FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vc1dec.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * VC-1 and WMV3 decoder
27  */
28 
29 #include "internal.h"
30 #include "avcodec.h"
31 #include "mpegvideo.h"
32 #include "h263.h"
33 #include "h264chroma.h"
34 #include "vc1.h"
35 #include "vc1data.h"
36 #include "vc1acdata.h"
37 #include "msmpeg4data.h"
38 #include "unary.h"
39 #include "mathops.h"
40 #include "vdpau_internal.h"
41 #include "libavutil/avassert.h"
42 
43 #undef NDEBUG
44 #include <assert.h>
45 
46 #define MB_INTRA_VLC_BITS 9
47 #define DC_VLC_BITS 9
48 
49 
50 // offset tables for interlaced picture MVDATA decoding
51 static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
52 static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
53 
54 /***********************************************************************/
55 /**
56  * @name VC-1 Bitplane decoding
57  * @see 8.7, p56
58  * @{
59  */
60 
61 /**
62  * Imode types
63  * @{
64  */
65 enum Imode {
73 };
74 /** @} */ //imode defines
75 
77 {
78  MpegEncContext *s = &v->s;
80  if (v->field_mode && v->second_field) {
81  s->dest[0] += s->current_picture_ptr->f.linesize[0];
82  s->dest[1] += s->current_picture_ptr->f.linesize[1];
83  s->dest[2] += s->current_picture_ptr->f.linesize[2];
84  }
85 }
86 
87 
88 /** @} */ //Bitplane group
89 
91 {
92  MpegEncContext *s = &v->s;
93  int topleft_mb_pos, top_mb_pos;
94  int stride_y, fieldtx = 0;
95  int v_dist;
96 
97  /* The put pixels loop is always one MB row behind the decoding loop,
98  * because we can only put pixels when overlap filtering is done, and
99  * for filtering of the bottom edge of a MB, we need the next MB row
100  * present as well.
101  * Within the row, the put pixels loop is also one MB col behind the
102  * decoding loop. The reason for this is again, because for filtering
103  * of the right MB edge, we need the next MB present. */
104  if (!s->first_slice_line) {
105  if (s->mb_x) {
106  topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
107  if (v->fcm == ILACE_FRAME)
108  fieldtx = v->fieldtx_plane[topleft_mb_pos];
109  stride_y = s->linesize << fieldtx;
110  v_dist = (16 - fieldtx) >> (fieldtx == 0);
112  s->dest[0] - 16 * s->linesize - 16,
113  stride_y);
115  s->dest[0] - 16 * s->linesize - 8,
116  stride_y);
118  s->dest[0] - v_dist * s->linesize - 16,
119  stride_y);
121  s->dest[0] - v_dist * s->linesize - 8,
122  stride_y);
124  s->dest[1] - 8 * s->uvlinesize - 8,
125  s->uvlinesize);
127  s->dest[2] - 8 * s->uvlinesize - 8,
128  s->uvlinesize);
129  }
130  if (s->mb_x == s->mb_width - 1) {
131  top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
132  if (v->fcm == ILACE_FRAME)
133  fieldtx = v->fieldtx_plane[top_mb_pos];
134  stride_y = s->linesize << fieldtx;
135  v_dist = fieldtx ? 15 : 8;
137  s->dest[0] - 16 * s->linesize,
138  stride_y);
140  s->dest[0] - 16 * s->linesize + 8,
141  stride_y);
143  s->dest[0] - v_dist * s->linesize,
144  stride_y);
146  s->dest[0] - v_dist * s->linesize + 8,
147  stride_y);
149  s->dest[1] - 8 * s->uvlinesize,
150  s->uvlinesize);
152  s->dest[2] - 8 * s->uvlinesize,
153  s->uvlinesize);
154  }
155  }
156 
157 #define inc_blk_idx(idx) do { \
158  idx++; \
159  if (idx >= v->n_allocated_blks) \
160  idx = 0; \
161  } while (0)
162 
167 }
168 
169 static void vc1_loop_filter_iblk(VC1Context *v, int pq)
170 {
171  MpegEncContext *s = &v->s;
172  int j;
173  if (!s->first_slice_line) {
174  v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
175  if (s->mb_x)
176  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
177  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
178  for (j = 0; j < 2; j++) {
179  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
180  if (s->mb_x)
181  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
182  }
183  }
184  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
185 
186  if (s->mb_y == s->end_mb_y - 1) {
187  if (s->mb_x) {
188  v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
189  v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
190  v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
191  }
192  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
193  }
194 }
195 
197 {
198  MpegEncContext *s = &v->s;
199  int j;
200 
201  /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
202  * means it runs two rows/cols behind the decoding loop. */
203  if (!s->first_slice_line) {
204  if (s->mb_x) {
205  if (s->mb_y >= s->start_mb_y + 2) {
206  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
207 
208  if (s->mb_x >= 2)
209  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
210  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
211  for (j = 0; j < 2; j++) {
212  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
213  if (s->mb_x >= 2) {
214  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
215  }
216  }
217  }
218  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
219  }
220 
221  if (s->mb_x == s->mb_width - 1) {
222  if (s->mb_y >= s->start_mb_y + 2) {
223  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
224 
225  if (s->mb_x)
226  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
227  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
228  for (j = 0; j < 2; j++) {
229  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
230  if (s->mb_x >= 2) {
231  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
232  }
233  }
234  }
235  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
236  }
237 
238  if (s->mb_y == s->end_mb_y) {
239  if (s->mb_x) {
240  if (s->mb_x >= 2)
241  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
242  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
243  if (s->mb_x >= 2) {
244  for (j = 0; j < 2; j++) {
245  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
246  }
247  }
248  }
249 
250  if (s->mb_x == s->mb_width - 1) {
251  if (s->mb_x)
252  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
253  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
254  if (s->mb_x) {
255  for (j = 0; j < 2; j++) {
256  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
257  }
258  }
259  }
260  }
261  }
262 }
263 
265 {
266  MpegEncContext *s = &v->s;
267  int mb_pos;
268 
269  if (v->condover == CONDOVER_NONE)
270  return;
271 
272  mb_pos = s->mb_x + s->mb_y * s->mb_stride;
273 
274  /* Within a MB, the horizontal overlap always runs before the vertical.
275  * To accomplish that, we run the H on left and internal borders of the
276  * currently decoded MB. Then, we wait for the next overlap iteration
277  * to do H overlap on the right edge of this MB, before moving over and
278  * running the V overlap. Therefore, the V overlap makes us trail by one
279  * MB col and the H overlap filter makes us trail by one MB row. This
280  * is reflected in the time at which we run the put_pixels loop. */
281  if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
282  if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
283  v->over_flags_plane[mb_pos - 1])) {
285  v->block[v->cur_blk_idx][0]);
287  v->block[v->cur_blk_idx][2]);
288  if (!(s->flags & CODEC_FLAG_GRAY)) {
290  v->block[v->cur_blk_idx][4]);
292  v->block[v->cur_blk_idx][5]);
293  }
294  }
296  v->block[v->cur_blk_idx][1]);
298  v->block[v->cur_blk_idx][3]);
299 
300  if (s->mb_x == s->mb_width - 1) {
301  if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
302  v->over_flags_plane[mb_pos - s->mb_stride])) {
304  v->block[v->cur_blk_idx][0]);
306  v->block[v->cur_blk_idx][1]);
307  if (!(s->flags & CODEC_FLAG_GRAY)) {
309  v->block[v->cur_blk_idx][4]);
311  v->block[v->cur_blk_idx][5]);
312  }
313  }
315  v->block[v->cur_blk_idx][2]);
317  v->block[v->cur_blk_idx][3]);
318  }
319  }
320  if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
321  if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
322  v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
324  v->block[v->left_blk_idx][0]);
326  v->block[v->left_blk_idx][1]);
327  if (!(s->flags & CODEC_FLAG_GRAY)) {
329  v->block[v->left_blk_idx][4]);
331  v->block[v->left_blk_idx][5]);
332  }
333  }
335  v->block[v->left_blk_idx][2]);
337  v->block[v->left_blk_idx][3]);
338  }
339 }
340 
341 /** Do motion compensation over 1 macroblock
342  * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
343  */
344 static void vc1_mc_1mv(VC1Context *v, int dir)
345 {
346  MpegEncContext *s = &v->s;
347  DSPContext *dsp = &v->s.dsp;
348  H264ChromaContext *h264chroma = &v->h264chroma;
349  uint8_t *srcY, *srcU, *srcV;
350  int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
351  int off, off_uv;
352  int v_edge_pos = s->v_edge_pos >> v->field_mode;
353 
354  if ((!v->field_mode ||
355  (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
356  !v->s.last_picture.f.data[0])
357  return;
358 
359  mx = s->mv[dir][0][0];
360  my = s->mv[dir][0][1];
361 
362  // store motion vectors for further use in B frames
363  if (s->pict_type == AV_PICTURE_TYPE_P) {
364  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = mx;
365  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = my;
366  }
367 
368  uvmx = (mx + ((mx & 3) == 3)) >> 1;
369  uvmy = (my + ((my & 3) == 3)) >> 1;
370  v->luma_mv[s->mb_x][0] = uvmx;
371  v->luma_mv[s->mb_x][1] = uvmy;
372 
373  if (v->field_mode &&
374  v->cur_field_type != v->ref_field_type[dir]) {
375  my = my - 2 + 4 * v->cur_field_type;
376  uvmy = uvmy - 2 + 4 * v->cur_field_type;
377  }
378 
379  // fastuvmc shall be ignored for interlaced frame picture
380  if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
381  uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
382  uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
383  }
384  if (v->field_mode) { // interlaced field picture
385  if (!dir) {
386  if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
387  srcY = s->current_picture.f.data[0];
388  srcU = s->current_picture.f.data[1];
389  srcV = s->current_picture.f.data[2];
390  } else {
391  srcY = s->last_picture.f.data[0];
392  srcU = s->last_picture.f.data[1];
393  srcV = s->last_picture.f.data[2];
394  }
395  } else {
396  srcY = s->next_picture.f.data[0];
397  srcU = s->next_picture.f.data[1];
398  srcV = s->next_picture.f.data[2];
399  }
400  } else {
401  if (!dir) {
402  srcY = s->last_picture.f.data[0];
403  srcU = s->last_picture.f.data[1];
404  srcV = s->last_picture.f.data[2];
405  } else {
406  srcY = s->next_picture.f.data[0];
407  srcU = s->next_picture.f.data[1];
408  srcV = s->next_picture.f.data[2];
409  }
410  }
411 
412  if(!srcY)
413  return;
414 
415  src_x = s->mb_x * 16 + (mx >> 2);
416  src_y = s->mb_y * 16 + (my >> 2);
417  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
418  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
419 
420  if (v->profile != PROFILE_ADVANCED) {
421  src_x = av_clip( src_x, -16, s->mb_width * 16);
422  src_y = av_clip( src_y, -16, s->mb_height * 16);
423  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
424  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
425  } else {
426  src_x = av_clip( src_x, -17, s->avctx->coded_width);
427  src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
428  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
429  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
430  }
431 
432  srcY += src_y * s->linesize + src_x;
433  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
434  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
435 
436  if (v->field_mode && v->ref_field_type[dir]) {
437  srcY += s->current_picture_ptr->f.linesize[0];
438  srcU += s->current_picture_ptr->f.linesize[1];
439  srcV += s->current_picture_ptr->f.linesize[2];
440  }
441 
442  /* for grayscale we should not try to read from unknown area */
443  if (s->flags & CODEC_FLAG_GRAY) {
444  srcU = s->edge_emu_buffer + 18 * s->linesize;
445  srcV = s->edge_emu_buffer + 18 * s->linesize;
446  }
447 
449  || s->h_edge_pos < 22 || v_edge_pos < 22
450  || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
451  || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
452  uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
453 
454  srcY -= s->mspel * (1 + s->linesize);
456  17 + s->mspel * 2, 17 + s->mspel * 2,
457  src_x - s->mspel, src_y - s->mspel,
458  s->h_edge_pos, v_edge_pos);
459  srcY = s->edge_emu_buffer;
460  s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
461  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
462  s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
463  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
464  srcU = uvbuf;
465  srcV = uvbuf + 16;
466  /* if we deal with range reduction we need to scale source blocks */
467  if (v->rangeredfrm) {
468  int i, j;
469  uint8_t *src, *src2;
470 
471  src = srcY;
472  for (j = 0; j < 17 + s->mspel * 2; j++) {
473  for (i = 0; i < 17 + s->mspel * 2; i++)
474  src[i] = ((src[i] - 128) >> 1) + 128;
475  src += s->linesize;
476  }
477  src = srcU;
478  src2 = srcV;
479  for (j = 0; j < 9; j++) {
480  for (i = 0; i < 9; i++) {
481  src[i] = ((src[i] - 128) >> 1) + 128;
482  src2[i] = ((src2[i] - 128) >> 1) + 128;
483  }
484  src += s->uvlinesize;
485  src2 += s->uvlinesize;
486  }
487  }
488  /* if we deal with intensity compensation we need to scale source blocks */
489  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
490  int i, j;
491  uint8_t *src, *src2;
492 
493  src = srcY;
494  for (j = 0; j < 17 + s->mspel * 2; j++) {
495  for (i = 0; i < 17 + s->mspel * 2; i++)
496  src[i] = v->luty[src[i]];
497  src += s->linesize;
498  }
499  src = srcU;
500  src2 = srcV;
501  for (j = 0; j < 9; j++) {
502  for (i = 0; i < 9; i++) {
503  src[i] = v->lutuv[src[i]];
504  src2[i] = v->lutuv[src2[i]];
505  }
506  src += s->uvlinesize;
507  src2 += s->uvlinesize;
508  }
509  }
510  srcY += s->mspel * (1 + s->linesize);
511  }
512 
513  off = 0;
514  off_uv = 0;
515  if (s->mspel) {
516  dxy = ((my & 3) << 2) | (mx & 3);
517  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
518  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
519  srcY += s->linesize * 8;
520  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
521  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
522  } else { // hpel mc - always used for luma
523  dxy = (my & 2) | ((mx & 2) >> 1);
524  if (!v->rnd)
525  dsp->put_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
526  else
527  dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
528  }
529 
530  if (s->flags & CODEC_FLAG_GRAY) return;
531  /* Chroma MC always uses qpel bilinear */
532  uvmx = (uvmx & 3) << 1;
533  uvmy = (uvmy & 3) << 1;
534  if (!v->rnd) {
535  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
536  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
537  } else {
538  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
539  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
540  }
541 }
542 
543 static inline int median4(int a, int b, int c, int d)
544 {
545  if (a < b) {
546  if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
547  else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
548  } else {
549  if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
550  else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
551  }
552 }
553 
554 /** Do motion compensation for 4-MV macroblock - luminance block
555  */
556 static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir)
557 {
558  MpegEncContext *s = &v->s;
559  DSPContext *dsp = &v->s.dsp;
560  uint8_t *srcY;
561  int dxy, mx, my, src_x, src_y;
562  int off;
563  int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
564  int v_edge_pos = s->v_edge_pos >> v->field_mode;
565 
566  if ((!v->field_mode ||
567  (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
568  !v->s.last_picture.f.data[0])
569  return;
570 
571  mx = s->mv[dir][n][0];
572  my = s->mv[dir][n][1];
573 
574  if (!dir) {
575  if (v->field_mode) {
576  if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field)
577  srcY = s->current_picture.f.data[0];
578  else
579  srcY = s->last_picture.f.data[0];
580  } else
581  srcY = s->last_picture.f.data[0];
582  } else
583  srcY = s->next_picture.f.data[0];
584 
585  if(!srcY)
586  return;
587 
588  if (v->field_mode) {
589  if (v->cur_field_type != v->ref_field_type[dir])
590  my = my - 2 + 4 * v->cur_field_type;
591  }
592 
593  if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
594  int same_count = 0, opp_count = 0, k;
595  int chosen_mv[2][4][2], f;
596  int tx, ty;
597  for (k = 0; k < 4; k++) {
598  f = v->mv_f[0][s->block_index[k] + v->blocks_off];
599  chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
600  chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
601  opp_count += f;
602  same_count += 1 - f;
603  }
604  f = opp_count > same_count;
605  switch (f ? opp_count : same_count) {
606  case 4:
607  tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
608  chosen_mv[f][2][0], chosen_mv[f][3][0]);
609  ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
610  chosen_mv[f][2][1], chosen_mv[f][3][1]);
611  break;
612  case 3:
613  tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
614  ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
615  break;
616  case 2:
617  tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
618  ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
619  break;
620  default:
621  av_assert2(0);
622  }
623  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
624  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
625  for (k = 0; k < 4; k++)
626  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
627  }
628 
629  if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
630  int qx, qy;
631  int width = s->avctx->coded_width;
632  int height = s->avctx->coded_height >> 1;
633  qx = (s->mb_x * 16) + (mx >> 2);
634  qy = (s->mb_y * 8) + (my >> 3);
635 
636  if (qx < -17)
637  mx -= 4 * (qx + 17);
638  else if (qx > width)
639  mx -= 4 * (qx - width);
640  if (qy < -18)
641  my -= 8 * (qy + 18);
642  else if (qy > height + 1)
643  my -= 8 * (qy - height - 1);
644  }
645 
646  if ((v->fcm == ILACE_FRAME) && fieldmv)
647  off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
648  else
649  off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
650 
651  src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
652  if (!fieldmv)
653  src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
654  else
655  src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
656 
657  if (v->profile != PROFILE_ADVANCED) {
658  src_x = av_clip(src_x, -16, s->mb_width * 16);
659  src_y = av_clip(src_y, -16, s->mb_height * 16);
660  } else {
661  src_x = av_clip(src_x, -17, s->avctx->coded_width);
662  if (v->fcm == ILACE_FRAME) {
663  if (src_y & 1)
664  src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
665  else
666  src_y = av_clip(src_y, -18, s->avctx->coded_height);
667  } else {
668  src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
669  }
670  }
671 
672  srcY += src_y * s->linesize + src_x;
673  if (v->field_mode && v->ref_field_type[dir])
674  srcY += s->current_picture_ptr->f.linesize[0];
675 
676  if (fieldmv && !(src_y & 1))
677  v_edge_pos--;
678  if (fieldmv && (src_y & 1) && src_y < 4)
679  src_y--;
681  || s->h_edge_pos < 13 || v_edge_pos < 23
682  || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
683  || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
684  srcY -= s->mspel * (1 + (s->linesize << fieldmv));
685  /* check emulate edge stride and offset */
687  9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
688  src_x - s->mspel, src_y - (s->mspel << fieldmv),
689  s->h_edge_pos, v_edge_pos);
690  srcY = s->edge_emu_buffer;
691  /* if we deal with range reduction we need to scale source blocks */
692  if (v->rangeredfrm) {
693  int i, j;
694  uint8_t *src;
695 
696  src = srcY;
697  for (j = 0; j < 9 + s->mspel * 2; j++) {
698  for (i = 0; i < 9 + s->mspel * 2; i++)
699  src[i] = ((src[i] - 128) >> 1) + 128;
700  src += s->linesize << fieldmv;
701  }
702  }
703  /* if we deal with intensity compensation we need to scale source blocks */
704  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
705  int i, j;
706  uint8_t *src;
707 
708  src = srcY;
709  for (j = 0; j < 9 + s->mspel * 2; j++) {
710  for (i = 0; i < 9 + s->mspel * 2; i++)
711  src[i] = v->luty[src[i]];
712  src += s->linesize << fieldmv;
713  }
714  }
715  srcY += s->mspel * (1 + (s->linesize << fieldmv));
716  }
717 
718  if (s->mspel) {
719  dxy = ((my & 3) << 2) | (mx & 3);
720  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
721  } else { // hpel mc - always used for luma
722  dxy = (my & 2) | ((mx & 2) >> 1);
723  if (!v->rnd)
724  dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
725  else
726  dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
727  }
728 }
729 
730 static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
731 {
732  int idx, i;
733  static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
734 
735  idx = ((a[3] != flag) << 3)
736  | ((a[2] != flag) << 2)
737  | ((a[1] != flag) << 1)
738  | (a[0] != flag);
739  if (!idx) {
740  *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
741  *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
742  return 4;
743  } else if (count[idx] == 1) {
744  switch (idx) {
745  case 0x1:
746  *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
747  *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
748  return 3;
749  case 0x2:
750  *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
751  *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
752  return 3;
753  case 0x4:
754  *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
755  *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
756  return 3;
757  case 0x8:
758  *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
759  *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
760  return 3;
761  }
762  } else if (count[idx] == 2) {
763  int t1 = 0, t2 = 0;
764  for (i = 0; i < 3; i++)
765  if (!a[i]) {
766  t1 = i;
767  break;
768  }
769  for (i = t1 + 1; i < 4; i++)
770  if (!a[i]) {
771  t2 = i;
772  break;
773  }
774  *tx = (mvx[t1] + mvx[t2]) / 2;
775  *ty = (mvy[t1] + mvy[t2]) / 2;
776  return 2;
777  } else {
778  return 0;
779  }
780  return -1;
781 }
782 
783 /** Do motion compensation for 4-MV macroblock - both chroma blocks
784  */
785 static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
786 {
787  MpegEncContext *s = &v->s;
788  H264ChromaContext *h264chroma = &v->h264chroma;
789  uint8_t *srcU, *srcV;
790  int uvmx, uvmy, uvsrc_x, uvsrc_y;
791  int k, tx = 0, ty = 0;
792  int mvx[4], mvy[4], intra[4], mv_f[4];
793  int valid_count;
794  int chroma_ref_type = v->cur_field_type, off = 0;
795  int v_edge_pos = s->v_edge_pos >> v->field_mode;
796 
797  if (!v->field_mode && !v->s.last_picture.f.data[0])
798  return;
799  if (s->flags & CODEC_FLAG_GRAY)
800  return;
801 
802  for (k = 0; k < 4; k++) {
803  mvx[k] = s->mv[dir][k][0];
804  mvy[k] = s->mv[dir][k][1];
805  intra[k] = v->mb_type[0][s->block_index[k]];
806  if (v->field_mode)
807  mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
808  }
809 
810  /* calculate chroma MV vector from four luma MVs */
811  if (!v->field_mode || (v->field_mode && !v->numref)) {
812  valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
813  chroma_ref_type = v->reffield;
814  if (!valid_count) {
815  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
816  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
817  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
818  return; //no need to do MC for intra blocks
819  }
820  } else {
821  int dominant = 0;
822  if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
823  dominant = 1;
824  valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
825  if (dominant)
826  chroma_ref_type = !v->cur_field_type;
827  }
828  if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
829  return;
830  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
831  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
832  uvmx = (tx + ((tx & 3) == 3)) >> 1;
833  uvmy = (ty + ((ty & 3) == 3)) >> 1;
834 
835  v->luma_mv[s->mb_x][0] = uvmx;
836  v->luma_mv[s->mb_x][1] = uvmy;
837 
838  if (v->fastuvmc) {
839  uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
840  uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
841  }
842  // Field conversion bias
843  if (v->cur_field_type != chroma_ref_type)
844  uvmy += 2 - 4 * chroma_ref_type;
845 
846  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
847  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
848 
849  if (v->profile != PROFILE_ADVANCED) {
850  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
851  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
852  } else {
853  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
854  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
855  }
856 
857  if (!dir) {
858  if (v->field_mode) {
859  if ((v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
860  srcU = s->current_picture.f.data[1];
861  srcV = s->current_picture.f.data[2];
862  } else {
863  srcU = s->last_picture.f.data[1];
864  srcV = s->last_picture.f.data[2];
865  }
866  } else {
867  srcU = s->last_picture.f.data[1];
868  srcV = s->last_picture.f.data[2];
869  }
870  } else {
871  srcU = s->next_picture.f.data[1];
872  srcV = s->next_picture.f.data[2];
873  }
874 
875  if(!srcU)
876  return;
877 
878  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
879  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
880 
881  if (v->field_mode) {
882  if (chroma_ref_type) {
883  srcU += s->current_picture_ptr->f.linesize[1];
884  srcV += s->current_picture_ptr->f.linesize[2];
885  }
886  off = 0;
887  }
888 
890  || s->h_edge_pos < 18 || v_edge_pos < 18
891  || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
892  || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
894  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
895  s->h_edge_pos >> 1, v_edge_pos >> 1);
896  s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
897  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
898  s->h_edge_pos >> 1, v_edge_pos >> 1);
899  srcU = s->edge_emu_buffer;
900  srcV = s->edge_emu_buffer + 16;
901 
902  /* if we deal with range reduction we need to scale source blocks */
903  if (v->rangeredfrm) {
904  int i, j;
905  uint8_t *src, *src2;
906 
907  src = srcU;
908  src2 = srcV;
909  for (j = 0; j < 9; j++) {
910  for (i = 0; i < 9; i++) {
911  src[i] = ((src[i] - 128) >> 1) + 128;
912  src2[i] = ((src2[i] - 128) >> 1) + 128;
913  }
914  src += s->uvlinesize;
915  src2 += s->uvlinesize;
916  }
917  }
918  /* if we deal with intensity compensation we need to scale source blocks */
919  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
920  int i, j;
921  uint8_t *src, *src2;
922 
923  src = srcU;
924  src2 = srcV;
925  for (j = 0; j < 9; j++) {
926  for (i = 0; i < 9; i++) {
927  src[i] = v->lutuv[src[i]];
928  src2[i] = v->lutuv[src2[i]];
929  }
930  src += s->uvlinesize;
931  src2 += s->uvlinesize;
932  }
933  }
934  }
935 
936  /* Chroma MC always uses qpel bilinear */
937  uvmx = (uvmx & 3) << 1;
938  uvmy = (uvmy & 3) << 1;
939  if (!v->rnd) {
940  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
941  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
942  } else {
943  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
944  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
945  }
946 }
947 
948 /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
949  */
951 {
952  MpegEncContext *s = &v->s;
953  H264ChromaContext *h264chroma = &v->h264chroma;
954  uint8_t *srcU, *srcV;
955  int uvsrc_x, uvsrc_y;
956  int uvmx_field[4], uvmy_field[4];
957  int i, off, tx, ty;
958  int fieldmv = v->blk_mv_type[s->block_index[0]];
959  static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
960  int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
961  int v_edge_pos = s->v_edge_pos >> 1;
962 
963  if (!v->s.last_picture.f.data[0])
964  return;
965  if (s->flags & CODEC_FLAG_GRAY)
966  return;
967 
968  for (i = 0; i < 4; i++) {
969  tx = s->mv[0][i][0];
970  uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
971  ty = s->mv[0][i][1];
972  if (fieldmv)
973  uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
974  else
975  uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
976  }
977 
978  for (i = 0; i < 4; i++) {
979  off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
980  uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
981  uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
982  // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
983  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
984  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
985  srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
986  srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
987  uvmx_field[i] = (uvmx_field[i] & 3) << 1;
988  uvmy_field[i] = (uvmy_field[i] & 3) << 1;
989 
990  if (fieldmv && !(uvsrc_y & 1))
991  v_edge_pos = (s->v_edge_pos >> 1) - 1;
992 
993  if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
994  uvsrc_y--;
995  if ((v->mv_mode == MV_PMODE_INTENSITY_COMP)
996  || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
997  || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
998  || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
1000  5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1001  s->h_edge_pos >> 1, v_edge_pos);
1002  s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
1003  5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1004  s->h_edge_pos >> 1, v_edge_pos);
1005  srcU = s->edge_emu_buffer;
1006  srcV = s->edge_emu_buffer + 16;
1007 
1008  /* if we deal with intensity compensation we need to scale source blocks */
1009  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1010  int i, j;
1011  uint8_t *src, *src2;
1012 
1013  src = srcU;
1014  src2 = srcV;
1015  for (j = 0; j < 5; j++) {
1016  for (i = 0; i < 5; i++) {
1017  src[i] = v->lutuv[src[i]];
1018  src2[i] = v->lutuv[src2[i]];
1019  }
1020  src += s->uvlinesize << 1;
1021  src2 += s->uvlinesize << 1;
1022  }
1023  }
1024  }
1025  if (!v->rnd) {
1026  h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1027  h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1028  } else {
1029  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1030  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1031  }
1032  }
1033 }
1034 
1035 /***********************************************************************/
1036 /**
1037  * @name VC-1 Block-level functions
1038  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1039  * @{
1040  */
1041 
1042 /**
1043  * @def GET_MQUANT
1044  * @brief Get macroblock-level quantizer scale
1045  */
1046 #define GET_MQUANT() \
1047  if (v->dquantfrm) { \
1048  int edges = 0; \
1049  if (v->dqprofile == DQPROFILE_ALL_MBS) { \
1050  if (v->dqbilevel) { \
1051  mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1052  } else { \
1053  mqdiff = get_bits(gb, 3); \
1054  if (mqdiff != 7) \
1055  mquant = v->pq + mqdiff; \
1056  else \
1057  mquant = get_bits(gb, 5); \
1058  } \
1059  } \
1060  if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1061  edges = 1 << v->dqsbedge; \
1062  else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1063  edges = (3 << v->dqsbedge) % 15; \
1064  else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
1065  edges = 15; \
1066  if ((edges&1) && !s->mb_x) \
1067  mquant = v->altpq; \
1068  if ((edges&2) && s->first_slice_line) \
1069  mquant = v->altpq; \
1070  if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
1071  mquant = v->altpq; \
1072  if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
1073  mquant = v->altpq; \
1074  if (!mquant || mquant > 31) { \
1075  av_log(v->s.avctx, AV_LOG_ERROR, \
1076  "Overriding invalid mquant %d\n", mquant); \
1077  mquant = 1; \
1078  } \
1079  }
1080 
1081 /**
1082  * @def GET_MVDATA(_dmv_x, _dmv_y)
1083  * @brief Get MV differentials
1084  * @see MVDATA decoding from 8.3.5.2, p(1)20
1085  * @param _dmv_x Horizontal differential for decoded MV
1086  * @param _dmv_y Vertical differential for decoded MV
1087  */
1088 #define GET_MVDATA(_dmv_x, _dmv_y) \
1089  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
1090  VC1_MV_DIFF_VLC_BITS, 2); \
1091  if (index > 36) { \
1092  mb_has_coeffs = 1; \
1093  index -= 37; \
1094  } else \
1095  mb_has_coeffs = 0; \
1096  s->mb_intra = 0; \
1097  if (!index) { \
1098  _dmv_x = _dmv_y = 0; \
1099  } else if (index == 35) { \
1100  _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1101  _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1102  } else if (index == 36) { \
1103  _dmv_x = 0; \
1104  _dmv_y = 0; \
1105  s->mb_intra = 1; \
1106  } else { \
1107  index1 = index % 6; \
1108  if (!s->quarter_sample && index1 == 5) val = 1; \
1109  else val = 0; \
1110  if (size_table[index1] - val > 0) \
1111  val = get_bits(gb, size_table[index1] - val); \
1112  else val = 0; \
1113  sign = 0 - (val&1); \
1114  _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1115  \
1116  index1 = index / 6; \
1117  if (!s->quarter_sample && index1 == 5) val = 1; \
1118  else val = 0; \
1119  if (size_table[index1] - val > 0) \
1120  val = get_bits(gb, size_table[index1] - val); \
1121  else val = 0; \
1122  sign = 0 - (val & 1); \
1123  _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
1124  }
1125 
1127  int *dmv_y, int *pred_flag)
1128 {
1129  int index, index1;
1130  int extend_x = 0, extend_y = 0;
1131  GetBitContext *gb = &v->s.gb;
1132  int bits, esc;
1133  int val, sign;
1134  const int* offs_tab;
1135 
1136  if (v->numref) {
1137  bits = VC1_2REF_MVDATA_VLC_BITS;
1138  esc = 125;
1139  } else {
1140  bits = VC1_1REF_MVDATA_VLC_BITS;
1141  esc = 71;
1142  }
1143  switch (v->dmvrange) {
1144  case 1:
1145  extend_x = 1;
1146  break;
1147  case 2:
1148  extend_y = 1;
1149  break;
1150  case 3:
1151  extend_x = extend_y = 1;
1152  break;
1153  }
1154  index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
1155  if (index == esc) {
1156  *dmv_x = get_bits(gb, v->k_x);
1157  *dmv_y = get_bits(gb, v->k_y);
1158  if (v->numref) {
1159  if (pred_flag) {
1160  *pred_flag = *dmv_y & 1;
1161  *dmv_y = (*dmv_y + *pred_flag) >> 1;
1162  } else {
1163  *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
1164  }
1165  }
1166  }
1167  else {
1168  av_assert0(index < esc);
1169  if (extend_x)
1170  offs_tab = offset_table2;
1171  else
1172  offs_tab = offset_table1;
1173  index1 = (index + 1) % 9;
1174  if (index1 != 0) {
1175  val = get_bits(gb, index1 + extend_x);
1176  sign = 0 -(val & 1);
1177  *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
1178  } else
1179  *dmv_x = 0;
1180  if (extend_y)
1181  offs_tab = offset_table2;
1182  else
1183  offs_tab = offset_table1;
1184  index1 = (index + 1) / 9;
1185  if (index1 > v->numref) {
1186  val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
1187  sign = 0 - (val & 1);
1188  *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
1189  } else
1190  *dmv_y = 0;
1191  if (v->numref && pred_flag)
1192  *pred_flag = index1 & 1;
1193  }
1194 }
1195 
1196 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
1197 {
1198  int scaledvalue, refdist;
1199  int scalesame1, scalesame2;
1200  int scalezone1_x, zone1offset_x;
1201  int table_index = dir ^ v->second_field;
1202 
1203  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1204  refdist = v->refdist;
1205  else
1206  refdist = dir ? v->brfd : v->frfd;
1207  if (refdist > 3)
1208  refdist = 3;
1209  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1210  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1211  scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
1212  zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
1213 
1214  if (FFABS(n) > 255)
1215  scaledvalue = n;
1216  else {
1217  if (FFABS(n) < scalezone1_x)
1218  scaledvalue = (n * scalesame1) >> 8;
1219  else {
1220  if (n < 0)
1221  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
1222  else
1223  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
1224  }
1225  }
1226  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1227 }
1228 
1229 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
1230 {
1231  int scaledvalue, refdist;
1232  int scalesame1, scalesame2;
1233  int scalezone1_y, zone1offset_y;
1234  int table_index = dir ^ v->second_field;
1235 
1236  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1237  refdist = v->refdist;
1238  else
1239  refdist = dir ? v->brfd : v->frfd;
1240  if (refdist > 3)
1241  refdist = 3;
1242  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1243  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1244  scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
1245  zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
1246 
1247  if (FFABS(n) > 63)
1248  scaledvalue = n;
1249  else {
1250  if (FFABS(n) < scalezone1_y)
1251  scaledvalue = (n * scalesame1) >> 8;
1252  else {
1253  if (n < 0)
1254  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
1255  else
1256  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
1257  }
1258  }
1259 
1260  if (v->cur_field_type && !v->ref_field_type[dir])
1261  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1262  else
1263  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1264 }
1265 
1266 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
1267 {
1268  int scalezone1_x, zone1offset_x;
1269  int scaleopp1, scaleopp2, brfd;
1270  int scaledvalue;
1271 
1272  brfd = FFMIN(v->brfd, 3);
1273  scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
1274  zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
1275  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1276  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1277 
1278  if (FFABS(n) > 255)
1279  scaledvalue = n;
1280  else {
1281  if (FFABS(n) < scalezone1_x)
1282  scaledvalue = (n * scaleopp1) >> 8;
1283  else {
1284  if (n < 0)
1285  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
1286  else
1287  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
1288  }
1289  }
1290  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1291 }
1292 
1293 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
1294 {
1295  int scalezone1_y, zone1offset_y;
1296  int scaleopp1, scaleopp2, brfd;
1297  int scaledvalue;
1298 
1299  brfd = FFMIN(v->brfd, 3);
1300  scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
1301  zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
1302  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1303  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1304 
1305  if (FFABS(n) > 63)
1306  scaledvalue = n;
1307  else {
1308  if (FFABS(n) < scalezone1_y)
1309  scaledvalue = (n * scaleopp1) >> 8;
1310  else {
1311  if (n < 0)
1312  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
1313  else
1314  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
1315  }
1316  }
1317  if (v->cur_field_type && !v->ref_field_type[dir]) {
1318  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1319  } else {
1320  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1321  }
1322 }
1323 
1324 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
1325  int dim, int dir)
1326 {
1327  int brfd, scalesame;
1328  int hpel = 1 - v->s.quarter_sample;
1329 
1330  n >>= hpel;
1331  if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
1332  if (dim)
1333  n = scaleforsame_y(v, i, n, dir) << hpel;
1334  else
1335  n = scaleforsame_x(v, n, dir) << hpel;
1336  return n;
1337  }
1338  brfd = FFMIN(v->brfd, 3);
1339  scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
1340 
1341  n = (n * scalesame >> 8) << hpel;
1342  return n;
1343 }
1344 
1345 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
1346  int dim, int dir)
1347 {
1348  int refdist, scaleopp;
1349  int hpel = 1 - v->s.quarter_sample;
1350 
1351  n >>= hpel;
1352  if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
1353  if (dim)
1354  n = scaleforopp_y(v, n, dir) << hpel;
1355  else
1356  n = scaleforopp_x(v, n) << hpel;
1357  return n;
1358  }
1359  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1360  refdist = FFMIN(v->refdist, 3);
1361  else
1362  refdist = dir ? v->brfd : v->frfd;
1363  scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
1364 
1365  n = (n * scaleopp >> 8) << hpel;
1366  return n;
1367 }
1368 
1369 /** Predict and set motion vector
1370  */
1371 static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
1372  int mv1, int r_x, int r_y, uint8_t* is_intra,
1373  int pred_flag, int dir)
1374 {
1375  MpegEncContext *s = &v->s;
1376  int xy, wrap, off = 0;
1377  int16_t *A, *B, *C;
1378  int px, py;
1379  int sum;
1380  int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
1381  int opposite, a_f, b_f, c_f;
1382  int16_t field_predA[2];
1383  int16_t field_predB[2];
1384  int16_t field_predC[2];
1385  int a_valid, b_valid, c_valid;
1386  int hybridmv_thresh, y_bias = 0;
1387 
1388  if (v->mv_mode == MV_PMODE_MIXED_MV ||
1390  mixedmv_pic = 1;
1391  else
1392  mixedmv_pic = 0;
1393  /* scale MV difference to be quad-pel */
1394  dmv_x <<= 1 - s->quarter_sample;
1395  dmv_y <<= 1 - s->quarter_sample;
1396 
1397  wrap = s->b8_stride;
1398  xy = s->block_index[n];
1399 
1400  if (s->mb_intra) {
1401  s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = 0;
1402  s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = 0;
1403  s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = 0;
1404  s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
1405  if (mv1) { /* duplicate motion data for 1-MV block */
1406  s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
1407  s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
1408  s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
1409  s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
1410  s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
1411  s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
1412  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1413  s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
1414  s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
1415  s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1416  s->current_picture.f.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
1417  s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
1418  s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
1419  }
1420  return;
1421  }
1422 
1423  C = s->current_picture.f.motion_val[dir][xy - 1 + v->blocks_off];
1424  A = s->current_picture.f.motion_val[dir][xy - wrap + v->blocks_off];
1425  if (mv1) {
1426  if (v->field_mode && mixedmv_pic)
1427  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1428  else
1429  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1430  } else {
1431  //in 4-MV mode different blocks have different B predictor position
1432  switch (n) {
1433  case 0:
1434  off = (s->mb_x > 0) ? -1 : 1;
1435  break;
1436  case 1:
1437  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1438  break;
1439  case 2:
1440  off = 1;
1441  break;
1442  case 3:
1443  off = -1;
1444  }
1445  }
1446  B = s->current_picture.f.motion_val[dir][xy - wrap + off + v->blocks_off];
1447 
1448  a_valid = !s->first_slice_line || (n == 2 || n == 3);
1449  b_valid = a_valid && (s->mb_width > 1);
1450  c_valid = s->mb_x || (n == 1 || n == 3);
1451  if (v->field_mode) {
1452  a_valid = a_valid && !is_intra[xy - wrap];
1453  b_valid = b_valid && !is_intra[xy - wrap + off];
1454  c_valid = c_valid && !is_intra[xy - 1];
1455  }
1456 
1457  if (a_valid) {
1458  a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
1459  num_oppfield += a_f;
1460  num_samefield += 1 - a_f;
1461  field_predA[0] = A[0];
1462  field_predA[1] = A[1];
1463  } else {
1464  field_predA[0] = field_predA[1] = 0;
1465  a_f = 0;
1466  }
1467  if (b_valid) {
1468  b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
1469  num_oppfield += b_f;
1470  num_samefield += 1 - b_f;
1471  field_predB[0] = B[0];
1472  field_predB[1] = B[1];
1473  } else {
1474  field_predB[0] = field_predB[1] = 0;
1475  b_f = 0;
1476  }
1477  if (c_valid) {
1478  c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
1479  num_oppfield += c_f;
1480  num_samefield += 1 - c_f;
1481  field_predC[0] = C[0];
1482  field_predC[1] = C[1];
1483  } else {
1484  field_predC[0] = field_predC[1] = 0;
1485  c_f = 0;
1486  }
1487 
1488  if (v->field_mode) {
1489  if (!v->numref)
1490  // REFFIELD determines if the last field or the second-last field is
1491  // to be used as reference
1492  opposite = 1 - v->reffield;
1493  else {
1494  if (num_samefield <= num_oppfield)
1495  opposite = 1 - pred_flag;
1496  else
1497  opposite = pred_flag;
1498  }
1499  } else
1500  opposite = 0;
1501  if (opposite) {
1502  if (a_valid && !a_f) {
1503  field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
1504  field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
1505  }
1506  if (b_valid && !b_f) {
1507  field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
1508  field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
1509  }
1510  if (c_valid && !c_f) {
1511  field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
1512  field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
1513  }
1514  v->mv_f[dir][xy + v->blocks_off] = 1;
1515  v->ref_field_type[dir] = !v->cur_field_type;
1516  } else {
1517  if (a_valid && a_f) {
1518  field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
1519  field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
1520  }
1521  if (b_valid && b_f) {
1522  field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
1523  field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
1524  }
1525  if (c_valid && c_f) {
1526  field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
1527  field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
1528  }
1529  v->mv_f[dir][xy + v->blocks_off] = 0;
1530  v->ref_field_type[dir] = v->cur_field_type;
1531  }
1532 
1533  if (a_valid) {
1534  px = field_predA[0];
1535  py = field_predA[1];
1536  } else if (c_valid) {
1537  px = field_predC[0];
1538  py = field_predC[1];
1539  } else if (b_valid) {
1540  px = field_predB[0];
1541  py = field_predB[1];
1542  } else {
1543  px = 0;
1544  py = 0;
1545  }
1546 
1547  if (num_samefield + num_oppfield > 1) {
1548  px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
1549  py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
1550  }
1551 
1552  /* Pullback MV as specified in 8.3.5.3.4 */
1553  if (!v->field_mode) {
1554  int qx, qy, X, Y;
1555  qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
1556  qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
1557  X = (s->mb_width << 6) - 4;
1558  Y = (s->mb_height << 6) - 4;
1559  if (mv1) {
1560  if (qx + px < -60) px = -60 - qx;
1561  if (qy + py < -60) py = -60 - qy;
1562  } else {
1563  if (qx + px < -28) px = -28 - qx;
1564  if (qy + py < -28) py = -28 - qy;
1565  }
1566  if (qx + px > X) px = X - qx;
1567  if (qy + py > Y) py = Y - qy;
1568  }
1569 
1570  if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
1571  /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
1572  hybridmv_thresh = 32;
1573  if (a_valid && c_valid) {
1574  if (is_intra[xy - wrap])
1575  sum = FFABS(px) + FFABS(py);
1576  else
1577  sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
1578  if (sum > hybridmv_thresh) {
1579  if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
1580  px = field_predA[0];
1581  py = field_predA[1];
1582  } else {
1583  px = field_predC[0];
1584  py = field_predC[1];
1585  }
1586  } else {
1587  if (is_intra[xy - 1])
1588  sum = FFABS(px) + FFABS(py);
1589  else
1590  sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
1591  if (sum > hybridmv_thresh) {
1592  if (get_bits1(&s->gb)) {
1593  px = field_predA[0];
1594  py = field_predA[1];
1595  } else {
1596  px = field_predC[0];
1597  py = field_predC[1];
1598  }
1599  }
1600  }
1601  }
1602  }
1603 
1604  if (v->field_mode && v->numref)
1605  r_y >>= 1;
1606  if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
1607  y_bias = 1;
1608  /* store MV using signed modulus of MV range defined in 4.11 */
1609  s->mv[dir][n][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1610  s->mv[dir][n][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
1611  if (mv1) { /* duplicate motion data for 1-MV block */
1612  s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1613  s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1614  s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1615  s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1616  s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1617  s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1618  v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1619  v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1620  }
1621 }
1622 
1623 /** Predict and set motion vector for interlaced frame picture MBs
1624  */
1625 static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
1626  int mvn, int r_x, int r_y, uint8_t* is_intra)
1627 {
1628  MpegEncContext *s = &v->s;
1629  int xy, wrap, off = 0;
1630  int A[2], B[2], C[2];
1631  int px, py;
1632  int a_valid = 0, b_valid = 0, c_valid = 0;
1633  int field_a, field_b, field_c; // 0: same, 1: opposit
1634  int total_valid, num_samefield, num_oppfield;
1635  int pos_c, pos_b, n_adj;
1636 
1637  wrap = s->b8_stride;
1638  xy = s->block_index[n];
1639 
1640  if (s->mb_intra) {
1641  s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = 0;
1642  s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = 0;
1643  s->current_picture.f.motion_val[1][xy][0] = 0;
1644  s->current_picture.f.motion_val[1][xy][1] = 0;
1645  if (mvn == 1) { /* duplicate motion data for 1-MV block */
1646  s->current_picture.f.motion_val[0][xy + 1][0] = 0;
1647  s->current_picture.f.motion_val[0][xy + 1][1] = 0;
1648  s->current_picture.f.motion_val[0][xy + wrap][0] = 0;
1649  s->current_picture.f.motion_val[0][xy + wrap][1] = 0;
1650  s->current_picture.f.motion_val[0][xy + wrap + 1][0] = 0;
1651  s->current_picture.f.motion_val[0][xy + wrap + 1][1] = 0;
1652  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1653  s->current_picture.f.motion_val[1][xy + 1][0] = 0;
1654  s->current_picture.f.motion_val[1][xy + 1][1] = 0;
1655  s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1656  s->current_picture.f.motion_val[1][xy + wrap][1] = 0;
1657  s->current_picture.f.motion_val[1][xy + wrap + 1][0] = 0;
1658  s->current_picture.f.motion_val[1][xy + wrap + 1][1] = 0;
1659  }
1660  return;
1661  }
1662 
1663  off = ((n == 0) || (n == 1)) ? 1 : -1;
1664  /* predict A */
1665  if (s->mb_x || (n == 1) || (n == 3)) {
1666  if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
1667  || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
1668  A[0] = s->current_picture.f.motion_val[0][xy - 1][0];
1669  A[1] = s->current_picture.f.motion_val[0][xy - 1][1];
1670  a_valid = 1;
1671  } else { // current block has frame mv and cand. has field MV (so average)
1672  A[0] = (s->current_picture.f.motion_val[0][xy - 1][0]
1673  + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][0] + 1) >> 1;
1674  A[1] = (s->current_picture.f.motion_val[0][xy - 1][1]
1675  + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][1] + 1) >> 1;
1676  a_valid = 1;
1677  }
1678  if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
1679  a_valid = 0;
1680  A[0] = A[1] = 0;
1681  }
1682  } else
1683  A[0] = A[1] = 0;
1684  /* Predict B and C */
1685  B[0] = B[1] = C[0] = C[1] = 0;
1686  if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
1687  if (!s->first_slice_line) {
1688  if (!v->is_intra[s->mb_x - s->mb_stride]) {
1689  b_valid = 1;
1690  n_adj = n | 2;
1691  pos_b = s->block_index[n_adj] - 2 * wrap;
1692  if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
1693  n_adj = (n & 2) | (n & 1);
1694  }
1695  B[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][0];
1696  B[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][1];
1697  if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
1698  B[0] = (B[0] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
1699  B[1] = (B[1] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
1700  }
1701  }
1702  if (s->mb_width > 1) {
1703  if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
1704  c_valid = 1;
1705  n_adj = 2;
1706  pos_c = s->block_index[2] - 2 * wrap + 2;
1707  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1708  n_adj = n & 2;
1709  }
1710  C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][0];
1711  C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][1];
1712  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1713  C[0] = (1 + C[0] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
1714  C[1] = (1 + C[1] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
1715  }
1716  if (s->mb_x == s->mb_width - 1) {
1717  if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
1718  c_valid = 1;
1719  n_adj = 3;
1720  pos_c = s->block_index[3] - 2 * wrap - 2;
1721  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1722  n_adj = n | 1;
1723  }
1724  C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][0];
1725  C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][1];
1726  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1727  C[0] = (1 + C[0] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
1728  C[1] = (1 + C[1] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
1729  }
1730  } else
1731  c_valid = 0;
1732  }
1733  }
1734  }
1735  }
1736  } else {
1737  pos_b = s->block_index[1];
1738  b_valid = 1;
1739  B[0] = s->current_picture.f.motion_val[0][pos_b][0];
1740  B[1] = s->current_picture.f.motion_val[0][pos_b][1];
1741  pos_c = s->block_index[0];
1742  c_valid = 1;
1743  C[0] = s->current_picture.f.motion_val[0][pos_c][0];
1744  C[1] = s->current_picture.f.motion_val[0][pos_c][1];
1745  }
1746 
1747  total_valid = a_valid + b_valid + c_valid;
1748  // check if predictor A is out of bounds
1749  if (!s->mb_x && !(n == 1 || n == 3)) {
1750  A[0] = A[1] = 0;
1751  }
1752  // check if predictor B is out of bounds
1753  if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
1754  B[0] = B[1] = C[0] = C[1] = 0;
1755  }
1756  if (!v->blk_mv_type[xy]) {
1757  if (s->mb_width == 1) {
1758  px = B[0];
1759  py = B[1];
1760  } else {
1761  if (total_valid >= 2) {
1762  px = mid_pred(A[0], B[0], C[0]);
1763  py = mid_pred(A[1], B[1], C[1]);
1764  } else if (total_valid) {
1765  if (a_valid) { px = A[0]; py = A[1]; }
1766  else if (b_valid) { px = B[0]; py = B[1]; }
1767  else if (c_valid) { px = C[0]; py = C[1]; }
1768  else av_assert2(0);
1769  } else
1770  px = py = 0;
1771  }
1772  } else {
1773  if (a_valid)
1774  field_a = (A[1] & 4) ? 1 : 0;
1775  else
1776  field_a = 0;
1777  if (b_valid)
1778  field_b = (B[1] & 4) ? 1 : 0;
1779  else
1780  field_b = 0;
1781  if (c_valid)
1782  field_c = (C[1] & 4) ? 1 : 0;
1783  else
1784  field_c = 0;
1785 
1786  num_oppfield = field_a + field_b + field_c;
1787  num_samefield = total_valid - num_oppfield;
1788  if (total_valid == 3) {
1789  if ((num_samefield == 3) || (num_oppfield == 3)) {
1790  px = mid_pred(A[0], B[0], C[0]);
1791  py = mid_pred(A[1], B[1], C[1]);
1792  } else if (num_samefield >= num_oppfield) {
1793  /* take one MV from same field set depending on priority
1794  the check for B may not be necessary */
1795  px = !field_a ? A[0] : B[0];
1796  py = !field_a ? A[1] : B[1];
1797  } else {
1798  px = field_a ? A[0] : B[0];
1799  py = field_a ? A[1] : B[1];
1800  }
1801  } else if (total_valid == 2) {
1802  if (num_samefield >= num_oppfield) {
1803  if (!field_a && a_valid) {
1804  px = A[0];
1805  py = A[1];
1806  } else if (!field_b && b_valid) {
1807  px = B[0];
1808  py = B[1];
1809  } else if (c_valid) {
1810  px = C[0];
1811  py = C[1];
1812  } else px = py = 0;
1813  } else {
1814  if (field_a && a_valid) {
1815  px = A[0];
1816  py = A[1];
1817  } else if (field_b && b_valid) {
1818  px = B[0];
1819  py = B[1];
1820  } else if (c_valid) {
1821  px = C[0];
1822  py = C[1];
1823  } else px = py = 0;
1824  }
1825  } else if (total_valid == 1) {
1826  px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
1827  py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
1828  } else
1829  px = py = 0;
1830  }
1831 
1832  /* store MV using signed modulus of MV range defined in 4.11 */
1833  s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1834  s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1835  if (mvn == 1) { /* duplicate motion data for 1-MV block */
1836  s->current_picture.f.motion_val[0][xy + 1 ][0] = s->current_picture.f.motion_val[0][xy][0];
1837  s->current_picture.f.motion_val[0][xy + 1 ][1] = s->current_picture.f.motion_val[0][xy][1];
1838  s->current_picture.f.motion_val[0][xy + wrap ][0] = s->current_picture.f.motion_val[0][xy][0];
1839  s->current_picture.f.motion_val[0][xy + wrap ][1] = s->current_picture.f.motion_val[0][xy][1];
1840  s->current_picture.f.motion_val[0][xy + wrap + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1841  s->current_picture.f.motion_val[0][xy + wrap + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1842  } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
1843  s->current_picture.f.motion_val[0][xy + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1844  s->current_picture.f.motion_val[0][xy + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1845  s->mv[0][n + 1][0] = s->mv[0][n][0];
1846  s->mv[0][n + 1][1] = s->mv[0][n][1];
1847  }
1848 }
1849 
1850 /** Motion compensation for direct or interpolated blocks in B-frames
1851  */
1853 {
1854  MpegEncContext *s = &v->s;
1855  DSPContext *dsp = &v->s.dsp;
1856  H264ChromaContext *h264chroma = &v->h264chroma;
1857  uint8_t *srcY, *srcU, *srcV;
1858  int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1859  int off, off_uv;
1860  int v_edge_pos = s->v_edge_pos >> v->field_mode;
1861 
1862  if (!v->field_mode && !v->s.next_picture.f.data[0])
1863  return;
1864 
1865  mx = s->mv[1][0][0];
1866  my = s->mv[1][0][1];
1867  uvmx = (mx + ((mx & 3) == 3)) >> 1;
1868  uvmy = (my + ((my & 3) == 3)) >> 1;
1869  if (v->field_mode) {
1870  if (v->cur_field_type != v->ref_field_type[1])
1871  my = my - 2 + 4 * v->cur_field_type;
1872  uvmy = uvmy - 2 + 4 * v->cur_field_type;
1873  }
1874  if (v->fastuvmc) {
1875  uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
1876  uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
1877  }
1878  srcY = s->next_picture.f.data[0];
1879  srcU = s->next_picture.f.data[1];
1880  srcV = s->next_picture.f.data[2];
1881 
1882  src_x = s->mb_x * 16 + (mx >> 2);
1883  src_y = s->mb_y * 16 + (my >> 2);
1884  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1885  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1886 
1887  if (v->profile != PROFILE_ADVANCED) {
1888  src_x = av_clip( src_x, -16, s->mb_width * 16);
1889  src_y = av_clip( src_y, -16, s->mb_height * 16);
1890  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1891  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1892  } else {
1893  src_x = av_clip( src_x, -17, s->avctx->coded_width);
1894  src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1895  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1896  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1897  }
1898 
1899  srcY += src_y * s->linesize + src_x;
1900  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1901  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1902 
1903  if (v->field_mode && v->ref_field_type[1]) {
1904  srcY += s->current_picture_ptr->f.linesize[0];
1905  srcU += s->current_picture_ptr->f.linesize[1];
1906  srcV += s->current_picture_ptr->f.linesize[2];
1907  }
1908 
1909  /* for grayscale we should not try to read from unknown area */
1910  if (s->flags & CODEC_FLAG_GRAY) {
1911  srcU = s->edge_emu_buffer + 18 * s->linesize;
1912  srcV = s->edge_emu_buffer + 18 * s->linesize;
1913  }
1914 
1915  if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22
1916  || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
1917  || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
1918  uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
1919 
1920  srcY -= s->mspel * (1 + s->linesize);
1922  17 + s->mspel * 2, 17 + s->mspel * 2,
1923  src_x - s->mspel, src_y - s->mspel,
1924  s->h_edge_pos, v_edge_pos);
1925  srcY = s->edge_emu_buffer;
1926  s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
1927  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
1928  s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
1929  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
1930  srcU = uvbuf;
1931  srcV = uvbuf + 16;
1932  /* if we deal with range reduction we need to scale source blocks */
1933  if (v->rangeredfrm) {
1934  int i, j;
1935  uint8_t *src, *src2;
1936 
1937  src = srcY;
1938  for (j = 0; j < 17 + s->mspel * 2; j++) {
1939  for (i = 0; i < 17 + s->mspel * 2; i++)
1940  src[i] = ((src[i] - 128) >> 1) + 128;
1941  src += s->linesize;
1942  }
1943  src = srcU;
1944  src2 = srcV;
1945  for (j = 0; j < 9; j++) {
1946  for (i = 0; i < 9; i++) {
1947  src[i] = ((src[i] - 128) >> 1) + 128;
1948  src2[i] = ((src2[i] - 128) >> 1) + 128;
1949  }
1950  src += s->uvlinesize;
1951  src2 += s->uvlinesize;
1952  }
1953  }
1954  srcY += s->mspel * (1 + s->linesize);
1955  }
1956 
1957  off = 0;
1958  off_uv = 0;
1959 
1960  if (s->mspel) {
1961  dxy = ((my & 3) << 2) | (mx & 3);
1962  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
1963  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
1964  srcY += s->linesize * 8;
1965  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
1966  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
1967  } else { // hpel mc
1968  dxy = (my & 2) | ((mx & 2) >> 1);
1969 
1970  if (!v->rnd)
1971  dsp->avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
1972  else
1973  dsp->avg_no_rnd_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, 16);
1974  }
1975 
1976  if (s->flags & CODEC_FLAG_GRAY) return;
1977  /* Chroma MC always uses qpel blilinear */
1978  uvmx = (uvmx & 3) << 1;
1979  uvmy = (uvmy & 3) << 1;
1980  if (!v->rnd) {
1981  h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
1982  h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
1983  } else {
1984  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
1985  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
1986  }
1987 }
1988 
1989 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1990 {
1991  int n = bfrac;
1992 
1993 #if B_FRACTION_DEN==256
1994  if (inv)
1995  n -= 256;
1996  if (!qs)
1997  return 2 * ((value * n + 255) >> 9);
1998  return (value * n + 128) >> 8;
1999 #else
2000  if (inv)
2001  n -= B_FRACTION_DEN;
2002  if (!qs)
2003  return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
2004  return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
2005 #endif
2006 }
2007 
2008 /** Reconstruct motion vector for B-frame and do motion compensation
2009  */
2010 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
2011  int direct, int mode)
2012 {
2013  if (v->use_ic) {
2014  v->mv_mode2 = v->mv_mode;
2016  }
2017  if (direct) {
2018  vc1_mc_1mv(v, 0);
2019  vc1_interp_mc(v);
2020  if (v->use_ic)
2021  v->mv_mode = v->mv_mode2;
2022  return;
2023  }
2024  if (mode == BMV_TYPE_INTERPOLATED) {
2025  vc1_mc_1mv(v, 0);
2026  vc1_interp_mc(v);
2027  if (v->use_ic)
2028  v->mv_mode = v->mv_mode2;
2029  return;
2030  }
2031 
2032  if (v->use_ic && (mode == BMV_TYPE_BACKWARD))
2033  v->mv_mode = v->mv_mode2;
2034  vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
2035  if (v->use_ic)
2036  v->mv_mode = v->mv_mode2;
2037 }
2038 
2039 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
2040  int direct, int mvtype)
2041 {
2042  MpegEncContext *s = &v->s;
2043  int xy, wrap, off = 0;
2044  int16_t *A, *B, *C;
2045  int px, py;
2046  int sum;
2047  int r_x, r_y;
2048  const uint8_t *is_intra = v->mb_type[0];
2049 
2050  r_x = v->range_x;
2051  r_y = v->range_y;
2052  /* scale MV difference to be quad-pel */
2053  dmv_x[0] <<= 1 - s->quarter_sample;
2054  dmv_y[0] <<= 1 - s->quarter_sample;
2055  dmv_x[1] <<= 1 - s->quarter_sample;
2056  dmv_y[1] <<= 1 - s->quarter_sample;
2057 
2058  wrap = s->b8_stride;
2059  xy = s->block_index[0];
2060 
2061  if (s->mb_intra) {
2062  s->current_picture.f.motion_val[0][xy + v->blocks_off][0] =
2063  s->current_picture.f.motion_val[0][xy + v->blocks_off][1] =
2064  s->current_picture.f.motion_val[1][xy + v->blocks_off][0] =
2065  s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
2066  return;
2067  }
2068  if (!v->field_mode) {
2069  s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
2070  s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
2071  s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
2072  s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
2073 
2074  /* Pullback predicted motion vectors as specified in 8.4.5.4 */
2075  s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2076  s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2077  s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2078  s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2079  }
2080  if (direct) {
2081  s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
2082  s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
2083  s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
2084  s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
2085  return;
2086  }
2087 
2088  if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2089  C = s->current_picture.f.motion_val[0][xy - 2];
2090  A = s->current_picture.f.motion_val[0][xy - wrap * 2];
2091  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2092  B = s->current_picture.f.motion_val[0][xy - wrap * 2 + off];
2093 
2094  if (!s->mb_x) C[0] = C[1] = 0;
2095  if (!s->first_slice_line) { // predictor A is not out of bounds
2096  if (s->mb_width == 1) {
2097  px = A[0];
2098  py = A[1];
2099  } else {
2100  px = mid_pred(A[0], B[0], C[0]);
2101  py = mid_pred(A[1], B[1], C[1]);
2102  }
2103  } else if (s->mb_x) { // predictor C is not out of bounds
2104  px = C[0];
2105  py = C[1];
2106  } else {
2107  px = py = 0;
2108  }
2109  /* Pullback MV as specified in 8.3.5.3.4 */
2110  {
2111  int qx, qy, X, Y;
2112  if (v->profile < PROFILE_ADVANCED) {
2113  qx = (s->mb_x << 5);
2114  qy = (s->mb_y << 5);
2115  X = (s->mb_width << 5) - 4;
2116  Y = (s->mb_height << 5) - 4;
2117  if (qx + px < -28) px = -28 - qx;
2118  if (qy + py < -28) py = -28 - qy;
2119  if (qx + px > X) px = X - qx;
2120  if (qy + py > Y) py = Y - qy;
2121  } else {
2122  qx = (s->mb_x << 6);
2123  qy = (s->mb_y << 6);
2124  X = (s->mb_width << 6) - 4;
2125  Y = (s->mb_height << 6) - 4;
2126  if (qx + px < -60) px = -60 - qx;
2127  if (qy + py < -60) py = -60 - qy;
2128  if (qx + px > X) px = X - qx;
2129  if (qy + py > Y) py = Y - qy;
2130  }
2131  }
2132  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2133  if (0 && !s->first_slice_line && s->mb_x) {
2134  if (is_intra[xy - wrap])
2135  sum = FFABS(px) + FFABS(py);
2136  else
2137  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2138  if (sum > 32) {
2139  if (get_bits1(&s->gb)) {
2140  px = A[0];
2141  py = A[1];
2142  } else {
2143  px = C[0];
2144  py = C[1];
2145  }
2146  } else {
2147  if (is_intra[xy - 2])
2148  sum = FFABS(px) + FFABS(py);
2149  else
2150  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2151  if (sum > 32) {
2152  if (get_bits1(&s->gb)) {
2153  px = A[0];
2154  py = A[1];
2155  } else {
2156  px = C[0];
2157  py = C[1];
2158  }
2159  }
2160  }
2161  }
2162  /* store MV using signed modulus of MV range defined in 4.11 */
2163  s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2164  s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2165  }
2166  if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2167  C = s->current_picture.f.motion_val[1][xy - 2];
2168  A = s->current_picture.f.motion_val[1][xy - wrap * 2];
2169  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2170  B = s->current_picture.f.motion_val[1][xy - wrap * 2 + off];
2171 
2172  if (!s->mb_x)
2173  C[0] = C[1] = 0;
2174  if (!s->first_slice_line) { // predictor A is not out of bounds
2175  if (s->mb_width == 1) {
2176  px = A[0];
2177  py = A[1];
2178  } else {
2179  px = mid_pred(A[0], B[0], C[0]);
2180  py = mid_pred(A[1], B[1], C[1]);
2181  }
2182  } else if (s->mb_x) { // predictor C is not out of bounds
2183  px = C[0];
2184  py = C[1];
2185  } else {
2186  px = py = 0;
2187  }
2188  /* Pullback MV as specified in 8.3.5.3.4 */
2189  {
2190  int qx, qy, X, Y;
2191  if (v->profile < PROFILE_ADVANCED) {
2192  qx = (s->mb_x << 5);
2193  qy = (s->mb_y << 5);
2194  X = (s->mb_width << 5) - 4;
2195  Y = (s->mb_height << 5) - 4;
2196  if (qx + px < -28) px = -28 - qx;
2197  if (qy + py < -28) py = -28 - qy;
2198  if (qx + px > X) px = X - qx;
2199  if (qy + py > Y) py = Y - qy;
2200  } else {
2201  qx = (s->mb_x << 6);
2202  qy = (s->mb_y << 6);
2203  X = (s->mb_width << 6) - 4;
2204  Y = (s->mb_height << 6) - 4;
2205  if (qx + px < -60) px = -60 - qx;
2206  if (qy + py < -60) py = -60 - qy;
2207  if (qx + px > X) px = X - qx;
2208  if (qy + py > Y) py = Y - qy;
2209  }
2210  }
2211  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2212  if (0 && !s->first_slice_line && s->mb_x) {
2213  if (is_intra[xy - wrap])
2214  sum = FFABS(px) + FFABS(py);
2215  else
2216  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2217  if (sum > 32) {
2218  if (get_bits1(&s->gb)) {
2219  px = A[0];
2220  py = A[1];
2221  } else {
2222  px = C[0];
2223  py = C[1];
2224  }
2225  } else {
2226  if (is_intra[xy - 2])
2227  sum = FFABS(px) + FFABS(py);
2228  else
2229  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2230  if (sum > 32) {
2231  if (get_bits1(&s->gb)) {
2232  px = A[0];
2233  py = A[1];
2234  } else {
2235  px = C[0];
2236  py = C[1];
2237  }
2238  }
2239  }
2240  }
2241  /* store MV using signed modulus of MV range defined in 4.11 */
2242 
2243  s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2244  s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2245  }
2246  s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
2247  s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
2248  s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
2249  s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
2250 }
2251 
2252 static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
2253 {
2254  int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
2255  MpegEncContext *s = &v->s;
2256  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2257 
2258  if (v->bmvtype == BMV_TYPE_DIRECT) {
2259  int total_opp, k, f;
2260  if (s->next_picture.f.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
2261  s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2262  v->bfraction, 0, s->quarter_sample);
2263  s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2264  v->bfraction, 0, s->quarter_sample);
2265  s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2266  v->bfraction, 1, s->quarter_sample);
2267  s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2268  v->bfraction, 1, s->quarter_sample);
2269 
2270  total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
2271  + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
2272  + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
2273  + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
2274  f = (total_opp > 2) ? 1 : 0;
2275  } else {
2276  s->mv[0][0][0] = s->mv[0][0][1] = 0;
2277  s->mv[1][0][0] = s->mv[1][0][1] = 0;
2278  f = 0;
2279  }
2280  v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
2281  for (k = 0; k < 4; k++) {
2282  s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
2283  s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
2284  s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
2285  s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
2286  v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
2287  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
2288  }
2289  return;
2290  }
2291  if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
2292  vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2293  vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2294  return;
2295  }
2296  if (dir) { // backward
2297  vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2298  if (n == 3 || mv1) {
2299  vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
2300  }
2301  } else { // forward
2302  vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2303  if (n == 3 || mv1) {
2304  vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
2305  }
2306  }
2307 }
2308 
2309 /** Get predicted DC value for I-frames only
2310  * prediction dir: left=0, top=1
2311  * @param s MpegEncContext
2312  * @param overlap flag indicating that overlap filtering is used
2313  * @param pq integer part of picture quantizer
2314  * @param[in] n block index in the current MB
2315  * @param dc_val_ptr Pointer to DC predictor
2316  * @param dir_ptr Prediction direction for use in AC prediction
2317  */
2318 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2319  int16_t **dc_val_ptr, int *dir_ptr)
2320 {
2321  int a, b, c, wrap, pred, scale;
2322  int16_t *dc_val;
2323  static const uint16_t dcpred[32] = {
2324  -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2325  114, 102, 93, 85, 79, 73, 68, 64,
2326  60, 57, 54, 51, 49, 47, 45, 43,
2327  41, 39, 38, 37, 35, 34, 33
2328  };
2329 
2330  /* find prediction - wmv3_dc_scale always used here in fact */
2331  if (n < 4) scale = s->y_dc_scale;
2332  else scale = s->c_dc_scale;
2333 
2334  wrap = s->block_wrap[n];
2335  dc_val = s->dc_val[0] + s->block_index[n];
2336 
2337  /* B A
2338  * C X
2339  */
2340  c = dc_val[ - 1];
2341  b = dc_val[ - 1 - wrap];
2342  a = dc_val[ - wrap];
2343 
2344  if (pq < 9 || !overlap) {
2345  /* Set outer values */
2346  if (s->first_slice_line && (n != 2 && n != 3))
2347  b = a = dcpred[scale];
2348  if (s->mb_x == 0 && (n != 1 && n != 3))
2349  b = c = dcpred[scale];
2350  } else {
2351  /* Set outer values */
2352  if (s->first_slice_line && (n != 2 && n != 3))
2353  b = a = 0;
2354  if (s->mb_x == 0 && (n != 1 && n != 3))
2355  b = c = 0;
2356  }
2357 
2358  if (abs(a - b) <= abs(b - c)) {
2359  pred = c;
2360  *dir_ptr = 1; // left
2361  } else {
2362  pred = a;
2363  *dir_ptr = 0; // top
2364  }
2365 
2366  /* update predictor */
2367  *dc_val_ptr = &dc_val[0];
2368  return pred;
2369 }
2370 
2371 
2372 /** Get predicted DC value
2373  * prediction dir: left=0, top=1
2374  * @param s MpegEncContext
2375  * @param overlap flag indicating that overlap filtering is used
2376  * @param pq integer part of picture quantizer
2377  * @param[in] n block index in the current MB
2378  * @param a_avail flag indicating top block availability
2379  * @param c_avail flag indicating left block availability
2380  * @param dc_val_ptr Pointer to DC predictor
2381  * @param dir_ptr Prediction direction for use in AC prediction
2382  */
2383 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2384  int a_avail, int c_avail,
2385  int16_t **dc_val_ptr, int *dir_ptr)
2386 {
2387  int a, b, c, wrap, pred;
2388  int16_t *dc_val;
2389  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2390  int q1, q2 = 0;
2391  int dqscale_index;
2392 
2393  wrap = s->block_wrap[n];
2394  dc_val = s->dc_val[0] + s->block_index[n];
2395 
2396  /* B A
2397  * C X
2398  */
2399  c = dc_val[ - 1];
2400  b = dc_val[ - 1 - wrap];
2401  a = dc_val[ - wrap];
2402  /* scale predictors if needed */
2403  q1 = s->current_picture.f.qscale_table[mb_pos];
2404  dqscale_index = s->y_dc_scale_table[q1] - 1;
2405  if (dqscale_index < 0)
2406  return 0;
2407  if (c_avail && (n != 1 && n != 3)) {
2408  q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2409  if (q2 && q2 != q1)
2410  c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2411  }
2412  if (a_avail && (n != 2 && n != 3)) {
2413  q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2414  if (q2 && q2 != q1)
2415  a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2416  }
2417  if (a_avail && c_avail && (n != 3)) {
2418  int off = mb_pos;
2419  if (n != 1)
2420  off--;
2421  if (n != 2)
2422  off -= s->mb_stride;
2423  q2 = s->current_picture.f.qscale_table[off];
2424  if (q2 && q2 != q1)
2425  b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2426  }
2427 
2428  if (a_avail && c_avail) {
2429  if (abs(a - b) <= abs(b - c)) {
2430  pred = c;
2431  *dir_ptr = 1; // left
2432  } else {
2433  pred = a;
2434  *dir_ptr = 0; // top
2435  }
2436  } else if (a_avail) {
2437  pred = a;
2438  *dir_ptr = 0; // top
2439  } else if (c_avail) {
2440  pred = c;
2441  *dir_ptr = 1; // left
2442  } else {
2443  pred = 0;
2444  *dir_ptr = 1; // left
2445  }
2446 
2447  /* update predictor */
2448  *dc_val_ptr = &dc_val[0];
2449  return pred;
2450 }
2451 
2452 /** @} */ // Block group
2453 
2454 /**
2455  * @name VC1 Macroblock-level functions in Simple/Main Profiles
2456  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2457  * @{
2458  */
2459 
2460 static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
2461  uint8_t **coded_block_ptr)
2462 {
2463  int xy, wrap, pred, a, b, c;
2464 
2465  xy = s->block_index[n];
2466  wrap = s->b8_stride;
2467 
2468  /* B C
2469  * A X
2470  */
2471  a = s->coded_block[xy - 1 ];
2472  b = s->coded_block[xy - 1 - wrap];
2473  c = s->coded_block[xy - wrap];
2474 
2475  if (b == c) {
2476  pred = a;
2477  } else {
2478  pred = c;
2479  }
2480 
2481  /* store value */
2482  *coded_block_ptr = &s->coded_block[xy];
2483 
2484  return pred;
2485 }
2486 
2487 /**
2488  * Decode one AC coefficient
2489  * @param v The VC1 context
2490  * @param last Last coefficient
2491  * @param skip How much zero coefficients to skip
2492  * @param value Decoded AC coefficient value
2493  * @param codingset set of VLC to decode data
2494  * @see 8.1.3.4
2495  */
2496 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
2497  int *value, int codingset)
2498 {
2499  GetBitContext *gb = &v->s.gb;
2500  int index, escape, run = 0, level = 0, lst = 0;
2501 
2502  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2503  if (index != ff_vc1_ac_sizes[codingset] - 1) {
2504  run = vc1_index_decode_table[codingset][index][0];
2505  level = vc1_index_decode_table[codingset][index][1];
2506  lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
2507  if (get_bits1(gb))
2508  level = -level;
2509  } else {
2510  escape = decode210(gb);
2511  if (escape != 2) {
2512  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2513  run = vc1_index_decode_table[codingset][index][0];
2514  level = vc1_index_decode_table[codingset][index][1];
2515  lst = index >= vc1_last_decode_table[codingset];
2516  if (escape == 0) {
2517  if (lst)
2518  level += vc1_last_delta_level_table[codingset][run];
2519  else
2520  level += vc1_delta_level_table[codingset][run];
2521  } else {
2522  if (lst)
2523  run += vc1_last_delta_run_table[codingset][level] + 1;
2524  else
2525  run += vc1_delta_run_table[codingset][level] + 1;
2526  }
2527  if (get_bits1(gb))
2528  level = -level;
2529  } else {
2530  int sign;
2531  lst = get_bits1(gb);
2532  if (v->s.esc3_level_length == 0) {
2533  if (v->pq < 8 || v->dquantfrm) { // table 59
2534  v->s.esc3_level_length = get_bits(gb, 3);
2535  if (!v->s.esc3_level_length)
2536  v->s.esc3_level_length = get_bits(gb, 2) + 8;
2537  } else { // table 60
2538  v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2539  }
2540  v->s.esc3_run_length = 3 + get_bits(gb, 2);
2541  }
2542  run = get_bits(gb, v->s.esc3_run_length);
2543  sign = get_bits1(gb);
2544  level = get_bits(gb, v->s.esc3_level_length);
2545  if (sign)
2546  level = -level;
2547  }
2548  }
2549 
2550  *last = lst;
2551  *skip = run;
2552  *value = level;
2553 }
2554 
2555 /** Decode intra block in intra frames - should be faster than decode_intra_block
2556  * @param v VC1Context
2557  * @param block block to decode
2558  * @param[in] n subblock index
2559  * @param coded are AC coeffs present or not
2560  * @param codingset set of VLC to decode data
2561  */
2562 static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
2563  int coded, int codingset)
2564 {
2565  GetBitContext *gb = &v->s.gb;
2566  MpegEncContext *s = &v->s;
2567  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2568  int i;
2569  int16_t *dc_val;
2570  int16_t *ac_val, *ac_val2;
2571  int dcdiff;
2572 
2573  /* Get DC differential */
2574  if (n < 4) {
2576  } else {
2578  }
2579  if (dcdiff < 0) {
2580  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2581  return -1;
2582  }
2583  if (dcdiff) {
2584  if (dcdiff == 119 /* ESC index value */) {
2585  /* TODO: Optimize */
2586  if (v->pq == 1) dcdiff = get_bits(gb, 10);
2587  else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2588  else dcdiff = get_bits(gb, 8);
2589  } else {
2590  if (v->pq == 1)
2591  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2592  else if (v->pq == 2)
2593  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2594  }
2595  if (get_bits1(gb))
2596  dcdiff = -dcdiff;
2597  }
2598 
2599  /* Prediction */
2600  dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2601  *dc_val = dcdiff;
2602 
2603  /* Store the quantized DC coeff, used for prediction */
2604  if (n < 4) {
2605  block[0] = dcdiff * s->y_dc_scale;
2606  } else {
2607  block[0] = dcdiff * s->c_dc_scale;
2608  }
2609  /* Skip ? */
2610  if (!coded) {
2611  goto not_coded;
2612  }
2613 
2614  // AC Decoding
2615  i = 1;
2616 
2617  {
2618  int last = 0, skip, value;
2619  const uint8_t *zz_table;
2620  int scale;
2621  int k;
2622 
2623  scale = v->pq * 2 + v->halfpq;
2624 
2625  if (v->s.ac_pred) {
2626  if (!dc_pred_dir)
2627  zz_table = v->zz_8x8[2];
2628  else
2629  zz_table = v->zz_8x8[3];
2630  } else
2631  zz_table = v->zz_8x8[1];
2632 
2633  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2634  ac_val2 = ac_val;
2635  if (dc_pred_dir) // left
2636  ac_val -= 16;
2637  else // top
2638  ac_val -= 16 * s->block_wrap[n];
2639 
2640  while (!last) {
2641  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2642  i += skip;
2643  if (i > 63)
2644  break;
2645  block[zz_table[i++]] = value;
2646  }
2647 
2648  /* apply AC prediction if needed */
2649  if (s->ac_pred) {
2650  if (dc_pred_dir) { // left
2651  for (k = 1; k < 8; k++)
2652  block[k << v->left_blk_sh] += ac_val[k];
2653  } else { // top
2654  for (k = 1; k < 8; k++)
2655  block[k << v->top_blk_sh] += ac_val[k + 8];
2656  }
2657  }
2658  /* save AC coeffs for further prediction */
2659  for (k = 1; k < 8; k++) {
2660  ac_val2[k] = block[k << v->left_blk_sh];
2661  ac_val2[k + 8] = block[k << v->top_blk_sh];
2662  }
2663 
2664  /* scale AC coeffs */
2665  for (k = 1; k < 64; k++)
2666  if (block[k]) {
2667  block[k] *= scale;
2668  if (!v->pquantizer)
2669  block[k] += (block[k] < 0) ? -v->pq : v->pq;
2670  }
2671 
2672  if (s->ac_pred) i = 63;
2673  }
2674 
2675 not_coded:
2676  if (!coded) {
2677  int k, scale;
2678  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2679  ac_val2 = ac_val;
2680 
2681  i = 0;
2682  scale = v->pq * 2 + v->halfpq;
2683  memset(ac_val2, 0, 16 * 2);
2684  if (dc_pred_dir) { // left
2685  ac_val -= 16;
2686  if (s->ac_pred)
2687  memcpy(ac_val2, ac_val, 8 * 2);
2688  } else { // top
2689  ac_val -= 16 * s->block_wrap[n];
2690  if (s->ac_pred)
2691  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2692  }
2693 
2694  /* apply AC prediction if needed */
2695  if (s->ac_pred) {
2696  if (dc_pred_dir) { //left
2697  for (k = 1; k < 8; k++) {
2698  block[k << v->left_blk_sh] = ac_val[k] * scale;
2699  if (!v->pquantizer && block[k << v->left_blk_sh])
2700  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
2701  }
2702  } else { // top
2703  for (k = 1; k < 8; k++) {
2704  block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
2705  if (!v->pquantizer && block[k << v->top_blk_sh])
2706  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
2707  }
2708  }
2709  i = 63;
2710  }
2711  }
2712  s->block_last_index[n] = i;
2713 
2714  return 0;
2715 }
2716 
2717 /** Decode intra block in intra frames - should be faster than decode_intra_block
2718  * @param v VC1Context
2719  * @param block block to decode
2720  * @param[in] n subblock number
2721  * @param coded are AC coeffs present or not
2722  * @param codingset set of VLC to decode data
2723  * @param mquant quantizer value for this macroblock
2724  */
2725 static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
2726  int coded, int codingset, int mquant)
2727 {
2728  GetBitContext *gb = &v->s.gb;
2729  MpegEncContext *s = &v->s;
2730  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2731  int i;
2732  int16_t *dc_val = NULL;
2733  int16_t *ac_val, *ac_val2;
2734  int dcdiff;
2735  int a_avail = v->a_avail, c_avail = v->c_avail;
2736  int use_pred = s->ac_pred;
2737  int scale;
2738  int q1, q2 = 0;
2739  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2740 
2741  /* Get DC differential */
2742  if (n < 4) {
2744  } else {
2746  }
2747  if (dcdiff < 0) {
2748  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2749  return -1;
2750  }
2751  if (dcdiff) {
2752  if (dcdiff == 119 /* ESC index value */) {
2753  /* TODO: Optimize */
2754  if (mquant == 1) dcdiff = get_bits(gb, 10);
2755  else if (mquant == 2) dcdiff = get_bits(gb, 9);
2756  else dcdiff = get_bits(gb, 8);
2757  } else {
2758  if (mquant == 1)
2759  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2760  else if (mquant == 2)
2761  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2762  }
2763  if (get_bits1(gb))
2764  dcdiff = -dcdiff;
2765  }
2766 
2767  /* Prediction */
2768  dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2769  *dc_val = dcdiff;
2770 
2771  /* Store the quantized DC coeff, used for prediction */
2772  if (n < 4) {
2773  block[0] = dcdiff * s->y_dc_scale;
2774  } else {
2775  block[0] = dcdiff * s->c_dc_scale;
2776  }
2777 
2778  //AC Decoding
2779  i = 1;
2780 
2781  /* check if AC is needed at all */
2782  if (!a_avail && !c_avail)
2783  use_pred = 0;
2784  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2785  ac_val2 = ac_val;
2786 
2787  scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2788 
2789  if (dc_pred_dir) // left
2790  ac_val -= 16;
2791  else // top
2792  ac_val -= 16 * s->block_wrap[n];
2793 
2794  q1 = s->current_picture.f.qscale_table[mb_pos];
2795  if ( dc_pred_dir && c_avail && mb_pos)
2796  q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2797  if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
2798  q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2799  if ( dc_pred_dir && n == 1)
2800  q2 = q1;
2801  if (!dc_pred_dir && n == 2)
2802  q2 = q1;
2803  if (n == 3)
2804  q2 = q1;
2805 
2806  if (coded) {
2807  int last = 0, skip, value;
2808  const uint8_t *zz_table;
2809  int k;
2810 
2811  if (v->s.ac_pred) {
2812  if (!use_pred && v->fcm == ILACE_FRAME) {
2813  zz_table = v->zzi_8x8;
2814  } else {
2815  if (!dc_pred_dir) // top
2816  zz_table = v->zz_8x8[2];
2817  else // left
2818  zz_table = v->zz_8x8[3];
2819  }
2820  } else {
2821  if (v->fcm != ILACE_FRAME)
2822  zz_table = v->zz_8x8[1];
2823  else
2824  zz_table = v->zzi_8x8;
2825  }
2826 
2827  while (!last) {
2828  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2829  i += skip;
2830  if (i > 63)
2831  break;
2832  block[zz_table[i++]] = value;
2833  }
2834 
2835  /* apply AC prediction if needed */
2836  if (use_pred) {
2837  /* scale predictors if needed*/
2838  if (q2 && q1 != q2) {
2839  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2840  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2841 
2842  if (q1 < 1)
2843  return AVERROR_INVALIDDATA;
2844  if (dc_pred_dir) { // left
2845  for (k = 1; k < 8; k++)
2846  block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2847  } else { // top
2848  for (k = 1; k < 8; k++)
2849  block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2850  }
2851  } else {
2852  if (dc_pred_dir) { //left
2853  for (k = 1; k < 8; k++)
2854  block[k << v->left_blk_sh] += ac_val[k];
2855  } else { //top
2856  for (k = 1; k < 8; k++)
2857  block[k << v->top_blk_sh] += ac_val[k + 8];
2858  }
2859  }
2860  }
2861  /* save AC coeffs for further prediction */
2862  for (k = 1; k < 8; k++) {
2863  ac_val2[k ] = block[k << v->left_blk_sh];
2864  ac_val2[k + 8] = block[k << v->top_blk_sh];
2865  }
2866 
2867  /* scale AC coeffs */
2868  for (k = 1; k < 64; k++)
2869  if (block[k]) {
2870  block[k] *= scale;
2871  if (!v->pquantizer)
2872  block[k] += (block[k] < 0) ? -mquant : mquant;
2873  }
2874 
2875  if (use_pred) i = 63;
2876  } else { // no AC coeffs
2877  int k;
2878 
2879  memset(ac_val2, 0, 16 * 2);
2880  if (dc_pred_dir) { // left
2881  if (use_pred) {
2882  memcpy(ac_val2, ac_val, 8 * 2);
2883  if (q2 && q1 != q2) {
2884  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2885  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2886  if (q1 < 1)
2887  return AVERROR_INVALIDDATA;
2888  for (k = 1; k < 8; k++)
2889  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2890  }
2891  }
2892  } else { // top
2893  if (use_pred) {
2894  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2895  if (q2 && q1 != q2) {
2896  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2897  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2898  if (q1 < 1)
2899  return AVERROR_INVALIDDATA;
2900  for (k = 1; k < 8; k++)
2901  ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2902  }
2903  }
2904  }
2905 
2906  /* apply AC prediction if needed */
2907  if (use_pred) {
2908  if (dc_pred_dir) { // left
2909  for (k = 1; k < 8; k++) {
2910  block[k << v->left_blk_sh] = ac_val2[k] * scale;
2911  if (!v->pquantizer && block[k << v->left_blk_sh])
2912  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
2913  }
2914  } else { // top
2915  for (k = 1; k < 8; k++) {
2916  block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
2917  if (!v->pquantizer && block[k << v->top_blk_sh])
2918  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
2919  }
2920  }
2921  i = 63;
2922  }
2923  }
2924  s->block_last_index[n] = i;
2925 
2926  return 0;
2927 }
2928 
2929 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2930  * @param v VC1Context
2931  * @param block block to decode
2932  * @param[in] n subblock index
2933  * @param coded are AC coeffs present or not
2934  * @param mquant block quantizer
2935  * @param codingset set of VLC to decode data
2936  */
2937 static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
2938  int coded, int mquant, int codingset)
2939 {
2940  GetBitContext *gb = &v->s.gb;
2941  MpegEncContext *s = &v->s;
2942  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2943  int i;
2944  int16_t *dc_val = NULL;
2945  int16_t *ac_val, *ac_val2;
2946  int dcdiff;
2947  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2948  int a_avail = v->a_avail, c_avail = v->c_avail;
2949  int use_pred = s->ac_pred;
2950  int scale;
2951  int q1, q2 = 0;
2952 
2953  s->dsp.clear_block(block);
2954 
2955  /* XXX: Guard against dumb values of mquant */
2956  mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
2957 
2958  /* Set DC scale - y and c use the same */
2959  s->y_dc_scale = s->y_dc_scale_table[mquant];
2960  s->c_dc_scale = s->c_dc_scale_table[mquant];
2961 
2962  /* Get DC differential */
2963  if (n < 4) {
2965  } else {
2967  }
2968  if (dcdiff < 0) {
2969  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2970  return -1;
2971  }
2972  if (dcdiff) {
2973  if (dcdiff == 119 /* ESC index value */) {
2974  /* TODO: Optimize */
2975  if (mquant == 1) dcdiff = get_bits(gb, 10);
2976  else if (mquant == 2) dcdiff = get_bits(gb, 9);
2977  else dcdiff = get_bits(gb, 8);
2978  } else {
2979  if (mquant == 1)
2980  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2981  else if (mquant == 2)
2982  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2983  }
2984  if (get_bits1(gb))
2985  dcdiff = -dcdiff;
2986  }
2987 
2988  /* Prediction */
2989  dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2990  *dc_val = dcdiff;
2991 
2992  /* Store the quantized DC coeff, used for prediction */
2993 
2994  if (n < 4) {
2995  block[0] = dcdiff * s->y_dc_scale;
2996  } else {
2997  block[0] = dcdiff * s->c_dc_scale;
2998  }
2999 
3000  //AC Decoding
3001  i = 1;
3002 
3003  /* check if AC is needed at all and adjust direction if needed */
3004  if (!a_avail) dc_pred_dir = 1;
3005  if (!c_avail) dc_pred_dir = 0;
3006  if (!a_avail && !c_avail) use_pred = 0;
3007  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
3008  ac_val2 = ac_val;
3009 
3010  scale = mquant * 2 + v->halfpq;
3011 
3012  if (dc_pred_dir) //left
3013  ac_val -= 16;
3014  else //top
3015  ac_val -= 16 * s->block_wrap[n];
3016 
3017  q1 = s->current_picture.f.qscale_table[mb_pos];
3018  if (dc_pred_dir && c_avail && mb_pos)
3019  q2 = s->current_picture.f.qscale_table[mb_pos - 1];
3020  if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
3021  q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
3022  if ( dc_pred_dir && n == 1)
3023  q2 = q1;
3024  if (!dc_pred_dir && n == 2)
3025  q2 = q1;
3026  if (n == 3) q2 = q1;
3027 
3028  if (coded) {
3029  int last = 0, skip, value;
3030  int k;
3031 
3032  while (!last) {
3033  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
3034  i += skip;
3035  if (i > 63)
3036  break;
3037  if (v->fcm == PROGRESSIVE)
3038  block[v->zz_8x8[0][i++]] = value;
3039  else {
3040  if (use_pred && (v->fcm == ILACE_FRAME)) {
3041  if (!dc_pred_dir) // top
3042  block[v->zz_8x8[2][i++]] = value;
3043  else // left
3044  block[v->zz_8x8[3][i++]] = value;
3045  } else {
3046  block[v->zzi_8x8[i++]] = value;
3047  }
3048  }
3049  }
3050 
3051  /* apply AC prediction if needed */
3052  if (use_pred) {
3053  /* scale predictors if needed*/
3054  if (q2 && q1 != q2) {
3055  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3056  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3057 
3058  if (q1 < 1)
3059  return AVERROR_INVALIDDATA;
3060  if (dc_pred_dir) { // left
3061  for (k = 1; k < 8; k++)
3062  block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3063  } else { //top
3064  for (k = 1; k < 8; k++)
3065  block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3066  }
3067  } else {
3068  if (dc_pred_dir) { // left
3069  for (k = 1; k < 8; k++)
3070  block[k << v->left_blk_sh] += ac_val[k];
3071  } else { // top
3072  for (k = 1; k < 8; k++)
3073  block[k << v->top_blk_sh] += ac_val[k + 8];
3074  }
3075  }
3076  }
3077  /* save AC coeffs for further prediction */
3078  for (k = 1; k < 8; k++) {
3079  ac_val2[k ] = block[k << v->left_blk_sh];
3080  ac_val2[k + 8] = block[k << v->top_blk_sh];
3081  }
3082 
3083  /* scale AC coeffs */
3084  for (k = 1; k < 64; k++)
3085  if (block[k]) {
3086  block[k] *= scale;
3087  if (!v->pquantizer)
3088  block[k] += (block[k] < 0) ? -mquant : mquant;
3089  }
3090 
3091  if (use_pred) i = 63;
3092  } else { // no AC coeffs
3093  int k;
3094 
3095  memset(ac_val2, 0, 16 * 2);
3096  if (dc_pred_dir) { // left
3097  if (use_pred) {
3098  memcpy(ac_val2, ac_val, 8 * 2);
3099  if (q2 && q1 != q2) {
3100  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3101  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3102  if (q1 < 1)
3103  return AVERROR_INVALIDDATA;
3104  for (k = 1; k < 8; k++)
3105  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3106  }
3107  }
3108  } else { // top
3109  if (use_pred) {
3110  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
3111  if (q2 && q1 != q2) {
3112  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3113  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3114  if (q1 < 1)
3115  return AVERROR_INVALIDDATA;
3116  for (k = 1; k < 8; k++)
3117  ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3118  }
3119  }
3120  }
3121 
3122  /* apply AC prediction if needed */
3123  if (use_pred) {
3124  if (dc_pred_dir) { // left
3125  for (k = 1; k < 8; k++) {
3126  block[k << v->left_blk_sh] = ac_val2[k] * scale;
3127  if (!v->pquantizer && block[k << v->left_blk_sh])
3128  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
3129  }
3130  } else { // top
3131  for (k = 1; k < 8; k++) {
3132  block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
3133  if (!v->pquantizer && block[k << v->top_blk_sh])
3134  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
3135  }
3136  }
3137  i = 63;
3138  }
3139  }
3140  s->block_last_index[n] = i;
3141 
3142  return 0;
3143 }
3144 
3145 /** Decode P block
3146  */
3147 static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
3148  int mquant, int ttmb, int first_block,
3149  uint8_t *dst, int linesize, int skip_block,
3150  int *ttmb_out)
3151 {
3152  MpegEncContext *s = &v->s;
3153  GetBitContext *gb = &s->gb;
3154  int i, j;
3155  int subblkpat = 0;
3156  int scale, off, idx, last, skip, value;
3157  int ttblk = ttmb & 7;
3158  int pat = 0;
3159 
3160  s->dsp.clear_block(block);
3161 
3162  if (ttmb == -1) {
3164  }
3165  if (ttblk == TT_4X4) {
3166  subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
3167  }
3168  if ((ttblk != TT_8X8 && ttblk != TT_4X4)
3169  && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
3170  || (!v->res_rtm_flag && !first_block))) {
3171  subblkpat = decode012(gb);
3172  if (subblkpat)
3173  subblkpat ^= 3; // swap decoded pattern bits
3174  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
3175  ttblk = TT_8X4;
3176  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
3177  ttblk = TT_4X8;
3178  }
3179  scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
3180 
3181  // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
3182  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
3183  subblkpat = 2 - (ttblk == TT_8X4_TOP);
3184  ttblk = TT_8X4;
3185  }
3186  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
3187  subblkpat = 2 - (ttblk == TT_4X8_LEFT);
3188  ttblk = TT_4X8;
3189  }
3190  switch (ttblk) {
3191  case TT_8X8:
3192  pat = 0xF;
3193  i = 0;
3194  last = 0;
3195  while (!last) {
3196  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3197  i += skip;
3198  if (i > 63)
3199  break;
3200  if (!v->fcm)
3201  idx = v->zz_8x8[0][i++];
3202  else
3203  idx = v->zzi_8x8[i++];
3204  block[idx] = value * scale;
3205  if (!v->pquantizer)
3206  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3207  }
3208  if (!skip_block) {
3209  if (i == 1)
3210  v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
3211  else {
3212  v->vc1dsp.vc1_inv_trans_8x8(block);
3213  s->dsp.add_pixels_clamped(block, dst, linesize);
3214  }
3215  }
3216  break;
3217  case TT_4X4:
3218  pat = ~subblkpat & 0xF;
3219  for (j = 0; j < 4; j++) {
3220  last = subblkpat & (1 << (3 - j));
3221  i = 0;
3222  off = (j & 1) * 4 + (j & 2) * 16;
3223  while (!last) {
3224  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3225  i += skip;
3226  if (i > 15)
3227  break;
3228  if (!v->fcm)
3230  else
3231  idx = ff_vc1_adv_interlaced_4x4_zz[i++];
3232  block[idx + off] = value * scale;
3233  if (!v->pquantizer)
3234  block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3235  }
3236  if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
3237  if (i == 1)
3238  v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3239  else
3240  v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3241  }
3242  }
3243  break;
3244  case TT_8X4:
3245  pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
3246  for (j = 0; j < 2; j++) {
3247  last = subblkpat & (1 << (1 - j));
3248  i = 0;
3249  off = j * 32;
3250  while (!last) {
3251  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3252  i += skip;
3253  if (i > 31)
3254  break;
3255  if (!v->fcm)
3256  idx = v->zz_8x4[i++] + off;
3257  else
3258  idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
3259  block[idx] = value * scale;
3260  if (!v->pquantizer)
3261  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3262  }
3263  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3264  if (i == 1)
3265  v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
3266  else
3267  v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
3268  }
3269  }
3270  break;
3271  case TT_4X8:
3272  pat = ~(subblkpat * 5) & 0xF;
3273  for (j = 0; j < 2; j++) {
3274  last = subblkpat & (1 << (1 - j));
3275  i = 0;
3276  off = j * 4;
3277  while (!last) {
3278  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3279  i += skip;
3280  if (i > 31)
3281  break;
3282  if (!v->fcm)
3283  idx = v->zz_4x8[i++] + off;
3284  else
3285  idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
3286  block[idx] = value * scale;
3287  if (!v->pquantizer)
3288  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3289  }
3290  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3291  if (i == 1)
3292  v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
3293  else
3294  v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
3295  }
3296  }
3297  break;
3298  }
3299  if (ttmb_out)
3300  *ttmb_out |= ttblk << (n * 4);
3301  return pat;
3302 }
3303 
3304 /** @} */ // Macroblock group
3305 
3306 static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
3307 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3308 
3310 {
3311  MpegEncContext *s = &v->s;
3312  int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
3313  block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
3314  mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
3315  block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
3316  int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3317  uint8_t *dst;
3318 
3319  if (block_num > 3) {
3320  dst = s->dest[block_num - 3];
3321  } else {
3322  dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
3323  }
3324  if (s->mb_y != s->end_mb_y || block_num < 2) {
3325  int16_t (*mv)[2];
3326  int mv_stride;
3327 
3328  if (block_num > 3) {
3329  bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
3330  bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
3331  mv = &v->luma_mv[s->mb_x - s->mb_stride];
3332  mv_stride = s->mb_stride;
3333  } else {
3334  bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
3335  : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
3336  bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
3337  : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
3338  mv_stride = s->b8_stride;
3339  mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
3340  }
3341 
3342  if (bottom_is_intra & 1 || block_is_intra & 1 ||
3343  mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
3344  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3345  } else {
3346  idx = ((bottom_cbp >> 2) | block_cbp) & 3;
3347  if (idx == 3) {
3348  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3349  } else if (idx) {
3350  if (idx == 1)
3351  v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3352  else
3353  v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3354  }
3355  }
3356  }
3357 
3358  dst -= 4 * linesize;
3359  ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
3360  if (ttblk == TT_4X4 || ttblk == TT_8X4) {
3361  idx = (block_cbp | (block_cbp >> 2)) & 3;
3362  if (idx == 3) {
3363  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3364  } else if (idx) {
3365  if (idx == 1)
3366  v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3367  else
3368  v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3369  }
3370  }
3371 }
3372 
3374 {
3375  MpegEncContext *s = &v->s;
3376  int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
3377  block_cbp = mb_cbp >> (block_num * 4), right_cbp,
3378  mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
3379  block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
3380  int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3381  uint8_t *dst;
3382 
3383  if (block_num > 3) {
3384  dst = s->dest[block_num - 3] - 8 * linesize;
3385  } else {
3386  dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
3387  }
3388 
3389  if (s->mb_x != s->mb_width || !(block_num & 5)) {
3390  int16_t (*mv)[2];
3391 
3392  if (block_num > 3) {
3393  right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
3394  right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
3395  mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
3396  } else {
3397  right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3398  : (mb_cbp >> ((block_num + 1) * 4));
3399  right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3400  : (mb_is_intra >> ((block_num + 1) * 4));
3401  mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
3402  }
3403  if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
3404  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3405  } else {
3406  idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
3407  if (idx == 5) {
3408  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3409  } else if (idx) {
3410  if (idx == 1)
3411  v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
3412  else
3413  v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3414  }
3415  }
3416  }
3417 
3418  dst -= 4;
3419  ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
3420  if (ttblk == TT_4X4 || ttblk == TT_4X8) {
3421  idx = (block_cbp | (block_cbp >> 1)) & 5;
3422  if (idx == 5) {
3423  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3424  } else if (idx) {
3425  if (idx == 1)
3426  v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
3427  else
3428  v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3429  }
3430  }
3431 }
3432 
3434 {
3435  MpegEncContext *s = &v->s;
3436  int i;
3437 
3438  for (i = 0; i < 6; i++) {
3440  }
3441 
3442  /* V always precedes H, therefore we run H one MB before V;
3443  * at the end of a row, we catch up to complete the row */
3444  if (s->mb_x) {
3445  for (i = 0; i < 6; i++) {
3447  }
3448  if (s->mb_x == s->mb_width - 1) {
3449  s->mb_x++;
3451  for (i = 0; i < 6; i++) {
3453  }
3454  }
3455  }
3456 }
3457 
3458 /** Decode one P-frame MB
3459  */
3461 {
3462  MpegEncContext *s = &v->s;
3463  GetBitContext *gb = &s->gb;
3464  int i, j;
3465  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3466  int cbp; /* cbp decoding stuff */
3467  int mqdiff, mquant; /* MB quantization */
3468  int ttmb = v->ttfrm; /* MB Transform type */
3469 
3470  int mb_has_coeffs = 1; /* last_flag */
3471  int dmv_x, dmv_y; /* Differential MV components */
3472  int index, index1; /* LUT indexes */
3473  int val, sign; /* temp values */
3474  int first_block = 1;
3475  int dst_idx, off;
3476  int skipped, fourmv;
3477  int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
3478 
3479  mquant = v->pq; /* lossy initialization */
3480 
3481  if (v->mv_type_is_raw)
3482  fourmv = get_bits1(gb);
3483  else
3484  fourmv = v->mv_type_mb_plane[mb_pos];
3485  if (v->skip_is_raw)
3486  skipped = get_bits1(gb);
3487  else
3488  skipped = v->s.mbskip_table[mb_pos];
3489 
3490  if (!fourmv) { /* 1MV mode */
3491  if (!skipped) {
3492  GET_MVDATA(dmv_x, dmv_y);
3493 
3494  if (s->mb_intra) {
3495  s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
3496  s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
3497  }
3499  vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3500 
3501  /* FIXME Set DC val for inter block ? */
3502  if (s->mb_intra && !mb_has_coeffs) {
3503  GET_MQUANT();
3504  s->ac_pred = get_bits1(gb);
3505  cbp = 0;
3506  } else if (mb_has_coeffs) {
3507  if (s->mb_intra)
3508  s->ac_pred = get_bits1(gb);
3509  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3510  GET_MQUANT();
3511  } else {
3512  mquant = v->pq;
3513  cbp = 0;
3514  }
3515  s->current_picture.f.qscale_table[mb_pos] = mquant;
3516 
3517  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3518  ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3519  VC1_TTMB_VLC_BITS, 2);
3520  if (!s->mb_intra) vc1_mc_1mv(v, 0);
3521  dst_idx = 0;
3522  for (i = 0; i < 6; i++) {
3523  s->dc_val[0][s->block_index[i]] = 0;
3524  dst_idx += i >> 2;
3525  val = ((cbp >> (5 - i)) & 1);
3526  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3527  v->mb_type[0][s->block_index[i]] = s->mb_intra;
3528  if (s->mb_intra) {
3529  /* check if prediction blocks A and C are available */
3530  v->a_avail = v->c_avail = 0;
3531  if (i == 2 || i == 3 || !s->first_slice_line)
3532  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3533  if (i == 1 || i == 3 || s->mb_x)
3534  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3535 
3536  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3537  (i & 4) ? v->codingset2 : v->codingset);
3538  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3539  continue;
3540  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3541  if (v->rangeredfrm)
3542  for (j = 0; j < 64; j++)
3543  s->block[i][j] <<= 1;
3544  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3545  if (v->pq >= 9 && v->overlap) {
3546  if (v->c_avail)
3547  v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3548  if (v->a_avail)
3549  v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3550  }
3551  block_cbp |= 0xF << (i << 2);
3552  block_intra |= 1 << i;
3553  } else if (val) {
3554  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
3555  s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
3556  (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
3557  block_cbp |= pat << (i << 2);
3558  if (!v->ttmbf && ttmb < 8)
3559  ttmb = -1;
3560  first_block = 0;
3561  }
3562  }
3563  } else { // skipped
3564  s->mb_intra = 0;
3565  for (i = 0; i < 6; i++) {
3566  v->mb_type[0][s->block_index[i]] = 0;
3567  s->dc_val[0][s->block_index[i]] = 0;
3568  }
3569  s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
3570  s->current_picture.f.qscale_table[mb_pos] = 0;
3571  vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3572  vc1_mc_1mv(v, 0);
3573  }
3574  } else { // 4MV mode
3575  if (!skipped /* unskipped MB */) {
3576  int intra_count = 0, coded_inter = 0;
3577  int is_intra[6], is_coded[6];
3578  /* Get CBPCY */
3579  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3580  for (i = 0; i < 6; i++) {
3581  val = ((cbp >> (5 - i)) & 1);
3582  s->dc_val[0][s->block_index[i]] = 0;
3583  s->mb_intra = 0;
3584  if (i < 4) {
3585  dmv_x = dmv_y = 0;
3586  s->mb_intra = 0;
3587  mb_has_coeffs = 0;
3588  if (val) {
3589  GET_MVDATA(dmv_x, dmv_y);
3590  }
3591  vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3592  if (!s->mb_intra)
3593  vc1_mc_4mv_luma(v, i, 0);
3594  intra_count += s->mb_intra;
3595  is_intra[i] = s->mb_intra;
3596  is_coded[i] = mb_has_coeffs;
3597  }
3598  if (i & 4) {
3599  is_intra[i] = (intra_count >= 3);
3600  is_coded[i] = val;
3601  }
3602  if (i == 4)
3603  vc1_mc_4mv_chroma(v, 0);
3604  v->mb_type[0][s->block_index[i]] = is_intra[i];
3605  if (!coded_inter)
3606  coded_inter = !is_intra[i] & is_coded[i];
3607  }
3608  // if there are no coded blocks then don't do anything more
3609  dst_idx = 0;
3610  if (!intra_count && !coded_inter)
3611  goto end;
3612  GET_MQUANT();
3613  s->current_picture.f.qscale_table[mb_pos] = mquant;
3614  /* test if block is intra and has pred */
3615  {
3616  int intrapred = 0;
3617  for (i = 0; i < 6; i++)
3618  if (is_intra[i]) {
3619  if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3620  || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
3621  intrapred = 1;
3622  break;
3623  }
3624  }
3625  if (intrapred)
3626  s->ac_pred = get_bits1(gb);
3627  else
3628  s->ac_pred = 0;
3629  }
3630  if (!v->ttmbf && coded_inter)
3632  for (i = 0; i < 6; i++) {
3633  dst_idx += i >> 2;
3634  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3635  s->mb_intra = is_intra[i];
3636  if (is_intra[i]) {
3637  /* check if prediction blocks A and C are available */
3638  v->a_avail = v->c_avail = 0;
3639  if (i == 2 || i == 3 || !s->first_slice_line)
3640  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3641  if (i == 1 || i == 3 || s->mb_x)
3642  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3643 
3644  vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
3645  (i & 4) ? v->codingset2 : v->codingset);
3646  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3647  continue;
3648  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3649  if (v->rangeredfrm)
3650  for (j = 0; j < 64; j++)
3651  s->block[i][j] <<= 1;
3652  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
3653  (i & 4) ? s->uvlinesize : s->linesize);
3654  if (v->pq >= 9 && v->overlap) {
3655  if (v->c_avail)
3656  v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3657  if (v->a_avail)
3658  v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3659  }
3660  block_cbp |= 0xF << (i << 2);
3661  block_intra |= 1 << i;
3662  } else if (is_coded[i]) {
3663  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
3664  first_block, s->dest[dst_idx] + off,
3665  (i & 4) ? s->uvlinesize : s->linesize,
3666  (i & 4) && (s->flags & CODEC_FLAG_GRAY),
3667  &block_tt);
3668  block_cbp |= pat << (i << 2);
3669  if (!v->ttmbf && ttmb < 8)
3670  ttmb = -1;
3671  first_block = 0;
3672  }
3673  }
3674  } else { // skipped MB
3675  s->mb_intra = 0;
3676  s->current_picture.f.qscale_table[mb_pos] = 0;
3677  for (i = 0; i < 6; i++) {
3678  v->mb_type[0][s->block_index[i]] = 0;
3679  s->dc_val[0][s->block_index[i]] = 0;
3680  }
3681  for (i = 0; i < 4; i++) {
3682  vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3683  vc1_mc_4mv_luma(v, i, 0);
3684  }
3685  vc1_mc_4mv_chroma(v, 0);
3686  s->current_picture.f.qscale_table[mb_pos] = 0;
3687  }
3688  }
3689 end:
3690  v->cbp[s->mb_x] = block_cbp;
3691  v->ttblk[s->mb_x] = block_tt;
3692  v->is_intra[s->mb_x] = block_intra;
3693 
3694  return 0;
3695 }
3696 
3697 /* Decode one macroblock in an interlaced frame p picture */
3698 
3700 {
3701  MpegEncContext *s = &v->s;
3702  GetBitContext *gb = &s->gb;
3703  int i;
3704  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3705  int cbp = 0; /* cbp decoding stuff */
3706  int mqdiff, mquant; /* MB quantization */
3707  int ttmb = v->ttfrm; /* MB Transform type */
3708 
3709  int mb_has_coeffs = 1; /* last_flag */
3710  int dmv_x, dmv_y; /* Differential MV components */
3711  int val; /* temp value */
3712  int first_block = 1;
3713  int dst_idx, off;
3714  int skipped, fourmv = 0, twomv = 0;
3715  int block_cbp = 0, pat, block_tt = 0;
3716  int idx_mbmode = 0, mvbp;
3717  int stride_y, fieldtx;
3718 
3719  mquant = v->pq; /* Lossy initialization */
3720 
3721  if (v->skip_is_raw)
3722  skipped = get_bits1(gb);
3723  else
3724  skipped = v->s.mbskip_table[mb_pos];
3725  if (!skipped) {
3726  if (v->fourmvswitch)
3727  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
3728  else
3729  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
3730  switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
3731  /* store the motion vector type in a flag (useful later) */
3732  case MV_PMODE_INTFR_4MV:
3733  fourmv = 1;
3734  v->blk_mv_type[s->block_index[0]] = 0;
3735  v->blk_mv_type[s->block_index[1]] = 0;
3736  v->blk_mv_type[s->block_index[2]] = 0;
3737  v->blk_mv_type[s->block_index[3]] = 0;
3738  break;
3740  fourmv = 1;
3741  v->blk_mv_type[s->block_index[0]] = 1;
3742  v->blk_mv_type[s->block_index[1]] = 1;
3743  v->blk_mv_type[s->block_index[2]] = 1;
3744  v->blk_mv_type[s->block_index[3]] = 1;
3745  break;
3747  twomv = 1;
3748  v->blk_mv_type[s->block_index[0]] = 1;
3749  v->blk_mv_type[s->block_index[1]] = 1;
3750  v->blk_mv_type[s->block_index[2]] = 1;
3751  v->blk_mv_type[s->block_index[3]] = 1;
3752  break;
3753  case MV_PMODE_INTFR_1MV:
3754  v->blk_mv_type[s->block_index[0]] = 0;
3755  v->blk_mv_type[s->block_index[1]] = 0;
3756  v->blk_mv_type[s->block_index[2]] = 0;
3757  v->blk_mv_type[s->block_index[3]] = 0;
3758  break;
3759  }
3760  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
3761  s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
3762  s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
3763  s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
3764  s->mb_intra = v->is_intra[s->mb_x] = 1;
3765  for (i = 0; i < 6; i++)
3766  v->mb_type[0][s->block_index[i]] = 1;
3767  fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
3768  mb_has_coeffs = get_bits1(gb);
3769  if (mb_has_coeffs)
3770  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3771  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
3772  GET_MQUANT();
3773  s->current_picture.f.qscale_table[mb_pos] = mquant;
3774  /* Set DC scale - y and c use the same (not sure if necessary here) */
3775  s->y_dc_scale = s->y_dc_scale_table[mquant];
3776  s->c_dc_scale = s->c_dc_scale_table[mquant];
3777  dst_idx = 0;
3778  for (i = 0; i < 6; i++) {
3779  s->dc_val[0][s->block_index[i]] = 0;
3780  dst_idx += i >> 2;
3781  val = ((cbp >> (5 - i)) & 1);
3782  v->mb_type[0][s->block_index[i]] = s->mb_intra;
3783  v->a_avail = v->c_avail = 0;
3784  if (i == 2 || i == 3 || !s->first_slice_line)
3785  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3786  if (i == 1 || i == 3 || s->mb_x)
3787  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3788 
3789  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3790  (i & 4) ? v->codingset2 : v->codingset);
3791  if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3792  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3793  if (i < 4) {
3794  stride_y = s->linesize << fieldtx;
3795  off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
3796  } else {
3797  stride_y = s->uvlinesize;
3798  off = 0;
3799  }
3800  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
3801  //TODO: loop filter
3802  }
3803 
3804  } else { // inter MB
3805  mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
3806  if (mb_has_coeffs)
3807  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3808  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
3810  } else {
3811  if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
3812  || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
3814  }
3815  }
3816  s->mb_intra = v->is_intra[s->mb_x] = 0;
3817  for (i = 0; i < 6; i++)
3818  v->mb_type[0][s->block_index[i]] = 0;
3819  fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
3820  /* for all motion vector read MVDATA and motion compensate each block */
3821  dst_idx = 0;
3822  if (fourmv) {
3823  mvbp = v->fourmvbp;
3824  for (i = 0; i < 6; i++) {
3825  if (i < 4) {
3826  dmv_x = dmv_y = 0;
3827  val = ((mvbp >> (3 - i)) & 1);
3828  if (val) {
3829  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3830  }
3831  vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3832  vc1_mc_4mv_luma(v, i, 0);
3833  } else if (i == 4) {
3834  vc1_mc_4mv_chroma4(v);
3835  }
3836  }
3837  } else if (twomv) {
3838  mvbp = v->twomvbp;
3839  dmv_x = dmv_y = 0;
3840  if (mvbp & 2) {
3841  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3842  }
3843  vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
3844  vc1_mc_4mv_luma(v, 0, 0);
3845  vc1_mc_4mv_luma(v, 1, 0);
3846  dmv_x = dmv_y = 0;
3847  if (mvbp & 1) {
3848  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3849  }
3850  vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
3851  vc1_mc_4mv_luma(v, 2, 0);
3852  vc1_mc_4mv_luma(v, 3, 0);
3853  vc1_mc_4mv_chroma4(v);
3854  } else {
3855  mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
3856  dmv_x = dmv_y = 0;
3857  if (mvbp) {
3858  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3859  }
3860  vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3861  vc1_mc_1mv(v, 0);
3862  }
3863  if (cbp)
3864  GET_MQUANT(); // p. 227
3865  s->current_picture.f.qscale_table[mb_pos] = mquant;
3866  if (!v->ttmbf && cbp)
3868  for (i = 0; i < 6; i++) {
3869  s->dc_val[0][s->block_index[i]] = 0;
3870  dst_idx += i >> 2;
3871  val = ((cbp >> (5 - i)) & 1);
3872  if (!fieldtx)
3873  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3874  else
3875  off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
3876  if (val) {
3877  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
3878  first_block, s->dest[dst_idx] + off,
3879  (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
3880  (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
3881  block_cbp |= pat << (i << 2);
3882  if (!v->ttmbf && ttmb < 8)
3883  ttmb = -1;
3884  first_block = 0;
3885  }
3886  }
3887  }
3888  } else { // skipped
3889  s->mb_intra = v->is_intra[s->mb_x] = 0;
3890  for (i = 0; i < 6; i++) {
3891  v->mb_type[0][s->block_index[i]] = 0;
3892  s->dc_val[0][s->block_index[i]] = 0;
3893  }
3894  s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
3895  s->current_picture.f.qscale_table[mb_pos] = 0;
3896  v->blk_mv_type[s->block_index[0]] = 0;
3897  v->blk_mv_type[s->block_index[1]] = 0;
3898  v->blk_mv_type[s->block_index[2]] = 0;
3899  v->blk_mv_type[s->block_index[3]] = 0;
3900  vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3901  vc1_mc_1mv(v, 0);
3902  }
3903  if (s->mb_x == s->mb_width - 1)
3904  memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
3905  return 0;
3906 }
3907 
3909 {
3910  MpegEncContext *s = &v->s;
3911  GetBitContext *gb = &s->gb;
3912  int i;
3913  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3914  int cbp = 0; /* cbp decoding stuff */
3915  int mqdiff, mquant; /* MB quantization */
3916  int ttmb = v->ttfrm; /* MB Transform type */
3917 
3918  int mb_has_coeffs = 1; /* last_flag */
3919  int dmv_x, dmv_y; /* Differential MV components */
3920  int val; /* temp values */
3921  int first_block = 1;
3922  int dst_idx, off;
3923  int pred_flag = 0;
3924  int block_cbp = 0, pat, block_tt = 0;
3925  int idx_mbmode = 0;
3926 
3927  mquant = v->pq; /* Lossy initialization */
3928 
3929  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
3930  if (idx_mbmode <= 1) { // intra MB
3931  s->mb_intra = v->is_intra[s->mb_x] = 1;
3932  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
3933  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
3934  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
3935  GET_MQUANT();
3936  s->current_picture.f.qscale_table[mb_pos] = mquant;
3937  /* Set DC scale - y and c use the same (not sure if necessary here) */
3938  s->y_dc_scale = s->y_dc_scale_table[mquant];
3939  s->c_dc_scale = s->c_dc_scale_table[mquant];
3940  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
3941  mb_has_coeffs = idx_mbmode & 1;
3942  if (mb_has_coeffs)
3943  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
3944  dst_idx = 0;
3945  for (i = 0; i < 6; i++) {
3946  s->dc_val[0][s->block_index[i]] = 0;
3947  v->mb_type[0][s->block_index[i]] = 1;
3948  dst_idx += i >> 2;
3949  val = ((cbp >> (5 - i)) & 1);
3950  v->a_avail = v->c_avail = 0;
3951  if (i == 2 || i == 3 || !s->first_slice_line)
3952  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3953  if (i == 1 || i == 3 || s->mb_x)
3954  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3955 
3956  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3957  (i & 4) ? v->codingset2 : v->codingset);
3958  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3959  continue;
3960  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3961  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3962  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
3963  // TODO: loop filter
3964  }
3965  } else {
3966  s->mb_intra = v->is_intra[s->mb_x] = 0;
3967  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
3968  for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
3969  if (idx_mbmode <= 5) { // 1-MV
3970  dmv_x = dmv_y = pred_flag = 0;
3971  if (idx_mbmode & 1) {
3972  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
3973  }
3974  vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
3975  vc1_mc_1mv(v, 0);
3976  mb_has_coeffs = !(idx_mbmode & 2);
3977  } else { // 4-MV
3979  for (i = 0; i < 6; i++) {
3980  if (i < 4) {
3981  dmv_x = dmv_y = pred_flag = 0;
3982  val = ((v->fourmvbp >> (3 - i)) & 1);
3983  if (val) {
3984  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
3985  }
3986  vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
3987  vc1_mc_4mv_luma(v, i, 0);
3988  } else if (i == 4)
3989  vc1_mc_4mv_chroma(v, 0);
3990  }
3991  mb_has_coeffs = idx_mbmode & 1;
3992  }
3993  if (mb_has_coeffs)
3994  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3995  if (cbp) {
3996  GET_MQUANT();
3997  }
3998  s->current_picture.f.qscale_table[mb_pos] = mquant;
3999  if (!v->ttmbf && cbp) {
4001  }
4002  dst_idx = 0;
4003  for (i = 0; i < 6; i++) {
4004  s->dc_val[0][s->block_index[i]] = 0;
4005  dst_idx += i >> 2;
4006  val = ((cbp >> (5 - i)) & 1);
4007  off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
4008  if (val) {
4009  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
4010  first_block, s->dest[dst_idx] + off,
4011  (i & 4) ? s->uvlinesize : s->linesize,
4012  (i & 4) && (s->flags & CODEC_FLAG_GRAY),
4013  &block_tt);
4014  block_cbp |= pat << (i << 2);
4015  if (!v->ttmbf && ttmb < 8) ttmb = -1;
4016  first_block = 0;
4017  }
4018  }
4019  }
4020  if (s->mb_x == s->mb_width - 1)
4021  memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
4022  return 0;
4023 }
4024 
4025 /** Decode one B-frame MB (in Main profile)
4026  */
4028 {
4029  MpegEncContext *s = &v->s;
4030  GetBitContext *gb = &s->gb;
4031  int i, j;
4032  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
4033  int cbp = 0; /* cbp decoding stuff */
4034  int mqdiff, mquant; /* MB quantization */
4035  int ttmb = v->ttfrm; /* MB Transform type */
4036  int mb_has_coeffs = 0; /* last_flag */
4037  int index, index1; /* LUT indexes */
4038  int val, sign; /* temp values */
4039  int first_block = 1;
4040  int dst_idx, off;
4041  int skipped, direct;
4042  int dmv_x[2], dmv_y[2];
4043  int bmvtype = BMV_TYPE_BACKWARD;
4044 
4045  mquant = v->pq; /* lossy initialization */
4046  s->mb_intra = 0;
4047 
4048  if (v->dmb_is_raw)
4049  direct = get_bits1(gb);
4050  else
4051  direct = v->direct_mb_plane[mb_pos];
4052  if (v->skip_is_raw)
4053  skipped = get_bits1(gb);
4054  else
4055  skipped = v->s.mbskip_table[mb_pos];
4056 
4057  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4058  for (i = 0; i < 6; i++) {
4059  v->mb_type[0][s->block_index[i]] = 0;
4060  s->dc_val[0][s->block_index[i]] = 0;
4061  }
4062  s->current_picture.f.qscale_table[mb_pos] = 0;
4063 
4064  if (!direct) {
4065  if (!skipped) {
4066  GET_MVDATA(dmv_x[0], dmv_y[0]);
4067  dmv_x[1] = dmv_x[0];
4068  dmv_y[1] = dmv_y[0];
4069  }
4070  if (skipped || !s->mb_intra) {
4071  bmvtype = decode012(gb);
4072  switch (bmvtype) {
4073  case 0:
4074  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
4075  break;
4076  case 1:
4077  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
4078  break;
4079  case 2:
4080  bmvtype = BMV_TYPE_INTERPOLATED;
4081  dmv_x[0] = dmv_y[0] = 0;
4082  }
4083  }
4084  }
4085  for (i = 0; i < 6; i++)
4086  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4087 
4088  if (skipped) {
4089  if (direct)
4090  bmvtype = BMV_TYPE_INTERPOLATED;
4091  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4092  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4093  return;
4094  }
4095  if (direct) {
4096  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
4097  GET_MQUANT();
4098  s->mb_intra = 0;
4099  s->current_picture.f.qscale_table[mb_pos] = mquant;
4100  if (!v->ttmbf)
4102  dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
4103  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4104  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4105  } else {
4106  if (!mb_has_coeffs && !s->mb_intra) {
4107  /* no coded blocks - effectively skipped */
4108  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4109  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4110  return;
4111  }
4112  if (s->mb_intra && !mb_has_coeffs) {
4113  GET_MQUANT();
4114  s->current_picture.f.qscale_table[mb_pos] = mquant;
4115  s->ac_pred = get_bits1(gb);
4116  cbp = 0;
4117  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4118  } else {
4119  if (bmvtype == BMV_TYPE_INTERPOLATED) {
4120  GET_MVDATA(dmv_x[0], dmv_y[0]);
4121  if (!mb_has_coeffs) {
4122  /* interpolated skipped block */
4123  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4124  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4125  return;
4126  }
4127  }
4128  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4129  if (!s->mb_intra) {
4130  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4131  }
4132  if (s->mb_intra)
4133  s->ac_pred = get_bits1(gb);
4134  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
4135  GET_MQUANT();
4136  s->current_picture.f.qscale_table[mb_pos] = mquant;
4137  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
4139  }
4140  }
4141  dst_idx = 0;
4142  for (i = 0; i < 6; i++) {
4143  s->dc_val[0][s->block_index[i]] = 0;
4144  dst_idx += i >> 2;
4145  val = ((cbp >> (5 - i)) & 1);
4146  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
4147  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4148  if (s->mb_intra) {
4149  /* check if prediction blocks A and C are available */
4150  v->a_avail = v->c_avail = 0;
4151  if (i == 2 || i == 3 || !s->first_slice_line)
4152  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
4153  if (i == 1 || i == 3 || s->mb_x)
4154  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
4155 
4156  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
4157  (i & 4) ? v->codingset2 : v->codingset);
4158  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
4159  continue;
4160  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
4161  if (v->rangeredfrm)
4162  for (j = 0; j < 64; j++)
4163  s->block[i][j] <<= 1;
4164  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
4165  } else if (val) {
4166  vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
4167  first_block, s->dest[dst_idx] + off,
4168  (i & 4) ? s->uvlinesize : s->linesize,
4169  (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
4170  if (!v->ttmbf && ttmb < 8)
4171  ttmb = -1;
4172  first_block = 0;
4173  }
4174  }
4175 }
4176 
4177 /** Decode one B-frame MB (in interlaced field B picture)
4178  */
4180 {
4181  MpegEncContext *s = &v->s;
4182  GetBitContext *gb = &s->gb;
4183  int i, j;
4184  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
4185  int cbp = 0; /* cbp decoding stuff */
4186  int mqdiff, mquant; /* MB quantization */
4187  int ttmb = v->ttfrm; /* MB Transform type */
4188  int mb_has_coeffs = 0; /* last_flag */
4189  int val; /* temp value */
4190  int first_block = 1;
4191  int dst_idx, off;
4192  int fwd;
4193  int dmv_x[2], dmv_y[2], pred_flag[2];
4194  int bmvtype = BMV_TYPE_BACKWARD;
4195  int idx_mbmode, interpmvp;
4196 
4197  mquant = v->pq; /* Lossy initialization */
4198  s->mb_intra = 0;
4199 
4200  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
4201  if (idx_mbmode <= 1) { // intra MB
4202  s->mb_intra = v->is_intra[s->mb_x] = 1;
4203  s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
4204  s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
4205  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
4206  GET_MQUANT();
4207  s->current_picture.f.qscale_table[mb_pos] = mquant;
4208  /* Set DC scale - y and c use the same (not sure if necessary here) */
4209  s->y_dc_scale = s->y_dc_scale_table[mquant];
4210  s->c_dc_scale = s->c_dc_scale_table[mquant];
4211  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
4212  mb_has_coeffs = idx_mbmode & 1;
4213  if (mb_has_coeffs)
4214  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
4215  dst_idx = 0;
4216  for (i = 0; i < 6; i++) {
4217  s->dc_val[0][s->block_index[i]] = 0;
4218  dst_idx += i >> 2;
4219  val = ((cbp >> (5 - i)) & 1);
4220  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4221  v->a_avail = v->c_avail = 0;
4222  if (i == 2 || i == 3 || !s->first_slice_line)
4223  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
4224  if (i == 1 || i == 3 || s->mb_x)
4225  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
4226 
4227  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
4228  (i & 4) ? v->codingset2 : v->codingset);
4229  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
4230  continue;
4231  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
4232  if (v->rangeredfrm)
4233  for (j = 0; j < 64; j++)
4234  s->block[i][j] <<= 1;
4235  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
4236  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
4237  // TODO: yet to perform loop filter
4238  }
4239  } else {
4240  s->mb_intra = v->is_intra[s->mb_x] = 0;
4241  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
4242  for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
4243  if (v->fmb_is_raw)
4244  fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
4245  else
4246  fwd = v->forward_mb_plane[mb_pos];
4247  if (idx_mbmode <= 5) { // 1-MV
4248  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4249  pred_flag[0] = pred_flag[1] = 0;
4250  if (fwd)
4251  bmvtype = BMV_TYPE_FORWARD;
4252  else {
4253  bmvtype = decode012(gb);
4254  switch (bmvtype) {
4255  case 0:
4256  bmvtype = BMV_TYPE_BACKWARD;
4257  break;
4258  case 1:
4259  bmvtype = BMV_TYPE_DIRECT;
4260  break;
4261  case 2:
4262  bmvtype = BMV_TYPE_INTERPOLATED;
4263  interpmvp = get_bits1(gb);
4264  }
4265  }
4266  v->bmvtype = bmvtype;
4267  if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
4268  get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
4269  }
4270  if (bmvtype == BMV_TYPE_INTERPOLATED && interpmvp) {
4271  get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
4272  }
4273  if (bmvtype == BMV_TYPE_DIRECT) {
4274  dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
4275  dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
4276  }
4277  vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
4278  vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);