FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
huffyuvenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
5  * the algorithm used
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  *
23  * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
24  */
25 
26 /**
27  * @file
28  * huffyuv encoder
29  */
30 
31 #include "avcodec.h"
32 #include "huffyuv.h"
33 #include "huffman.h"
34 #include "huffyuvencdsp.h"
35 #include "internal.h"
36 #include "put_bits.h"
37 #include "libavutil/pixdesc.h"
38 
39 static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
40  const uint8_t *src0, const uint8_t *src1, int w)
41 {
42  if (s->bps <= 8) {
43  s->hencdsp.diff_bytes(dst, src0, src1, w);
44  } else {
45  s->llviddsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
46  }
47 }
48 
49 static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
50  const uint8_t *src, int w, int left)
51 {
52  int i;
53  if (s->bps <= 8) {
54  if (w < 32) {
55  for (i = 0; i < w; i++) {
56  const int temp = src[i];
57  dst[i] = temp - left;
58  left = temp;
59  }
60  return left;
61  } else {
62  for (i = 0; i < 16; i++) {
63  const int temp = src[i];
64  dst[i] = temp - left;
65  left = temp;
66  }
67  s->hencdsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
68  return src[w-1];
69  }
70  } else {
71  const uint16_t *src16 = (const uint16_t *)src;
72  uint16_t *dst16 = ( uint16_t *)dst;
73  if (w < 32) {
74  for (i = 0; i < w; i++) {
75  const int temp = src16[i];
76  dst16[i] = temp - left;
77  left = temp;
78  }
79  return left;
80  } else {
81  for (i = 0; i < 16; i++) {
82  const int temp = src16[i];
83  dst16[i] = temp - left;
84  left = temp;
85  }
86  s->llviddsp.diff_int16(dst16 + 16, src16 + 16, src16 + 15, s->n - 1, w - 16);
87  return src16[w-1];
88  }
89  }
90 }
91 
92 static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
93  const uint8_t *src, int w,
94  int *red, int *green, int *blue,
95  int *alpha)
96 {
97  int i;
98  int r, g, b, a;
99  r = *red;
100  g = *green;
101  b = *blue;
102  a = *alpha;
103 
104  for (i = 0; i < FFMIN(w, 4); i++) {
105  const int rt = src[i * 4 + R];
106  const int gt = src[i * 4 + G];
107  const int bt = src[i * 4 + B];
108  const int at = src[i * 4 + A];
109  dst[i * 4 + R] = rt - r;
110  dst[i * 4 + G] = gt - g;
111  dst[i * 4 + B] = bt - b;
112  dst[i * 4 + A] = at - a;
113  r = rt;
114  g = gt;
115  b = bt;
116  a = at;
117  }
118 
119  s->hencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
120 
121  *red = src[(w - 1) * 4 + R];
122  *green = src[(w - 1) * 4 + G];
123  *blue = src[(w - 1) * 4 + B];
124  *alpha = src[(w - 1) * 4 + A];
125 }
126 
127 static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
128  uint8_t *src, int w,
129  int *red, int *green, int *blue)
130 {
131  int i;
132  int r, g, b;
133  r = *red;
134  g = *green;
135  b = *blue;
136  for (i = 0; i < FFMIN(w, 16); i++) {
137  const int rt = src[i * 3 + 0];
138  const int gt = src[i * 3 + 1];
139  const int bt = src[i * 3 + 2];
140  dst[i * 3 + 0] = rt - r;
141  dst[i * 3 + 1] = gt - g;
142  dst[i * 3 + 2] = bt - b;
143  r = rt;
144  g = gt;
145  b = bt;
146  }
147 
148  s->hencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
149 
150  *red = src[(w - 1) * 3 + 0];
151  *green = src[(w - 1) * 3 + 1];
152  *blue = src[(w - 1) * 3 + 2];
153 }
154 
155 static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
156 {
157  if (s->bps <= 8) {
158  s->hencdsp.sub_hfyu_median_pred(dst, src1, src2, w , left, left_top);
159  } else {
160  s->llviddsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
161  }
162 }
163 
165 {
166  int i;
167  int index = 0;
168  int n = s->vlc_n;
169 
170  for (i = 0; i < n;) {
171  int val = len[i];
172  int repeat = 0;
173 
174  for (; i < n && len[i] == val && repeat < 255; i++)
175  repeat++;
176 
177  av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
178  if (repeat > 7) {
179  buf[index++] = val;
180  buf[index++] = repeat;
181  } else {
182  buf[index++] = val | (repeat << 5);
183  }
184  }
185 
186  return index;
187 }
188 
190 {
191  int i, ret;
192  int size = 0;
193  int count = 3;
194 
195  if (s->version > 2)
196  count = 1 + s->alpha + 2*s->chroma;
197 
198  for (i = 0; i < count; i++) {
199  if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
200  return ret;
201 
202  if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
203  return -1;
204  }
205 
206  size += store_table(s, s->len[i], buf + size);
207  }
208  return size;
209 }
210 
212 {
213  HYuvContext *s = avctx->priv_data;
214  int i, j;
215  int ret;
216  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
217 
218  ff_huffyuv_common_init(avctx);
220 
221  avctx->extradata = av_mallocz(3*MAX_N + 4);
222  if (!avctx->extradata)
223  return AVERROR(ENOMEM);
224  if (s->flags&CODEC_FLAG_PASS1) {
225 #define STATS_OUT_SIZE 21*MAX_N*3 + 4
226  avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
227  if (!avctx->stats_out)
228  return AVERROR(ENOMEM);
229  }
230  s->version = 2;
231 
232  avctx->coded_frame = av_frame_alloc();
233  if (!avctx->coded_frame)
234  return AVERROR(ENOMEM);
235 
237  avctx->coded_frame->key_frame = 1;
238 
239  s->bps = desc->comp[0].depth_minus1 + 1;
240  s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
241  s->chroma = desc->nb_components > 2;
242  s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
244  &s->chroma_h_shift,
245  &s->chroma_v_shift);
246 
247  switch (avctx->pix_fmt) {
248  case AV_PIX_FMT_YUV420P:
249  case AV_PIX_FMT_YUV422P:
250  if (s->width & 1) {
251  av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
252  return AVERROR(EINVAL);
253  }
254  s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
255  break;
256  case AV_PIX_FMT_YUV444P:
257  case AV_PIX_FMT_YUV410P:
258  case AV_PIX_FMT_YUV411P:
259  case AV_PIX_FMT_YUV440P:
260  case AV_PIX_FMT_GBRP:
261  case AV_PIX_FMT_GBRP9:
262  case AV_PIX_FMT_GBRP10:
263  case AV_PIX_FMT_GBRP12:
264  case AV_PIX_FMT_GBRP14:
265  case AV_PIX_FMT_GBRP16:
266  case AV_PIX_FMT_GRAY8:
267  case AV_PIX_FMT_GRAY16:
268  case AV_PIX_FMT_YUVA444P:
269  case AV_PIX_FMT_YUVA420P:
270  case AV_PIX_FMT_YUVA422P:
271  case AV_PIX_FMT_GBRAP:
272  case AV_PIX_FMT_GRAY8A:
273  case AV_PIX_FMT_YUV420P9:
278  case AV_PIX_FMT_YUV422P9:
283  case AV_PIX_FMT_YUV444P9:
297  s->version = 3;
298  break;
299  case AV_PIX_FMT_RGB32:
300  s->bitstream_bpp = 32;
301  break;
302  case AV_PIX_FMT_RGB24:
303  s->bitstream_bpp = 24;
304  break;
305  default:
306  av_log(avctx, AV_LOG_ERROR, "format not supported\n");
307  return AVERROR(EINVAL);
308  }
309  s->n = 1<<s->bps;
310  s->vlc_n = FFMIN(s->n, MAX_VLC_N);
311 
313  s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
314  s->predictor = avctx->prediction_method;
315  s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
316  if (avctx->context_model == 1) {
317  s->context = avctx->context_model;
319  av_log(avctx, AV_LOG_ERROR,
320  "context=1 is not compatible with "
321  "2 pass huffyuv encoding\n");
322  return AVERROR(EINVAL);
323  }
324  }else s->context= 0;
325 
326  if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
327  if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
328  av_log(avctx, AV_LOG_ERROR,
329  "Error: YV12 is not supported by huffyuv; use "
330  "vcodec=ffvhuff or format=422p\n");
331  return AVERROR(EINVAL);
332  }
333  if (avctx->context_model) {
334  av_log(avctx, AV_LOG_ERROR,
335  "Error: per-frame huffman tables are not supported "
336  "by huffyuv; use vcodec=ffvhuff\n");
337  return AVERROR(EINVAL);
338  }
339  if (s->version > 2) {
340  av_log(avctx, AV_LOG_ERROR,
341  "Error: ver>2 is not supported "
342  "by huffyuv; use vcodec=ffvhuff\n");
343  return AVERROR(EINVAL);
344  }
345  if (s->interlaced != ( s->height > 288 ))
346  av_log(avctx, AV_LOG_INFO,
347  "using huffyuv 2.2.0 or newer interlacing flag\n");
348  }
349 
351  av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
352  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
353  return AVERROR(EINVAL);
354  }
355 
356  if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
357  av_log(avctx, AV_LOG_ERROR,
358  "Error: RGB is incompatible with median predictor\n");
359  return AVERROR(EINVAL);
360  }
361 
362  ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
363  ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
364  if (s->context)
365  ((uint8_t*)avctx->extradata)[2] |= 0x40;
366  if (s->version < 3) {
367  ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
368  ((uint8_t*)avctx->extradata)[3] = 0;
369  } else {
370  ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
371  if (s->chroma)
372  ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
373  if (s->alpha)
374  ((uint8_t*)avctx->extradata)[2] |= 4;
375  ((uint8_t*)avctx->extradata)[3] = 1;
376  }
377  s->avctx->extradata_size = 4;
378 
379  if (avctx->stats_in) {
380  char *p = avctx->stats_in;
381 
382  for (i = 0; i < 4; i++)
383  for (j = 0; j < s->vlc_n; j++)
384  s->stats[i][j] = 1;
385 
386  for (;;) {
387  for (i = 0; i < 4; i++) {
388  char *next;
389 
390  for (j = 0; j < s->vlc_n; j++) {
391  s->stats[i][j] += strtol(p, &next, 0);
392  if (next == p) return -1;
393  p = next;
394  }
395  }
396  if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
397  }
398  } else {
399  for (i = 0; i < 4; i++)
400  for (j = 0; j < s->vlc_n; j++) {
401  int d = FFMIN(j, s->vlc_n - j);
402 
403  s->stats[i][j] = 100000000 / (d*d + 1);
404  }
405  }
406 
408  if (ret < 0)
409  return ret;
410  s->avctx->extradata_size += ret;
411 
412  if (s->context) {
413  for (i = 0; i < 4; i++) {
414  int pels = s->width * s->height / (i ? 40 : 10);
415  for (j = 0; j < s->vlc_n; j++) {
416  int d = FFMIN(j, s->vlc_n - j);
417  s->stats[i][j] = pels/(d*d + 1);
418  }
419  }
420  } else {
421  for (i = 0; i < 4; i++)
422  for (j = 0; j < s->vlc_n; j++)
423  s->stats[i][j]= 0;
424  }
425 
426  if (ff_huffyuv_alloc_temp(s)) {
428  return AVERROR(ENOMEM);
429  }
430 
431  s->picture_number=0;
432 
433  return 0;
434 }
436 {
437  int i;
438  const uint8_t *y = s->temp[0] + offset;
439  const uint8_t *u = s->temp[1] + offset / 2;
440  const uint8_t *v = s->temp[2] + offset / 2;
441 
442  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
443  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
444  return -1;
445  }
446 
447 #define LOAD4\
448  int y0 = y[2 * i];\
449  int y1 = y[2 * i + 1];\
450  int u0 = u[i];\
451  int v0 = v[i];
452 
453  count /= 2;
454 
455  if (s->flags & CODEC_FLAG_PASS1) {
456  for(i = 0; i < count; i++) {
457  LOAD4;
458  s->stats[0][y0]++;
459  s->stats[1][u0]++;
460  s->stats[0][y1]++;
461  s->stats[2][v0]++;
462  }
463  }
465  return 0;
466  if (s->context) {
467  for (i = 0; i < count; i++) {
468  LOAD4;
469  s->stats[0][y0]++;
470  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
471  s->stats[1][u0]++;
472  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
473  s->stats[0][y1]++;
474  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
475  s->stats[2][v0]++;
476  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
477  }
478  } else {
479  for(i = 0; i < count; i++) {
480  LOAD4;
481  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
482  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
483  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
484  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
485  }
486  }
487  return 0;
488 }
489 
490 static int encode_plane_bitstream(HYuvContext *s, int count, int plane)
491 {
492  int i;
493 
494  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
495  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
496  return -1;
497  }
498 
499 #define LOAD2\
500  int y0 = s->temp[0][2 * i];\
501  int y1 = s->temp[0][2 * i + 1];
502 #define LOAD2_14\
503  int y0 = s->temp16[0][2 * i] & mask;\
504  int y1 = s->temp16[0][2 * i + 1] & mask;
505 #define LOAD2_16\
506  int y0 = s->temp16[0][2 * i];\
507  int y1 = s->temp16[0][2 * i + 1];
508 #define STAT2\
509  s->stats[plane][y0]++;\
510  s->stats[plane][y1]++;
511 #define STAT2_16\
512  s->stats[plane][y0>>2]++;\
513  s->stats[plane][y1>>2]++;
514 #define WRITE2\
515  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
516  put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
517 #define WRITE2_16\
518  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
519  put_bits(&s->pb, 2, y0&3);\
520  put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
521  put_bits(&s->pb, 2, y1&3);
522 
523  count /= 2;
524 
525  if (s->bps <= 8) {
526  if (s->flags & CODEC_FLAG_PASS1) {
527  for (i = 0; i < count; i++) {
528  LOAD2;
529  STAT2;
530  }
531  }
533  return 0;
534 
535  if (s->context) {
536  for (i = 0; i < count; i++) {
537  LOAD2;
538  STAT2;
539  WRITE2;
540  }
541  } else {
542  for (i = 0; i < count; i++) {
543  LOAD2;
544  WRITE2;
545  }
546  }
547  } else if (s->bps <= 14) {
548  int mask = s->n - 1;
549  if (s->flags & CODEC_FLAG_PASS1) {
550  for (i = 0; i < count; i++) {
551  LOAD2_14;
552  STAT2;
553  }
554  }
556  return 0;
557 
558  if (s->context) {
559  for (i = 0; i < count; i++) {
560  LOAD2_14;
561  STAT2;
562  WRITE2;
563  }
564  } else {
565  for (i = 0; i < count; i++) {
566  LOAD2_14;
567  WRITE2;
568  }
569  }
570  } else {
571  if (s->flags & CODEC_FLAG_PASS1) {
572  for (i = 0; i < count; i++) {
573  LOAD2_16;
574  STAT2_16;
575  }
576  }
578  return 0;
579 
580  if (s->context) {
581  for (i = 0; i < count; i++) {
582  LOAD2_16;
583  STAT2_16;
584  WRITE2_16;
585  }
586  } else {
587  for (i = 0; i < count; i++) {
588  LOAD2_16;
589  WRITE2_16;
590  }
591  }
592  }
593 #undef LOAD2
594 #undef STAT2
595 #undef WRITE2
596  return 0;
597 }
598 
600 {
601  int i;
602 
603  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
604  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
605  return -1;
606  }
607 
608 #define LOAD2\
609  int y0 = s->temp[0][2 * i];\
610  int y1 = s->temp[0][2 * i + 1];
611 #define STAT2\
612  s->stats[0][y0]++;\
613  s->stats[0][y1]++;
614 #define WRITE2\
615  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
616  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
617 
618  count /= 2;
619 
620  if (s->flags & CODEC_FLAG_PASS1) {
621  for (i = 0; i < count; i++) {
622  LOAD2;
623  STAT2;
624  }
625  }
627  return 0;
628 
629  if (s->context) {
630  for (i = 0; i < count; i++) {
631  LOAD2;
632  STAT2;
633  WRITE2;
634  }
635  } else {
636  for (i = 0; i < count; i++) {
637  LOAD2;
638  WRITE2;
639  }
640  }
641  return 0;
642 }
643 
644 static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
645 {
646  int i;
647 
648  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
649  4 * planes * count) {
650  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
651  return -1;
652  }
653 
654 #define LOAD_GBRA \
655  int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
656  int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
657  int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
658  int a = s->temp[0][planes * i + A];
659 
660 #define STAT_BGRA \
661  s->stats[0][b]++; \
662  s->stats[1][g]++; \
663  s->stats[2][r]++; \
664  if (planes == 4) \
665  s->stats[2][a]++;
666 
667 #define WRITE_GBRA \
668  put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
669  put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
670  put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
671  if (planes == 4) \
672  put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
673 
674  if ((s->flags & CODEC_FLAG_PASS1) &&
676  for (i = 0; i < count; i++) {
677  LOAD_GBRA;
678  STAT_BGRA;
679  }
680  } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
681  for (i = 0; i < count; i++) {
682  LOAD_GBRA;
683  STAT_BGRA;
684  WRITE_GBRA;
685  }
686  } else {
687  for (i = 0; i < count; i++) {
688  LOAD_GBRA;
689  WRITE_GBRA;
690  }
691  }
692  return 0;
693 }
694 
696  const AVFrame *pict, int *got_packet)
697 {
698  HYuvContext *s = avctx->priv_data;
699  const int width = s->width;
700  const int width2 = s->width>>1;
701  const int height = s->height;
702  const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
703  const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
704  const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
705  const AVFrame * const p = pict;
706  int i, j, size = 0, ret;
707 
708  if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
709  return ret;
710 
711  if (s->context) {
712  size = store_huffman_tables(s, pkt->data);
713  if (size < 0)
714  return size;
715 
716  for (i = 0; i < 4; i++)
717  for (j = 0; j < s->vlc_n; j++)
718  s->stats[i][j] >>= 1;
719  }
720 
721  init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
722 
723  if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
724  avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
725  int lefty, leftu, leftv, y, cy;
726 
727  put_bits(&s->pb, 8, leftv = p->data[2][0]);
728  put_bits(&s->pb, 8, lefty = p->data[0][1]);
729  put_bits(&s->pb, 8, leftu = p->data[1][0]);
730  put_bits(&s->pb, 8, p->data[0][0]);
731 
732  lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
733  leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
734  leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
735 
736  encode_422_bitstream(s, 2, width-2);
737 
738  if (s->predictor==MEDIAN) {
739  int lefttopy, lefttopu, lefttopv;
740  cy = y = 1;
741  if (s->interlaced) {
742  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
743  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
744  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
745 
746  encode_422_bitstream(s, 0, width);
747  y++; cy++;
748  }
749 
750  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
751  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
752  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
753 
754  encode_422_bitstream(s, 0, 4);
755 
756  lefttopy = p->data[0][3];
757  lefttopu = p->data[1][1];
758  lefttopv = p->data[2][1];
759  s->hencdsp.sub_hfyu_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
760  s->hencdsp.sub_hfyu_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
761  s->hencdsp.sub_hfyu_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
762  encode_422_bitstream(s, 0, width - 4);
763  y++; cy++;
764 
765  for (; y < height; y++,cy++) {
766  uint8_t *ydst, *udst, *vdst;
767 
768  if (s->bitstream_bpp == 12) {
769  while (2 * cy > y) {
770  ydst = p->data[0] + p->linesize[0] * y;
771  s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
772  encode_gray_bitstream(s, width);
773  y++;
774  }
775  if (y >= height) break;
776  }
777  ydst = p->data[0] + p->linesize[0] * y;
778  udst = p->data[1] + p->linesize[1] * cy;
779  vdst = p->data[2] + p->linesize[2] * cy;
780 
781  s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
782  s->hencdsp.sub_hfyu_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
783  s->hencdsp.sub_hfyu_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
784 
785  encode_422_bitstream(s, 0, width);
786  }
787  } else {
788  for (cy = y = 1; y < height; y++, cy++) {
789  uint8_t *ydst, *udst, *vdst;
790 
791  /* encode a luma only line & y++ */
792  if (s->bitstream_bpp == 12) {
793  ydst = p->data[0] + p->linesize[0] * y;
794 
795  if (s->predictor == PLANE && s->interlaced < y) {
796  s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
797 
798  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
799  } else {
800  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
801  }
802  encode_gray_bitstream(s, width);
803  y++;
804  if (y >= height) break;
805  }
806 
807  ydst = p->data[0] + p->linesize[0] * y;
808  udst = p->data[1] + p->linesize[1] * cy;
809  vdst = p->data[2] + p->linesize[2] * cy;
810 
811  if (s->predictor == PLANE && s->interlaced < cy) {
812  s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
813  s->hencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
814  s->hencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
815 
816  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
817  leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
818  leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
819  } else {
820  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
821  leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
822  leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
823  }
824 
825  encode_422_bitstream(s, 0, width);
826  }
827  }
828  } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
829  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
830  const int stride = -p->linesize[0];
831  const int fake_stride = -fake_ystride;
832  int y;
833  int leftr, leftg, leftb, lefta;
834 
835  put_bits(&s->pb, 8, lefta = data[A]);
836  put_bits(&s->pb, 8, leftr = data[R]);
837  put_bits(&s->pb, 8, leftg = data[G]);
838  put_bits(&s->pb, 8, leftb = data[B]);
839 
840  sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
841  &leftr, &leftg, &leftb, &lefta);
842  encode_bgra_bitstream(s, width - 1, 4);
843 
844  for (y = 1; y < s->height; y++) {
845  uint8_t *dst = data + y*stride;
846  if (s->predictor == PLANE && s->interlaced < y) {
847  s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
848  sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
849  &leftr, &leftg, &leftb, &lefta);
850  } else {
851  sub_left_prediction_bgr32(s, s->temp[0], dst, width,
852  &leftr, &leftg, &leftb, &lefta);
853  }
854  encode_bgra_bitstream(s, width, 4);
855  }
856  } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
857  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
858  const int stride = -p->linesize[0];
859  const int fake_stride = -fake_ystride;
860  int y;
861  int leftr, leftg, leftb;
862 
863  put_bits(&s->pb, 8, leftr = data[0]);
864  put_bits(&s->pb, 8, leftg = data[1]);
865  put_bits(&s->pb, 8, leftb = data[2]);
866  put_bits(&s->pb, 8, 0);
867 
868  sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
869  &leftr, &leftg, &leftb);
870  encode_bgra_bitstream(s, width-1, 3);
871 
872  for (y = 1; y < s->height; y++) {
873  uint8_t *dst = data + y * stride;
874  if (s->predictor == PLANE && s->interlaced < y) {
875  s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
876  width * 3);
877  sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
878  &leftr, &leftg, &leftb);
879  } else {
880  sub_left_prediction_rgb24(s, s->temp[0], dst, width,
881  &leftr, &leftg, &leftb);
882  }
883  encode_bgra_bitstream(s, width, 3);
884  }
885  } else if (s->version > 2) {
886  int plane;
887  for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
888  int left, y;
889  int w = width;
890  int h = height;
891  int fake_stride = fake_ystride;
892 
893  if (s->chroma && (plane == 1 || plane == 2)) {
894  w >>= s->chroma_h_shift;
895  h >>= s->chroma_v_shift;
896  fake_stride = plane == 1 ? fake_ustride : fake_vstride;
897  }
898 
899  left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
900 
901  encode_plane_bitstream(s, w, plane);
902 
903  if (s->predictor==MEDIAN) {
904  int lefttop;
905  y = 1;
906  if (s->interlaced) {
907  left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
908 
909  encode_plane_bitstream(s, w, plane);
910  y++;
911  }
912 
913  lefttop = p->data[plane][0];
914 
915  for (; y < h; y++) {
916  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
917 
918  sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
919 
920  encode_plane_bitstream(s, w, plane);
921  }
922  } else {
923  for (y = 1; y < h; y++) {
924  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
925 
926  if (s->predictor == PLANE && s->interlaced < y) {
927  diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
928 
929  left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
930  } else {
931  left = sub_left_prediction(s, s->temp[0], dst, w , left);
932  }
933 
934  encode_plane_bitstream(s, w, plane);
935  }
936  }
937  }
938  } else {
939  av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
940  }
941  emms_c();
942 
943  size += (put_bits_count(&s->pb) + 31) / 8;
944  put_bits(&s->pb, 16, 0);
945  put_bits(&s->pb, 15, 0);
946  size /= 4;
947 
948  if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
949  int j;
950  char *p = avctx->stats_out;
951  char *end = p + STATS_OUT_SIZE;
952  for (i = 0; i < 4; i++) {
953  for (j = 0; j < s->vlc_n; j++) {
954  snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
955  p += strlen(p);
956  s->stats[i][j]= 0;
957  }
958  snprintf(p, end-p, "\n");
959  p++;
960  if (end <= p)
961  return AVERROR(ENOMEM);
962  }
963  } else if (avctx->stats_out)
964  avctx->stats_out[0] = '\0';
965  if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
966  flush_put_bits(&s->pb);
967  s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
968  }
969 
970  s->picture_number++;
971 
972  pkt->size = size * 4;
973  pkt->flags |= AV_PKT_FLAG_KEY;
974  *got_packet = 1;
975 
976  return 0;
977 }
978 
980 {
981  HYuvContext *s = avctx->priv_data;
982 
984 
985  av_freep(&avctx->extradata);
986  av_freep(&avctx->stats_out);
987 
988  av_frame_free(&avctx->coded_frame);
989 
990  return 0;
991 }
992 
994  .name = "huffyuv",
995  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
996  .type = AVMEDIA_TYPE_VIDEO,
997  .id = AV_CODEC_ID_HUFFYUV,
998  .priv_data_size = sizeof(HYuvContext),
999  .init = encode_init,
1000  .encode2 = encode_frame,
1001  .close = encode_end,
1003  .pix_fmts = (const enum AVPixelFormat[]){
1006  },
1007 };
1008 
1009 #if CONFIG_FFVHUFF_ENCODER
1010 AVCodec ff_ffvhuff_encoder = {
1011  .name = "ffvhuff",
1012  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
1013  .type = AVMEDIA_TYPE_VIDEO,
1014  .id = AV_CODEC_ID_FFVHUFF,
1015  .priv_data_size = sizeof(HYuvContext),
1016  .init = encode_init,
1017  .encode2 = encode_frame,
1018  .close = encode_end,
1020  .pix_fmts = (const enum AVPixelFormat[]){
1037  },
1038 };
1039 #endif