FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hevc_filter.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Seppo Tomperi
6  * Copyright (C) 2013 Wassim Hamidouche
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "libavutil/common.h"
26 #include "libavutil/internal.h"
27 
28 #include "cabac_functions.h"
29 #include "golomb.h"
30 #include "hevc.h"
31 
32 #include "bit_depth_template.c"
33 
34 #define LUMA 0
35 #define CB 1
36 #define CR 2
37 
38 static const uint8_t tctable[54] = {
39  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
40  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
41  5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
42 };
43 
44 static const uint8_t betatable[52] = {
45  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
46  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
47  38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
48 };
49 
50 static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
51 {
52  static const int qp_c[] = {
53  29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
54  };
55  int qp, qp_i, offset, idxt;
56 
57  // slice qp offset is not used for deblocking
58  if (c_idx == 1)
59  offset = s->pps->cb_qp_offset;
60  else
61  offset = s->pps->cr_qp_offset;
62 
63  qp_i = av_clip(qp_y + offset, 0, 57);
64  if (s->sps->chroma_format_idc == 1) {
65  if (qp_i < 30)
66  qp = qp_i;
67  else if (qp_i > 43)
68  qp = qp_i - 6;
69  else
70  qp = qp_c[qp_i - 30];
71  } else {
72  qp = av_clip(qp_i, 0, 51);
73  }
74 
75  idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
76  return tctable[idxt];
77 }
78 
79 static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
80 {
81  HEVCLocalContext *lc = s->HEVClc;
82  int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1;
83  int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size -
84  s->pps->diff_cu_qp_delta_depth)) - 1;
85  int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
86  int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
87  int min_cb_width = s->sps->min_cb_width;
88  int x_cb = xQgBase >> s->sps->log2_min_cb_size;
89  int y_cb = yQgBase >> s->sps->log2_min_cb_size;
90  int availableA = (xBase & ctb_size_mask) &&
91  (xQgBase & ctb_size_mask);
92  int availableB = (yBase & ctb_size_mask) &&
93  (yQgBase & ctb_size_mask);
94  int qPy_pred, qPy_a, qPy_b;
95 
96  // qPy_pred
97  if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
99  qPy_pred = s->sh.slice_qp;
100  } else {
101  qPy_pred = lc->qPy_pred;
102  }
103 
104  // qPy_a
105  if (availableA == 0)
106  qPy_a = qPy_pred;
107  else
108  qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
109 
110  // qPy_b
111  if (availableB == 0)
112  qPy_b = qPy_pred;
113  else
114  qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
115 
116  av_assert2(qPy_a >= -s->sps->qp_bd_offset && qPy_a < 52);
117  av_assert2(qPy_b >= -s->sps->qp_bd_offset && qPy_b < 52);
118 
119  return (qPy_a + qPy_b + 1) >> 1;
120 }
121 
122 void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
123 {
124  int qp_y = get_qPy_pred(s, xBase, yBase, log2_cb_size);
125 
126  if (s->HEVClc->tu.cu_qp_delta != 0) {
127  int off = s->sps->qp_bd_offset;
128  s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off,
129  52 + off) - off;
130  } else
131  s->HEVClc->qp_y = qp_y;
132 }
133 
134 static int get_qPy(HEVCContext *s, int xC, int yC)
135 {
136  int log2_min_cb_size = s->sps->log2_min_cb_size;
137  int x = xC >> log2_min_cb_size;
138  int y = yC >> log2_min_cb_size;
139  return s->qp_y_tab[x + y * s->sps->min_cb_width];
140 }
141 
142 static void copy_CTB(uint8_t *dst, uint8_t *src,
143  int width, int height, int stride_dst, int stride_src)
144 {
145  int i;
146 
147  for (i = 0; i < height; i++) {
148  memcpy(dst, src, width);
149  dst += stride_dst;
150  src += stride_src;
151  }
152 }
153 
154 static void restore_tqb_pixels(HEVCContext *s, int x0, int y0, int width, int height, int c_idx)
155 {
158  int x, y;
159  ptrdiff_t stride_dst = s->sao_frame->linesize[c_idx];
160  ptrdiff_t stride_src = s->frame->linesize[c_idx];
161  int min_pu_size = 1 << s->sps->log2_min_pu_size;
162  int hshift = s->sps->hshift[c_idx];
163  int vshift = s->sps->vshift[c_idx];
164  int x_min = ((x0 ) >> s->sps->log2_min_pu_size);
165  int y_min = ((y0 ) >> s->sps->log2_min_pu_size);
166  int x_max = ((x0 + width ) >> s->sps->log2_min_pu_size);
167  int y_max = ((y0 + height) >> s->sps->log2_min_pu_size);
168  int len = min_pu_size >> hshift;
169  for (y = y_min; y < y_max; y++) {
170  for (x = x_min; x < x_max; x++) {
171  if (s->is_pcm[y * s->sps->min_pu_width + x]) {
172  int n;
173  uint8_t *src = &s->frame->data[c_idx][ ((y << s->sps->log2_min_pu_size) >> vshift) * stride_src + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
174  uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride_dst + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
175  for (n = 0; n < (min_pu_size >> vshift); n++) {
176  memcpy(src, dst, len);
177  src += stride_src;
178  dst += stride_dst;
179  }
180  }
181  }
182  }
183  }
184 }
185 
186 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
187 
188 static void sao_filter_CTB(HEVCContext *s, int x, int y)
189 {
190  int c_idx;
191  int edges[4]; // 0 left 1 top 2 right 3 bottom
192  int x_ctb = x >> s->sps->log2_ctb_size;
193  int y_ctb = y >> s->sps->log2_ctb_size;
194  int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb;
195  int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
196  SAOParams *sao = &CTB(s->sao, x_ctb, y_ctb);
197  // flags indicating unfilterable edges
198  uint8_t vert_edge[] = { 0, 0 };
199  uint8_t horiz_edge[] = { 0, 0 };
200  uint8_t diag_edge[] = { 0, 0, 0, 0 };
201  uint8_t lfase = CTB(s->filter_slice_edges, x_ctb, y_ctb);
202  uint8_t no_tile_filter = s->pps->tiles_enabled_flag &&
204  uint8_t restore = no_tile_filter || !lfase;
205  uint8_t left_tile_edge = 0;
206  uint8_t right_tile_edge = 0;
207  uint8_t up_tile_edge = 0;
208  uint8_t bottom_tile_edge = 0;
209 
210  edges[0] = x_ctb == 0;
211  edges[1] = y_ctb == 0;
212  edges[2] = x_ctb == s->sps->ctb_width - 1;
213  edges[3] = y_ctb == s->sps->ctb_height - 1;
214 
215  if (restore) {
216  if (!edges[0]) {
217  left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
218  vert_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
219  }
220  if (!edges[2]) {
221  right_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
222  vert_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
223  }
224  if (!edges[1]) {
225  up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
226  horiz_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
227  }
228  if (!edges[3]) {
229  bottom_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs + s->sps->ctb_width]];
230  horiz_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
231  }
232  if (!edges[0] && !edges[1]) {
233  diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
234  }
235  if (!edges[1] && !edges[2]) {
236  diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
237  }
238  if (!edges[2] && !edges[3]) {
239  diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
240  }
241  if (!edges[0] && !edges[3]) {
242  diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
243  }
244  }
245 
246  for (c_idx = 0; c_idx < 3; c_idx++) {
247  int x0 = x >> s->sps->hshift[c_idx];
248  int y0 = y >> s->sps->vshift[c_idx];
249  int stride_src = s->frame->linesize[c_idx];
250  int stride_dst = s->sao_frame->linesize[c_idx];
251  int ctb_size_h = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx];
252  int ctb_size_v = (1 << (s->sps->log2_ctb_size)) >> s->sps->vshift[c_idx];
253  int width = FFMIN(ctb_size_h, (s->sps->width >> s->sps->hshift[c_idx]) - x0);
254  int height = FFMIN(ctb_size_v, (s->sps->height >> s->sps->vshift[c_idx]) - y0);
255  uint8_t *src = &s->frame->data[c_idx][y0 * stride_src + (x0 << s->sps->pixel_shift)];
256  uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride_dst + (x0 << s->sps->pixel_shift)];
257 
258  switch (sao->type_idx[c_idx]) {
259  case SAO_BAND:
260  copy_CTB(dst, src, width << s->sps->pixel_shift, height, stride_dst, stride_src);
261  s->hevcdsp.sao_band_filter(src, dst,
262  stride_src, stride_dst,
263  sao,
264  edges, width,
265  height, c_idx);
266  restore_tqb_pixels(s, x, y, width, height, c_idx);
267  sao->type_idx[c_idx] = SAO_APPLIED;
268  break;
269  case SAO_EDGE:
270  {
271  uint8_t left_pixels = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] != SAO_APPLIED);
272  if (!edges[1]) {
273  uint8_t top_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED);
274  uint8_t top_right = !edges[2] && (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED);
275  if (CTB(s->sao, x_ctb , y_ctb-1).type_idx[c_idx] == 0)
276  memcpy( dst - stride_dst - (top_left << s->sps->pixel_shift),
277  src - stride_src - (top_left << s->sps->pixel_shift),
278  (top_left + width + top_right) << s->sps->pixel_shift);
279  else {
280  if (top_left)
281  memcpy( dst - stride_dst - (1 << s->sps->pixel_shift),
282  src - stride_src - (1 << s->sps->pixel_shift),
283  1 << s->sps->pixel_shift);
284  if(top_right)
285  memcpy( dst - stride_dst + (width << s->sps->pixel_shift),
286  src - stride_src + (width << s->sps->pixel_shift),
287  1 << s->sps->pixel_shift);
288  }
289  }
290  if (!edges[3]) { // bottom and bottom right
291  uint8_t bottom_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] != SAO_APPLIED);
292  memcpy( dst + height * stride_dst - (bottom_left << s->sps->pixel_shift),
293  src + height * stride_src - (bottom_left << s->sps->pixel_shift),
294  (width + 1 + bottom_left) << s->sps->pixel_shift);
295  }
296  copy_CTB(dst - (left_pixels << s->sps->pixel_shift),
297  src - (left_pixels << s->sps->pixel_shift),
298  (width + 1 + left_pixels) << s->sps->pixel_shift, height, stride_dst, stride_src);
299  s->hevcdsp.sao_edge_filter[restore](src, dst,
300  stride_src, stride_dst,
301  sao,
302  edges, width,
303  height, c_idx,
304  vert_edge,
305  horiz_edge,
306  diag_edge);
307  restore_tqb_pixels(s, x, y, width, height, c_idx);
308  sao->type_idx[c_idx] = SAO_APPLIED;
309  break;
310  }
311  }
312  }
313 }
314 
315 static int get_pcm(HEVCContext *s, int x, int y)
316 {
317  int log2_min_pu_size = s->sps->log2_min_pu_size;
318  int x_pu, y_pu;
319 
320  if (x < 0 || y < 0)
321  return 2;
322 
323  x_pu = x >> log2_min_pu_size;
324  y_pu = y >> log2_min_pu_size;
325 
326  if (x_pu >= s->sps->min_pu_width || y_pu >= s->sps->min_pu_height)
327  return 2;
328  return s->is_pcm[y_pu * s->sps->min_pu_width + x_pu];
329 }
330 
331 #define TC_CALC(qp, bs) \
332  tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
333  (tc_offset >> 1 << 1), \
334  0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
335 
336 static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
337 {
338  uint8_t *src;
339  int x, y;
340  int chroma, beta;
341  int32_t c_tc[2], tc[2];
342  uint8_t no_p[2] = { 0 };
343  uint8_t no_q[2] = { 0 };
344 
345  int log2_ctb_size = s->sps->log2_ctb_size;
346  int x_end, x_end2, y_end;
347  int ctb_size = 1 << log2_ctb_size;
348  int ctb = (x0 >> log2_ctb_size) +
349  (y0 >> log2_ctb_size) * s->sps->ctb_width;
350  int cur_tc_offset = s->deblock[ctb].tc_offset;
351  int cur_beta_offset = s->deblock[ctb].beta_offset;
352  int left_tc_offset, left_beta_offset;
353  int tc_offset, beta_offset;
354  int pcmf = (s->sps->pcm_enabled_flag &&
357 
358  if (x0) {
359  left_tc_offset = s->deblock[ctb - 1].tc_offset;
360  left_beta_offset = s->deblock[ctb - 1].beta_offset;
361  } else {
362  left_tc_offset = 0;
363  left_beta_offset = 0;
364  }
365 
366  x_end = x0 + ctb_size;
367  if (x_end > s->sps->width)
368  x_end = s->sps->width;
369  y_end = y0 + ctb_size;
370  if (y_end > s->sps->height)
371  y_end = s->sps->height;
372 
373  tc_offset = cur_tc_offset;
374  beta_offset = cur_beta_offset;
375 
376  x_end2 = x_end;
377  if (x_end2 != s->sps->width)
378  x_end2 -= 8;
379  for (y = y0; y < y_end; y += 8) {
380  // vertical filtering luma
381  for (x = x0 ? x0 : 8; x < x_end; x += 8) {
382  const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
383  const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2];
384  if (bs0 || bs1) {
385  const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
386 
387  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
388 
389  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
390  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
391  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
392  if (pcmf) {
393  no_p[0] = get_pcm(s, x - 1, y);
394  no_p[1] = get_pcm(s, x - 1, y + 4);
395  no_q[0] = get_pcm(s, x, y);
396  no_q[1] = get_pcm(s, x, y + 4);
398  s->frame->linesize[LUMA],
399  beta, tc, no_p, no_q);
400  } else
402  s->frame->linesize[LUMA],
403  beta, tc, no_p, no_q);
404  }
405  }
406 
407  if(!y)
408  continue;
409 
410  // horizontal filtering luma
411  for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
412  const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
413  const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2];
414  if (bs0 || bs1) {
415  const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
416 
417  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
418  beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
419 
420  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
421  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
422  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
423  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
424  if (pcmf) {
425  no_p[0] = get_pcm(s, x, y - 1);
426  no_p[1] = get_pcm(s, x + 4, y - 1);
427  no_q[0] = get_pcm(s, x, y);
428  no_q[1] = get_pcm(s, x + 4, y);
430  s->frame->linesize[LUMA],
431  beta, tc, no_p, no_q);
432  } else
434  s->frame->linesize[LUMA],
435  beta, tc, no_p, no_q);
436  }
437  }
438  }
439 
440  for (chroma = 1; chroma <= 2; chroma++) {
441  int h = 1 << s->sps->hshift[chroma];
442  int v = 1 << s->sps->vshift[chroma];
443 
444  // vertical filtering chroma
445  for (y = y0; y < y_end; y += (8 * v)) {
446  for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
447  const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
448  const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2];
449 
450  if ((bs0 == 2) || (bs1 == 2)) {
451  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
452  const int qp1 = (get_qPy(s, x - 1, y + (4 * v)) + get_qPy(s, x, y + (4 * v)) + 1) >> 1;
453 
454  c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
455  c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
456  src = &s->frame->data[chroma][(y >> s->sps->vshift[chroma]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[chroma]) << s->sps->pixel_shift)];
457  if (pcmf) {
458  no_p[0] = get_pcm(s, x - 1, y);
459  no_p[1] = get_pcm(s, x - 1, y + (4 * v));
460  no_q[0] = get_pcm(s, x, y);
461  no_q[1] = get_pcm(s, x, y + (4 * v));
463  s->frame->linesize[chroma],
464  c_tc, no_p, no_q);
465  } else
467  s->frame->linesize[chroma],
468  c_tc, no_p, no_q);
469  }
470  }
471 
472  if(!y)
473  continue;
474 
475  // horizontal filtering chroma
476  tc_offset = x0 ? left_tc_offset : cur_tc_offset;
477  x_end2 = x_end;
478  if (x_end != s->sps->width)
479  x_end2 = x_end - 8 * h;
480  for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
481  const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
482  const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2];
483  if ((bs0 == 2) || (bs1 == 2)) {
484  const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
485  const int qp1 = bs1 == 2 ? (get_qPy(s, x + (4 * h), y - 1) + get_qPy(s, x + (4 * h), y) + 1) >> 1 : 0;
486 
487  c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
488  c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
489  src = &s->frame->data[chroma][(y >> s->sps->vshift[1]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[1]) << s->sps->pixel_shift)];
490  if (pcmf) {
491  no_p[0] = get_pcm(s, x, y - 1);
492  no_p[1] = get_pcm(s, x + (4 * h), y - 1);
493  no_q[0] = get_pcm(s, x, y);
494  no_q[1] = get_pcm(s, x + (4 * h), y);
496  s->frame->linesize[chroma],
497  c_tc, no_p, no_q);
498  } else
500  s->frame->linesize[chroma],
501  c_tc, no_p, no_q);
502  }
503  }
504  }
505  }
506 }
507 
508 static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh,
509  RefPicList *neigh_refPicList)
510 {
511  if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
512  // same L0 and L1
513  if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
514  s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
515  neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
516  if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
517  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
518  (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
519  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
520  return 1;
521  else
522  return 0;
523  } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
524  neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
525  if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
526  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
527  return 1;
528  else
529  return 0;
530  } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
531  neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
532  if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
533  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
534  return 1;
535  else
536  return 0;
537  } else {
538  return 1;
539  }
540  } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
541  Mv A, B;
542  int ref_A, ref_B;
543 
544  if (curr->pred_flag & 1) {
545  A = curr->mv[0];
546  ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
547  } else {
548  A = curr->mv[1];
549  ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
550  }
551 
552  if (neigh->pred_flag & 1) {
553  B = neigh->mv[0];
554  ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
555  } else {
556  B = neigh->mv[1];
557  ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
558  }
559 
560  if (ref_A == ref_B) {
561  if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
562  return 1;
563  else
564  return 0;
565  } else
566  return 1;
567  }
568 
569  return 1;
570 }
571 
573  int log2_trafo_size)
574 {
575  HEVCLocalContext *lc = s->HEVClc;
576  MvField *tab_mvf = s->ref->tab_mvf;
577  int log2_min_pu_size = s->sps->log2_min_pu_size;
578  int log2_min_tu_size = s->sps->log2_min_tb_size;
579  int min_pu_width = s->sps->min_pu_width;
580  int min_tu_width = s->sps->min_tb_width;
581  int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
582  (x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
583  int boundary_upper, boundary_left;
584  int i, j, bs;
585 
586  boundary_upper = y0 > 0 && !(y0 & 7);
587  if (boundary_upper &&
590  (y0 % (1 << s->sps->log2_ctb_size)) == 0) ||
593  (y0 % (1 << s->sps->log2_ctb_size)) == 0)))
594  boundary_upper = 0;
595 
596  if (boundary_upper) {
597  RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
598  ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
599  s->ref->refPicList;
600  int yp_pu = (y0 - 1) >> log2_min_pu_size;
601  int yq_pu = y0 >> log2_min_pu_size;
602  int yp_tu = (y0 - 1) >> log2_min_tu_size;
603  int yq_tu = y0 >> log2_min_tu_size;
604 
605  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
606  int x_pu = (x0 + i) >> log2_min_pu_size;
607  int x_tu = (x0 + i) >> log2_min_tu_size;
608  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
609  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
610  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
611  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
612 
613  if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
614  bs = 2;
615  else if (curr_cbf_luma || top_cbf_luma)
616  bs = 1;
617  else
618  bs = boundary_strength(s, curr, top, rpl_top);
619  s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
620  }
621  }
622 
623  // bs for vertical TU boundaries
624  boundary_left = x0 > 0 && !(x0 & 7);
625  if (boundary_left &&
628  (x0 % (1 << s->sps->log2_ctb_size)) == 0) ||
631  (x0 % (1 << s->sps->log2_ctb_size)) == 0)))
632  boundary_left = 0;
633 
634  if (boundary_left) {
635  RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
636  ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
637  s->ref->refPicList;
638  int xp_pu = (x0 - 1) >> log2_min_pu_size;
639  int xq_pu = x0 >> log2_min_pu_size;
640  int xp_tu = (x0 - 1) >> log2_min_tu_size;
641  int xq_tu = x0 >> log2_min_tu_size;
642 
643  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
644  int y_pu = (y0 + i) >> log2_min_pu_size;
645  int y_tu = (y0 + i) >> log2_min_tu_size;
646  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
647  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
648  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
649  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
650 
651  if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
652  bs = 2;
653  else if (curr_cbf_luma || left_cbf_luma)
654  bs = 1;
655  else
656  bs = boundary_strength(s, curr, left, rpl_left);
657  s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs;
658  }
659  }
660 
661  if (log2_trafo_size > log2_min_pu_size && !is_intra) {
662  RefPicList *rpl = s->ref->refPicList;
663 
664  // bs for TU internal horizontal PU boundaries
665  for (j = 8; j < (1 << log2_trafo_size); j += 8) {
666  int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
667  int yq_pu = (y0 + j) >> log2_min_pu_size;
668 
669  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
670  int x_pu = (x0 + i) >> log2_min_pu_size;
671  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
672  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
673 
674  bs = boundary_strength(s, curr, top, rpl);
675  s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
676  }
677  }
678 
679  // bs for TU internal vertical PU boundaries
680  for (j = 0; j < (1 << log2_trafo_size); j += 4) {
681  int y_pu = (y0 + j) >> log2_min_pu_size;
682 
683  for (i = 8; i < (1 << log2_trafo_size); i += 8) {
684  int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
685  int xq_pu = (x0 + i) >> log2_min_pu_size;
686  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
687  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
688 
689  bs = boundary_strength(s, curr, left, rpl);
690  s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
691  }
692  }
693  }
694 }
695 
696 #undef LUMA
697 #undef CB
698 #undef CR
699 
700 void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
701 {
702  int x_end = x >= s->sps->width - ctb_size;
703  deblocking_filter_CTB(s, x, y);
704  if (s->sps->sao_enabled) {
705  int y_end = y >= s->sps->height - ctb_size;
706  if (y && x)
707  sao_filter_CTB(s, x - ctb_size, y - ctb_size);
708  if (x && y_end)
709  sao_filter_CTB(s, x - ctb_size, y);
710  if (y && x_end) {
711  sao_filter_CTB(s, x, y - ctb_size);
712  if (s->threads_type & FF_THREAD_FRAME )
713  ff_thread_report_progress(&s->ref->tf, y, 0);
714  }
715  if (x_end && y_end) {
716  sao_filter_CTB(s, x , y);
717  if (s->threads_type & FF_THREAD_FRAME )
718  ff_thread_report_progress(&s->ref->tf, y + ctb_size, 0);
719  }
720  } else if (s->threads_type & FF_THREAD_FRAME && x_end)
721  ff_thread_report_progress(&s->ref->tf, y + ctb_size - 4, 0);
722 }
723 
724 void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
725 {
726  int x_end = x_ctb >= s->sps->width - ctb_size;
727  int y_end = y_ctb >= s->sps->height - ctb_size;
728  if (y_ctb && x_ctb)
729  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
730  if (y_ctb && x_end)
731  ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size, ctb_size);
732  if (x_ctb && y_end)
733  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb, ctb_size);
734 }