacket *avpkt)
604 {
605  ProresContext *ctx = avctx->priv_data;
606  AVFrame *picture = avctx->coded_frame;
607  const uint8_t *buf = avpkt->data;
608  int buf_size = avpkt->size;
609  int frame_hdr_size, pic_num, pic_data_size;
610 
611  /* check frame atom container */
612  if (buf_size < 28 || buf_size < AV_RB32(buf) ||
613  AV_RB32(buf + 4) != FRAME_ID) {
614  av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
615  return AVERROR_INVALIDDATA;
616  }
617 
618  MOVE_DATA_PTR(8);
619 
620  frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
621  if (frame_hdr_size < 0)
622  return AVERROR_INVALIDDATA;
623 
624  MOVE_DATA_PTR(frame_hdr_size);
625 
626  if (picture->data[0])
627  avctx->release_buffer(avctx, picture);
628 
629  picture->reference = 0;
630  if (ff_get_buffer(avctx, picture) < 0)
631  return -1;
632 
633  for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) {
634  pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
635  if (pic_data_size < 0)
636  return AVERROR_INVALIDDATA;
637 
638  if (decode_picture(ctx, pic_num, avctx))
639  return -1;
640 
641  MOVE_DATA_PTR(pic_data_size);
642  }
643 
644  *got_frame = 1;
645  *(AVFrame*) data = *avctx->coded_frame;
646 
647  return avpkt->size;
648 }
649 
650 
652 {
653  ProresContext *ctx = avctx->priv_data;
654 
655  if (ctx->picture.data[0])
656  avctx->release_buffer(avctx, &ctx->picture);
657 
658  av_freep(&ctx->slice_data);
659 
660  return 0;
661 }
662 
663 
665  .name = "prores_lgpl",
666  .type = AVMEDIA_TYPE_VIDEO,
667  .id = AV_CODEC_ID_PRORES,
668  .priv_data_size = sizeof(ProresContext),
669  .init = decode_init,
670  .close = decode_close,
671  .decode = decode_frame,
672  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
673  .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)")
674 };