FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
resample2.c
Go to the documentation of this file.
1 /*
2  * audio resampling
3  * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * audio resampling
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "avcodec.h"
30 #include "dsputil.h"
31 #include "libavutil/common.h"
32 
33 #if FF_API_AVCODEC_RESAMPLE
34 
35 #ifndef CONFIG_RESAMPLE_HP
36 #define FILTER_SHIFT 15
37 
38 #define FELEM int16_t
39 #define FELEM2 int32_t
40 #define FELEML int64_t
41 #define FELEM_MAX INT16_MAX
42 #define FELEM_MIN INT16_MIN
43 #define WINDOW_TYPE 9
44 #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
45 #define FILTER_SHIFT 30
46 
47 #define FELEM int32_t
48 #define FELEM2 int64_t
49 #define FELEML int64_t
50 #define FELEM_MAX INT32_MAX
51 #define FELEM_MIN INT32_MIN
52 #define WINDOW_TYPE 12
53 #else
54 #define FILTER_SHIFT 0
55 
56 #define FELEM double
57 #define FELEM2 double
58 #define FELEML double
59 #define WINDOW_TYPE 24
60 #endif
61 
62 
63 typedef struct AVResampleContext{
64  const AVClass *av_class;
66  int filter_length;
67  int ideal_dst_incr;
68  int dst_incr;
69  int index;
70  int frac;
71  int src_incr;
72  int compensation_distance;
73  int phase_shift;
74  int phase_mask;
75  int linear;
76 }AVResampleContext;
77 
78 /**
79  * 0th order modified bessel function of the first kind.
80  */
81 static double bessel(double x){
82  double v=1;
83  double lastv=0;
84  double t=1;
85  int i;
86 
87  x= x*x/4;
88  for(i=1; v != lastv; i++){
89  lastv=v;
90  t *= x/(i*i);
91  v += t;
92  }
93  return v;
94 }
95 
96 /**
97  * Build a polyphase filterbank.
98  * @param factor resampling factor
99  * @param scale wanted sum of coefficients for each filter
100  * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
101  * @return 0 on success, negative on error
102  */
103 static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
104  int ph, i;
105  double x, y, w;
106  double *tab = av_malloc(tap_count * sizeof(*tab));
107  const int center= (tap_count-1)/2;
108 
109  if (!tab)
110  return AVERROR(ENOMEM);
111 
112  /* if upsampling, only need to interpolate, no filter */
113  if (factor > 1.0)
114  factor = 1.0;
115 
116  for(ph=0;ph<phase_count;ph++) {
117  double norm = 0;
118  for(i=0;i<tap_count;i++) {
119  x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
120  if (x == 0) y = 1.0;
121  else y = sin(x) / x;
122  switch(type){
123  case 0:{
124  const float d= -0.5; //first order derivative = -0.5
125  x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
126  if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
127  else y= d*(-4 + 8*x - 5*x*x + x*x*x);
128  break;}
129  case 1:
130  w = 2.0*x / (factor*tap_count) + M_PI;
131  y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
132  break;
133  default:
134  w = 2.0*x / (factor*tap_count*M_PI);
135  y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
136  break;
137  }
138 
139  tab[i] = y;
140  norm += y;
141  }
142 
143  /* normalize so that an uniform color remains the same */
144  for(i=0;i<tap_count;i++) {
145 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
146  filter[ph * tap_count + i] = tab[i] / norm;
147 #else
148  filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
149 #endif
150  }
151  }
152 #if 0
153  {
154 #define LEN 1024
155  int j,k;
156  double sine[LEN + tap_count];
157  double filtered[LEN];
158  double maxff=-2, minff=2, maxsf=-2, minsf=2;
159  for(i=0; i<LEN; i++){
160  double ss=0, sf=0, ff=0;
161  for(j=0; j<LEN+tap_count; j++)
162  sine[j]= cos(i*j*M_PI/LEN);
163  for(j=0; j<LEN; j++){
164  double sum=0;
165  ph=0;
166  for(k=0; k<tap_count; k++)
167  sum += filter[ph * tap_count + k] * sine[k+j];
168  filtered[j]= sum / (1<<FILTER_SHIFT);
169  ss+= sine[j + center] * sine[j + center];
170  ff+= filtered[j] * filtered[j];
171  sf+= sine[j + center] * filtered[j];
172  }
173  ss= sqrt(2*ss/LEN);
174  ff= sqrt(2*ff/LEN);
175  sf= 2*sf/LEN;
176  maxff= FFMAX(maxff, ff);
177  minff= FFMIN(minff, ff);
178  maxsf= FFMAX(maxsf, sf);
179  minsf= FFMIN(minsf, sf);
180  if(i%11==0){
181  av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
182  minff=minsf= 2;
183  maxff=maxsf= -2;
184  }
185  }
186  }
187 #endif
188 
189  av_free(tab);
190  return 0;
191 }
192 
193 AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
194  AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
195  double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
196  int phase_count= 1<<phase_shift;
197 
198  if (!c)
199  return NULL;
200 
201  c->phase_shift= phase_shift;
202  c->phase_mask= phase_count-1;
203  c->linear= linear;
204 
205  c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
206  c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
207  if (!c->filter_bank)
208  goto error;
209  if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE))
210  goto error;
211  memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
212  c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
213 
214  if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
215  goto error;
216  c->ideal_dst_incr= c->dst_incr;
217 
218  c->index= -phase_count*((c->filter_length-1)/2);
219 
220  return c;
221 error:
222  av_free(c->filter_bank);
223  av_free(c);
224  return NULL;
225 }
226 
227 void av_resample_close(AVResampleContext *c){
228  av_freep(&c->filter_bank);
229  av_freep(&c);
230 }
231 
232 void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
233 // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
234  c->compensation_distance= compensation_distance;
235  c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
236 }
237 
238 int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
239  int dst_index, i;
240  int index= c->index;
241  int frac= c->frac;
242  int dst_incr_frac= c->dst_incr % c->src_incr;
243  int dst_incr= c->dst_incr / c->src_incr;
244  int compensation_distance= c->compensation_distance;
245 
246  if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
247  int64_t index2= ((int64_t)index)<<32;
248  int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
249  dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
250 
251  for(dst_index=0; dst_index < dst_size; dst_index++){
252  dst[dst_index] = src[index2>>32];
253  index2 += incr;
254  }
255  index += dst_index * dst_incr;
256  index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
257  frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
258  }else{
259  for(dst_index=0; dst_index < dst_size; dst_index++){
260  FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
261  int sample_index= index >> c->phase_shift;
262  FELEM2 val=0;
263 
264  if(sample_index < 0){
265  for(i=0; i<c->filter_length; i++)
266  val += src[FFABS(sample_index + i) % src_size] * filter[i];
267  }else if(sample_index + c->filter_length > src_size){
268  break;
269  }else if(c->linear){
270  FELEM2 v2=0;
271  for(i=0; i<c->filter_length; i++){
272  val += src[sample_index + i] * (FELEM2)filter[i];
273  v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
274  }
275  val+=(v2-val)*(FELEML)frac / c->src_incr;
276  }else{
277  for(i=0; i<c->filter_length; i++){
278  val += src[sample_index + i] * (FELEM2)filter[i];
279  }
280  }
281 
282 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
283  dst[dst_index] = av_clip_int16(lrintf(val));
284 #else
285  val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
286  dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
287 #endif
288 
289  frac += dst_incr_frac;
290  index += dst_incr;
291  if(frac >= c->src_incr){
292  frac -= c->src_incr;
293  index++;
294  }
295 
296  if(dst_index + 1 == compensation_distance){
297  compensation_distance= 0;
298  dst_incr_frac= c->ideal_dst_incr % c->src_incr;
299  dst_incr= c->ideal_dst_incr / c->src_incr;
300  }
301  }
302  }
303  *consumed= FFMAX(index, 0) >> c->phase_shift;
304  if(index>=0) index &= c->phase_mask;
305 
306  if(compensation_distance){
307  compensation_distance -= dst_index;
308  av_assert2(compensation_distance > 0);
309  }
310  if(update_ctx){
311  c->frac= frac;
312  c->index= index;
313  c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
314  c->compensation_distance= compensation_distance;
315  }
316 
317  return dst_index;
318 }
319 
320 #endif