FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ratecontrol.c
Go to the documentation of this file.
1 /*
2  * Rate control for video encoders
3  *
4  * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Rate control for video encoders.
26  */
27 
28 #include "libavutil/intmath.h"
29 #include "avcodec.h"
30 #include "dsputil.h"
31 #include "ratecontrol.h"
32 #include "mpegvideo.h"
33 #include "libavutil/eval.h"
34 
35 #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
36 #include <assert.h>
37 
38 #ifndef M_E
39 #define M_E 2.718281828
40 #endif
41 
42 static int init_pass2(MpegEncContext *s);
43 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
44 
46  snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
50 }
51 
52 static double get_fps(AVCodecContext *avctx){
53  return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
54 }
55 
56 static inline double qp2bits(RateControlEntry *rce, double qp){
57  if(qp<=0.0){
58  av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
59  }
60  return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
61 }
62 
63 static inline double bits2qp(RateControlEntry *rce, double bits){
64  if(bits<0.9){
65  av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
66  }
67  return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
68 }
69 
71 {
73  int i, res;
74  static const char * const const_names[]={
75  "PI",
76  "E",
77  "iTex",
78  "pTex",
79  "tex",
80  "mv",
81  "fCode",
82  "iCount",
83  "mcVar",
84  "var",
85  "isI",
86  "isP",
87  "isB",
88  "avgQP",
89  "qComp",
90 /* "lastIQP",
91  "lastPQP",
92  "lastBQP",
93  "nextNonBQP",*/
94  "avgIITex",
95  "avgPITex",
96  "avgPPTex",
97  "avgBPTex",
98  "avgTex",
99  NULL
100  };
101  static double (* const func1[])(void *, double)={
102  (void *)bits2qp,
103  (void *)qp2bits,
104  NULL
105  };
106  static const char * const func1_names[]={
107  "bits2qp",
108  "qp2bits",
109  NULL
110  };
111  emms_c();
112 
114  if (s->avctx->rc_max_rate) {
115  s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
116  } else
118  }
119 
120  res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx);
121  if (res < 0) {
122  av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
123  return res;
124  }
125 
126  for(i=0; i<5; i++){
127  rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
128  rcc->pred[i].count= 1.0;
129 
130  rcc->pred[i].decay= 0.4;
131  rcc->i_cplx_sum [i]=
132  rcc->p_cplx_sum [i]=
133  rcc->mv_bits_sum[i]=
134  rcc->qscale_sum [i]=
135  rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
136  rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
137  }
139  if (!rcc->buffer_index)
140  rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
141 
142  if(s->flags&CODEC_FLAG_PASS2){
143  int i;
144  char *p;
145 
146  /* find number of pics */
147  p= s->avctx->stats_in;
148  for(i=-1; p; i++){
149  p= strchr(p+1, ';');
150  }
151  i+= s->max_b_frames;
152  if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
153  return -1;
154  rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
155  rcc->num_entries= i;
156 
157  /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
158  for(i=0; i<rcc->num_entries; i++){
159  RateControlEntry *rce= &rcc->entry[i];
161  rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
162  rce->misc_bits= s->mb_num + 10;
163  rce->mb_var_sum= s->mb_num*100;
164  }
165 
166  /* read stats */
167  p= s->avctx->stats_in;
168  for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
169  RateControlEntry *rce;
170  int picture_number;
171  int e;
172  char *next;
173 
174  next= strchr(p, ';');
175  if(next){
176  (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
177  next++;
178  }
179  e= sscanf(p, " in:%d ", &picture_number);
180 
181  assert(picture_number >= 0);
182  assert(picture_number < rcc->num_entries);
183  rce= &rcc->entry[picture_number];
184 
185  e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
186  &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
187  &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
188  if(e!=14){
189  av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
190  return -1;
191  }
192 
193  p= next;
194  }
195 
196  if(init_pass2(s) < 0) return -1;
197 
198  //FIXME maybe move to end
200 #if CONFIG_LIBXVID
201  return ff_xvid_rate_control_init(s);
202 #else
203  av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
204  return -1;
205 #endif
206  }
207  }
208 
209  if(!(s->flags&CODEC_FLAG_PASS2)){
210 
211  rcc->short_term_qsum=0.001;
212  rcc->short_term_qcount=0.001;
213 
214  rcc->pass1_rc_eq_output_sum= 0.001;
215  rcc->pass1_wanted_bits=0.001;
216 
217  if(s->avctx->qblur > 1.0){
218  av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
219  return -1;
220  }
221  /* init stuff with the user specified complexity */
222  if(s->avctx->rc_initial_cplx){
223  for(i=0; i<60*30; i++){
224  double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
225  RateControlEntry rce;
226 
227  if (i%((s->gop_size+3)/4)==0) rce.pict_type= AV_PICTURE_TYPE_I;
228  else if(i%(s->max_b_frames+1)) rce.pict_type= AV_PICTURE_TYPE_B;
229  else rce.pict_type= AV_PICTURE_TYPE_P;
230 
231  rce.new_pict_type= rce.pict_type;
232  rce.mc_mb_var_sum= bits*s->mb_num/100000;
233  rce.mb_var_sum = s->mb_num;
234  rce.qscale = FF_QP2LAMBDA * 2;
235  rce.f_code = 2;
236  rce.b_code = 1;
237  rce.misc_bits= 1;
238 
239  if(s->pict_type== AV_PICTURE_TYPE_I){
240  rce.i_count = s->mb_num;
241  rce.i_tex_bits= bits;
242  rce.p_tex_bits= 0;
243  rce.mv_bits= 0;
244  }else{
245  rce.i_count = 0; //FIXME we do know this approx
246  rce.i_tex_bits= 0;
247  rce.p_tex_bits= bits*0.9;
248  rce.mv_bits= bits*0.1;
249  }
250  rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
251  rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
252  rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
253  rcc->frame_count[rce.pict_type] ++;
254 
255  get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
256  rcc->pass1_wanted_bits+= s->bit_rate/get_fps(s->avctx); //FIXME misbehaves a little for variable fps
257  }
258  }
259 
260  }
261 
262  return 0;
263 }
264 
266 {
267  RateControlContext *rcc= &s->rc_context;
268  emms_c();
269 
270  av_expr_free(rcc->rc_eq_eval);
271  av_freep(&rcc->entry);
272 
273 #if CONFIG_LIBXVID
276 #endif
277 }
278 
280  RateControlContext *rcc= &s->rc_context;
281  const double fps= get_fps(s->avctx);
282  const int buffer_size= s->avctx->rc_buffer_size;
283  const double min_rate= s->avctx->rc_min_rate/fps;
284  const double max_rate= s->avctx->rc_max_rate/fps;
285 
286  av_dlog(s, "%d %f %d %f %f\n",
287  buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
288  if(buffer_size){
289  int left;
290 
291  rcc->buffer_index-= frame_size;
292  if(rcc->buffer_index < 0){
293  av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
294  rcc->buffer_index= 0;
295  }
296 
297  left= buffer_size - rcc->buffer_index - 1;
298  rcc->buffer_index += av_clip(left, min_rate, max_rate);
299 
300  if(rcc->buffer_index > buffer_size){
301  int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
302 
303  if(stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
304  stuffing=4;
305  rcc->buffer_index -= 8*stuffing;
306 
307  if(s->avctx->debug & FF_DEBUG_RC)
308  av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
309 
310  return stuffing;
311  }
312  }
313  return 0;
314 }
315 
316 /**
317  * Modify the bitrate curve from pass1 for one frame.
318  */
319 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
320  RateControlContext *rcc= &s->rc_context;
321  AVCodecContext *a= s->avctx;
322  double q, bits;
323  const int pict_type= rce->new_pict_type;
324  const double mb_num= s->mb_num;
325  int i;
326 
327  double const_values[]={
328  M_PI,
329  M_E,
330  rce->i_tex_bits*rce->qscale,
331  rce->p_tex_bits*rce->qscale,
332  (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
333  rce->mv_bits/mb_num,
334  rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
335  rce->i_count/mb_num,
336  rce->mc_mb_var_sum/mb_num,
337  rce->mb_var_sum/mb_num,
341  rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
342  a->qcompress,
343 /* rcc->last_qscale_for[AV_PICTURE_TYPE_I],
344  rcc->last_qscale_for[AV_PICTURE_TYPE_P],
345  rcc->last_qscale_for[AV_PICTURE_TYPE_B],
346  rcc->next_non_b_qscale,*/
351  (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
352  0
353  };
354 
355  bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
356  if (isnan(bits)) {
357  av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
358  return -1;
359  }
360 
362  bits*=rate_factor;
363  if(bits<0.0) bits=0.0;
364  bits+= 1.0; //avoid 1/0 issues
365 
366  /* user override */
367  for(i=0; i<s->avctx->rc_override_count; i++){
368  RcOverride *rco= s->avctx->rc_override;
369  if(rco[i].start_frame > frame_num) continue;
370  if(rco[i].end_frame < frame_num) continue;
371 
372  if(rco[i].qscale)
373  bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
374  else
375  bits*= rco[i].quality_factor;
376  }
377 
378  q= bits2qp(rce, bits);
379 
380  /* I/B difference */
381  if (pict_type==AV_PICTURE_TYPE_I && s->avctx->i_quant_factor<0.0)
382  q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
383  else if(pict_type==AV_PICTURE_TYPE_B && s->avctx->b_quant_factor<0.0)
384  q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
385  if(q<1) q=1;
386 
387  return q;
388 }
389 
390 static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
391  RateControlContext *rcc= &s->rc_context;
392  AVCodecContext *a= s->avctx;
393  const int pict_type= rce->new_pict_type;
394  const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
395  const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
396 
397  if (pict_type==AV_PICTURE_TYPE_I && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==AV_PICTURE_TYPE_P))
398  q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
399  else if(pict_type==AV_PICTURE_TYPE_B && a->b_quant_factor>0.0)
400  q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
401  if(q<1) q=1;
402 
403  /* last qscale / qdiff stuff */
404  if(rcc->last_non_b_pict_type==pict_type || pict_type!=AV_PICTURE_TYPE_I){
405  double last_q= rcc->last_qscale_for[pict_type];
406  const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
407 
408  if (q > last_q + maxdiff) q= last_q + maxdiff;
409  else if(q < last_q - maxdiff) q= last_q - maxdiff;
410  }
411 
412  rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
413 
414  if(pict_type!=AV_PICTURE_TYPE_B)
415  rcc->last_non_b_pict_type= pict_type;
416 
417  return q;
418 }
419 
420 /**
421  * Get the qmin & qmax for pict_type.
422  */
423 static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
424  int qmin= s->avctx->lmin;
425  int qmax= s->avctx->lmax;
426 
427  assert(qmin <= qmax);
428 
429  if(pict_type==AV_PICTURE_TYPE_B){
430  qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
431  qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
432  }else if(pict_type==AV_PICTURE_TYPE_I){
433  qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
434  qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
435  }
436 
437  qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
438  qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
439 
440  if(qmax<qmin) qmax= qmin;
441 
442  *qmin_ret= qmin;
443  *qmax_ret= qmax;
444 }
445 
446 static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
447  RateControlContext *rcc= &s->rc_context;
448  int qmin, qmax;
449  const int pict_type= rce->new_pict_type;
450  const double buffer_size= s->avctx->rc_buffer_size;
451  const double fps= get_fps(s->avctx);
452  const double min_rate= s->avctx->rc_min_rate / fps;
453  const double max_rate= s->avctx->rc_max_rate / fps;
454 
455  get_qminmax(&qmin, &qmax, s, pict_type);
456 
457  /* modulation */
458  if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==AV_PICTURE_TYPE_P)
459  q*= s->avctx->rc_qmod_amp;
460 
461  /* buffer overflow/underflow protection */
462  if(buffer_size){
463  double expected_size= rcc->buffer_index;
464  double q_limit;
465 
466  if(min_rate){
467  double d= 2*(buffer_size - expected_size)/buffer_size;
468  if(d>1.0) d=1.0;
469  else if(d<0.0001) d=0.0001;
470  q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
471 
472  q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
473  if(q > q_limit){
474  if(s->avctx->debug&FF_DEBUG_RC){
475  av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
476  }
477  q= q_limit;
478  }
479  }
480 
481  if(max_rate){
482  double d= 2*expected_size/buffer_size;
483  if(d>1.0) d=1.0;
484  else if(d<0.0001) d=0.0001;
485  q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
486 
487  q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
488  if(q < q_limit){
489  if(s->avctx->debug&FF_DEBUG_RC){
490  av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
491  }
492  q= q_limit;
493  }
494  }
495  }
496  av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
497  q, max_rate, min_rate, buffer_size, rcc->buffer_index,
499  if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
500  if (q<qmin) q=qmin;
501  else if(q>qmax) q=qmax;
502  }else{
503  double min2= log(qmin);
504  double max2= log(qmax);
505 
506  q= log(q);
507  q= (q - min2)/(max2-min2) - 0.5;
508  q*= -4.0;
509  q= 1.0/(1.0 + exp(q));
510  q= q*(max2-min2) + min2;
511 
512  q= exp(q);
513  }
514 
515  return q;
516 }
517 
518 //----------------------------------
519 // 1 Pass Code
520 
521 static double predict_size(Predictor *p, double q, double var)
522 {
523  return p->coeff*var / (q*p->count);
524 }
525 
526 static void update_predictor(Predictor *p, double q, double var, double size)
527 {
528  double new_coeff= size*q / (var + 1);
529  if(var<10) return;
530 
531  p->count*= p->decay;
532  p->coeff*= p->decay;
533  p->count++;
534  p->coeff+= new_coeff;
535 }
536 
537 static void adaptive_quantization(MpegEncContext *s, double q){
538  int i;
539  const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
540  const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
541  const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
542  const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
543  const float p_masking = s->avctx->p_masking;
544  const float border_masking = s->avctx->border_masking;
545  float bits_sum= 0.0;
546  float cplx_sum= 0.0;
547  float *cplx_tab = s->cplx_tab;
548  float *bits_tab = s->bits_tab;
549  const int qmin= s->avctx->mb_lmin;
550  const int qmax= s->avctx->mb_lmax;
551  Picture * const pic= &s->current_picture;
552  const int mb_width = s->mb_width;
553  const int mb_height = s->mb_height;
554 
555  for(i=0; i<s->mb_num; i++){
556  const int mb_xy= s->mb_index2xy[i];
557  float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
558  float spat_cplx= sqrt(pic->mb_var[mb_xy]);
559  const int lumi= pic->mb_mean[mb_xy];
560  float bits, cplx, factor;
561  int mb_x = mb_xy % s->mb_stride;
562  int mb_y = mb_xy / s->mb_stride;
563  int mb_distance;
564  float mb_factor = 0.0;
565  if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
566  if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
567 
568  if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
569  cplx= spat_cplx;
570  factor= 1.0 + p_masking;
571  }else{
572  cplx= temp_cplx;
573  factor= pow(temp_cplx, - temp_cplx_masking);
574  }
575  factor*=pow(spat_cplx, - spatial_cplx_masking);
576 
577  if(lumi>127)
578  factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
579  else
580  factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
581 
582  if(mb_x < mb_width/5){
583  mb_distance = mb_width/5 - mb_x;
584  mb_factor = (float)mb_distance / (float)(mb_width/5);
585  }else if(mb_x > 4*mb_width/5){
586  mb_distance = mb_x - 4*mb_width/5;
587  mb_factor = (float)mb_distance / (float)(mb_width/5);
588  }
589  if(mb_y < mb_height/5){
590  mb_distance = mb_height/5 - mb_y;
591  mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
592  }else if(mb_y > 4*mb_height/5){
593  mb_distance = mb_y - 4*mb_height/5;
594  mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
595  }
596 
597  factor*= 1.0 - border_masking*mb_factor;
598 
599  if(factor<0.00001) factor= 0.00001;
600 
601  bits= cplx*factor;
602  cplx_sum+= cplx;
603  bits_sum+= bits;
604  cplx_tab[i]= cplx;
605  bits_tab[i]= bits;
606  }
607 
608  /* handle qmin/qmax clipping */
610  float factor= bits_sum/cplx_sum;
611  for(i=0; i<s->mb_num; i++){
612  float newq= q*cplx_tab[i]/bits_tab[i];
613  newq*= factor;
614 
615  if (newq > qmax){
616  bits_sum -= bits_tab[i];
617  cplx_sum -= cplx_tab[i]*q/qmax;
618  }
619  else if(newq < qmin){
620  bits_sum -= bits_tab[i];
621  cplx_sum -= cplx_tab[i]*q/qmin;
622  }
623  }
624  if(bits_sum < 0.001) bits_sum= 0.001;
625  if(cplx_sum < 0.001) cplx_sum= 0.001;
626  }
627 
628  for(i=0; i<s->mb_num; i++){
629  const int mb_xy= s->mb_index2xy[i];
630  float newq= q*cplx_tab[i]/bits_tab[i];
631  int intq;
632 
634  newq*= bits_sum/cplx_sum;
635  }
636 
637  intq= (int)(newq + 0.5);
638 
639  if (intq > qmax) intq= qmax;
640  else if(intq < qmin) intq= qmin;
641  s->lambda_table[mb_xy]= intq;
642  }
643 }
644 
646  RateControlContext *rcc= &s->rc_context;
647  int picture_number= s->picture_number;
648  RateControlEntry *rce;
649 
650  rce= &rcc->entry[picture_number];
651  s->f_code= rce->f_code;
652  s->b_code= rce->b_code;
653 }
654 
655 //FIXME rd or at least approx for dquant
656 
658 {
659  float q;
660  int qmin, qmax;
661  float br_compensation;
662  double diff;
663  double short_term_q;
664  double fps;
665  int picture_number= s->picture_number;
666  int64_t wanted_bits;
667  RateControlContext *rcc= &s->rc_context;
668  AVCodecContext *a= s->avctx;
669  RateControlEntry local_rce, *rce;
670  double bits;
671  double rate_factor;
672  int var;
673  const int pict_type= s->pict_type;
674  Picture * const pic= &s->current_picture;
675  emms_c();
676 
677 #if CONFIG_LIBXVID
679  return ff_xvid_rate_estimate_qscale(s, dry_run);
680 #endif
681 
682  get_qminmax(&qmin, &qmax, s, pict_type);
683 
684  fps= get_fps(s->avctx);
685  /* update predictors */
686  if(picture_number>2 && !dry_run){
687  const int last_var= s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
689  update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits - s->stuffing_bits);
690  }
691 
692  if(s->flags&CODEC_FLAG_PASS2){
693  assert(picture_number>=0);
694  if(picture_number >= rcc->num_entries) {
695  av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
696  return -1;
697  }
698  rce= &rcc->entry[picture_number];
699  wanted_bits= rce->expected_bits;
700  }else{
701  Picture *dts_pic;
702  rce= &local_rce;
703 
704  //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
705  //but the reordering is simpler for now until h.264 b pyramid must be handeld
706  if(s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
707  dts_pic= s->current_picture_ptr;
708  else
709  dts_pic= s->last_picture_ptr;
710 
711  if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
712  wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
713  else
714  wanted_bits = (uint64_t)(s->bit_rate*(double)dts_pic->f.pts / fps);
715  }
716 
717  diff= s->total_bits - wanted_bits;
718  br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
719  if(br_compensation<=0.0) br_compensation=0.001;
720 
721  var= pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
722 
723  short_term_q = 0; /* avoid warning */
724  if(s->flags&CODEC_FLAG_PASS2){
725  if(pict_type!=AV_PICTURE_TYPE_I)
726  assert(pict_type == rce->new_pict_type);
727 
728  q= rce->new_qscale / br_compensation;
729  av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
730  br_compensation, s->frame_bits, var, pict_type);
731  }else{
732  rce->pict_type=
733  rce->new_pict_type= pict_type;
734  rce->mc_mb_var_sum= pic->mc_mb_var_sum;
735  rce->mb_var_sum = pic-> mb_var_sum;
736  rce->qscale = FF_QP2LAMBDA * 2;
737  rce->f_code = s->f_code;
738  rce->b_code = s->b_code;
739  rce->misc_bits= 1;
740 
741  bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
742  if(pict_type== AV_PICTURE_TYPE_I){
743  rce->i_count = s->mb_num;
744  rce->i_tex_bits= bits;
745  rce->p_tex_bits= 0;
746  rce->mv_bits= 0;
747  }else{
748  rce->i_count = 0; //FIXME we do know this approx
749  rce->i_tex_bits= 0;
750  rce->p_tex_bits= bits*0.9;
751 
752  rce->mv_bits= bits*0.1;
753  }
754  rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
755  rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
756  rcc->mv_bits_sum[pict_type] += rce->mv_bits;
757  rcc->frame_count[pict_type] ++;
758 
759  bits= rce->i_tex_bits + rce->p_tex_bits;
760  rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
761 
762  q= get_qscale(s, rce, rate_factor, picture_number);
763  if (q < 0)
764  return -1;
765 
766  assert(q>0.0);
767  q= get_diff_limited_q(s, rce, q);
768  assert(q>0.0);
769 
770  if(pict_type==AV_PICTURE_TYPE_P || s->intra_only){ //FIXME type dependent blur like in 2-pass
771  rcc->short_term_qsum*=a->qblur;
772  rcc->short_term_qcount*=a->qblur;
773 
774  rcc->short_term_qsum+= q;
775  rcc->short_term_qcount++;
776  q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
777  }
778  assert(q>0.0);
779 
780  q= modify_qscale(s, rce, q, picture_number);
781 
782  rcc->pass1_wanted_bits+= s->bit_rate/fps;
783 
784  assert(q>0.0);
785  }
786 
787  if(s->avctx->debug&FF_DEBUG_RC){
788  av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
789  av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
790  br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
791  );
792  }
793 
794  if (q<qmin) q=qmin;
795  else if(q>qmax) q=qmax;
796 
797  if(s->adaptive_quant)
798  adaptive_quantization(s, q);
799  else
800  q= (int)(q + 0.5);
801 
802  if(!dry_run){
803  rcc->last_qscale= q;
805  rcc->last_mb_var_sum= pic->mb_var_sum;
806  }
807  return q;
808 }
809 
810 //----------------------------------------------
811 // 2-Pass code
812 
814 {
815  RateControlContext *rcc= &s->rc_context;
816  AVCodecContext *a= s->avctx;
817  int i, toobig;
818  double fps= get_fps(s->avctx);
819  double complexity[5]={0,0,0,0,0}; // approximate bits at quant=1
820  uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
821  uint64_t all_const_bits;
822  uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
823  double rate_factor=0;
824  double step;
825  //int last_i_frame=-10000000;
826  const int filter_size= (int)(a->qblur*4) | 1;
827  double expected_bits;
828  double *qscale, *blurred_qscale, qscale_sum;
829 
830  /* find complexity & const_bits & decide the pict_types */
831  for(i=0; i<rcc->num_entries; i++){
832  RateControlEntry *rce= &rcc->entry[i];
833 
834  rce->new_pict_type= rce->pict_type;
835  rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
836  rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
837  rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
838  rcc->frame_count[rce->pict_type] ++;
839 
840  complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
841  const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
842  }
843  all_const_bits= const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B];
844 
845  if(all_available_bits < all_const_bits){
846  av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
847  return -1;
848  }
849 
850  qscale= av_malloc(sizeof(double)*rcc->num_entries);
851  blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
852  toobig = 0;
853 
854  for(step=256*256; step>0.0000001; step*=0.5){
855  expected_bits=0;
856  rate_factor+= step;
857 
858  rcc->buffer_index= s->avctx->rc_buffer_size/2;
859 
860  /* find qscale */
861  for(i=0; i<rcc->num_entries; i++){
862  RateControlEntry *rce= &rcc->entry[i];
863  qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
864  rcc->last_qscale_for[rce->pict_type] = qscale[i];
865  }
866  assert(filter_size%2==1);
867 
868  /* fixed I/B QP relative to P mode */
869  for(i=FFMAX(0, rcc->num_entries-300); i<rcc->num_entries; i++){
870  RateControlEntry *rce= &rcc->entry[i];
871 
872  qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
873  }
874 
875  for(i=rcc->num_entries-1; i>=0; i--){
876  RateControlEntry *rce= &rcc->entry[i];
877 
878  qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
879  }
880 
881  /* smooth curve */
882  for(i=0; i<rcc->num_entries; i++){
883  RateControlEntry *rce= &rcc->entry[i];
884  const int pict_type= rce->new_pict_type;
885  int j;
886  double q=0.0, sum=0.0;
887 
888  for(j=0; j<filter_size; j++){
889  int index= i+j-filter_size/2;
890  double d= index-i;
891  double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
892 
893  if(index < 0 || index >= rcc->num_entries) continue;
894  if(pict_type != rcc->entry[index].new_pict_type) continue;
895  q+= qscale[index] * coeff;
896  sum+= coeff;
897  }
898  blurred_qscale[i]= q/sum;
899  }
900 
901  /* find expected bits */
902  for(i=0; i<rcc->num_entries; i++){
903  RateControlEntry *rce= &rcc->entry[i];
904  double bits;
905  rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
906  bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
907  bits += 8*ff_vbv_update(s, bits);
908 
909  rce->expected_bits= expected_bits;
910  expected_bits += bits;
911  }
912 
913  av_dlog(s->avctx,
914  "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
915  expected_bits, (int)all_available_bits, rate_factor);
916  if(expected_bits > all_available_bits) {
917  rate_factor-= step;
918  ++toobig;
919  }
920  }
921  av_free(qscale);
922  av_free(blurred_qscale);
923 
924  /* check bitrate calculations and print info */
925  qscale_sum = 0.0;
926  for(i=0; i<rcc->num_entries; i++){
927  av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
928  i,
929  rcc->entry[i].new_qscale,
930  rcc->entry[i].new_qscale / FF_QP2LAMBDA);
931  qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
932  }
933  assert(toobig <= 40);
935  "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
936  s->bit_rate,
937  (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
939  "[lavc rc] estimated target average qp: %.3f\n",
940  (float)qscale_sum / rcc->num_entries);
941  if (toobig == 0) {
943  "[lavc rc] Using all of requested bitrate is not "
944  "necessary for this video with these parameters.\n");
945  } else if (toobig == 40) {
947  "[lavc rc] Error: bitrate too low for this video "
948  "with these parameters.\n");
949  return -1;
950  } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
952  "[lavc rc] Error: 2pass curve failed to converge\n");
953  return -1;
954  }
955 
956  return 0;
957 }