FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bink.c
Go to the documentation of this file.
1 /*
2  * Bink video decoder
3  * Copyright (c) 2009 Konstantin Shishkov
4  * Copyright (C) 2011 Peter Ross <pross@xvid.org>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "libavutil/attributes.h"
24 #include "libavutil/imgutils.h"
25 #include "libavutil/internal.h"
26 #include "avcodec.h"
27 #include "binkdata.h"
28 #include "binkdsp.h"
29 #include "blockdsp.h"
30 #include "hpeldsp.h"
31 #include "internal.h"
32 #include "mathops.h"
33 
34 #define BITSTREAM_READER_LE
35 #include "get_bits.h"
36 
37 #define BINK_FLAG_ALPHA 0x00100000
38 #define BINK_FLAG_GRAY 0x00020000
39 
40 static VLC bink_trees[16];
41 
42 /**
43  * IDs for different data types used in old version of Bink video codec
44  */
45 enum OldSources {
46  BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
47  BINKB_SRC_COLORS, ///< pixel values used for different block types
48  BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
49  BINKB_SRC_X_OFF, ///< X components of motion value
50  BINKB_SRC_Y_OFF, ///< Y components of motion value
51  BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
52  BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
53  BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
54  BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
55  BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
56 
58 };
59 
60 static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
61  4, 8, 8, 5, 5, 11, 11, 4, 4, 7
62 };
63 
64 static const int binkb_bundle_signed[BINKB_NB_SRC] = {
65  0, 0, 0, 1, 1, 0, 1, 0, 0, 0
66 };
67 
68 static int32_t binkb_intra_quant[16][64];
69 static int32_t binkb_inter_quant[16][64];
70 
71 /**
72  * IDs for different data types used in Bink video codec
73  */
74 enum Sources {
75  BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
76  BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
77  BINK_SRC_COLORS, ///< pixel values used for different block types
78  BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
79  BINK_SRC_X_OFF, ///< X components of motion value
80  BINK_SRC_Y_OFF, ///< Y components of motion value
81  BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
82  BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
83  BINK_SRC_RUN, ///< run lengths for special fill block
84 
86 };
87 
88 /**
89  * data needed to decode 4-bit Huffman-coded value
90  */
91 typedef struct Tree {
92  int vlc_num; ///< tree number (in bink_trees[])
93  uint8_t syms[16]; ///< leaf value to symbol mapping
94 } Tree;
95 
96 #define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
97  bink_trees[(tree).vlc_num].bits, 1)]
98 
99 /**
100  * data structure used for decoding single Bink data type
101  */
102 typedef struct Bundle {
103  int len; ///< length of number of entries to decode (in bits)
104  Tree tree; ///< Huffman tree-related data
105  uint8_t *data; ///< buffer for decoded symbols
106  uint8_t *data_end; ///< buffer end
107  uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
108  uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
109 } Bundle;
110 
111 /*
112  * Decoder context
113  */
114 typedef struct BinkContext {
120  int version; ///< internal Bink file version
123  unsigned frame_num;
124 
125  Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
126  Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
127  int col_lastval; ///< value of last decoded high nibble in "colours" data type
128 } BinkContext;
129 
130 /**
131  * Bink video block types
132  */
134  SKIP_BLOCK = 0, ///< skipped block
135  SCALED_BLOCK, ///< block has size 16x16
136  MOTION_BLOCK, ///< block is copied from previous frame with some offset
137  RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
138  RESIDUE_BLOCK, ///< motion block with some difference added
139  INTRA_BLOCK, ///< intra DCT block
140  FILL_BLOCK, ///< block is filled with single colour
141  INTER_BLOCK, ///< motion block with DCT applied to the difference
142  PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
143  RAW_BLOCK, ///< uncoded 8x8 block
144 };
145 
146 /**
147  * Initialize length in all bundles.
148  *
149  * @param c decoder context
150  * @param width plane width
151  * @param bw plane width in 8x8 blocks
152  */
153 static void init_lengths(BinkContext *c, int width, int bw)
154 {
155  width = FFALIGN(width, 8);
156 
157  c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
158 
159  c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
160 
161  c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
162 
166  c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
167 
168  c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
169 
170  c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
171 }
172 
173 /**
174  * Allocate memory for bundles.
175  *
176  * @param c decoder context
177  */
179 {
180  int bw, bh, blocks;
181  int i;
182 
183  bw = (c->avctx->width + 7) >> 3;
184  bh = (c->avctx->height + 7) >> 3;
185  blocks = bw * bh;
186 
187  for (i = 0; i < BINKB_NB_SRC; i++) {
188  c->bundle[i].data = av_mallocz(blocks * 64);
189  if (!c->bundle[i].data)
190  return AVERROR(ENOMEM);
191  c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
192  }
193 
194  return 0;
195 }
196 
197 /**
198  * Free memory used by bundles.
199  *
200  * @param c decoder context
201  */
203 {
204  int i;
205  for (i = 0; i < BINKB_NB_SRC; i++)
206  av_freep(&c->bundle[i].data);
207 }
208 
209 /**
210  * Merge two consequent lists of equal size depending on bits read.
211  *
212  * @param gb context for reading bits
213  * @param dst buffer where merged list will be written to
214  * @param src pointer to the head of the first list (the second lists starts at src+size)
215  * @param size input lists size
216  */
217 static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
218 {
219  uint8_t *src2 = src + size;
220  int size2 = size;
221 
222  do {
223  if (!get_bits1(gb)) {
224  *dst++ = *src++;
225  size--;
226  } else {
227  *dst++ = *src2++;
228  size2--;
229  }
230  } while (size && size2);
231 
232  while (size--)
233  *dst++ = *src++;
234  while (size2--)
235  *dst++ = *src2++;
236 }
237 
238 /**
239  * Read information about Huffman tree used to decode data.
240  *
241  * @param gb context for reading bits
242  * @param tree pointer for storing tree data
243  */
244 static void read_tree(GetBitContext *gb, Tree *tree)
245 {
246  uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
247  int i, t, len;
248 
249  tree->vlc_num = get_bits(gb, 4);
250  if (!tree->vlc_num) {
251  for (i = 0; i < 16; i++)
252  tree->syms[i] = i;
253  return;
254  }
255  if (get_bits1(gb)) {
256  len = get_bits(gb, 3);
257  for (i = 0; i <= len; i++) {
258  tree->syms[i] = get_bits(gb, 4);
259  tmp1[tree->syms[i]] = 1;
260  }
261  for (i = 0; i < 16 && len < 16 - 1; i++)
262  if (!tmp1[i])
263  tree->syms[++len] = i;
264  } else {
265  len = get_bits(gb, 2);
266  for (i = 0; i < 16; i++)
267  in[i] = i;
268  for (i = 0; i <= len; i++) {
269  int size = 1 << i;
270  for (t = 0; t < 16; t += size << 1)
271  merge(gb, out + t, in + t, size);
272  FFSWAP(uint8_t*, in, out);
273  }
274  memcpy(tree->syms, in, 16);
275  }
276 }
277 
278 /**
279  * Prepare bundle for decoding data.
280  *
281  * @param gb context for reading bits
282  * @param c decoder context
283  * @param bundle_num number of the bundle to initialize
284  */
285 static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
286 {
287  int i;
288 
289  if (bundle_num == BINK_SRC_COLORS) {
290  for (i = 0; i < 16; i++)
291  read_tree(gb, &c->col_high[i]);
292  c->col_lastval = 0;
293  }
294  if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
295  read_tree(gb, &c->bundle[bundle_num].tree);
296  c->bundle[bundle_num].cur_dec =
297  c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
298 }
299 
300 /**
301  * common check before starting decoding bundle data
302  *
303  * @param gb context for reading bits
304  * @param b bundle
305  * @param t variable where number of elements to decode will be stored
306  */
307 #define CHECK_READ_VAL(gb, b, t) \
308  if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
309  return 0; \
310  t = get_bits(gb, b->len); \
311  if (!t) { \
312  b->cur_dec = NULL; \
313  return 0; \
314  } \
315 
316 static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
317 {
318  int t, v;
319  const uint8_t *dec_end;
320 
321  CHECK_READ_VAL(gb, b, t);
322  dec_end = b->cur_dec + t;
323  if (dec_end > b->data_end) {
324  av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
325  return AVERROR_INVALIDDATA;
326  }
327  if (get_bits1(gb)) {
328  v = get_bits(gb, 4);
329  memset(b->cur_dec, v, t);
330  b->cur_dec += t;
331  } else {
332  while (b->cur_dec < dec_end)
333  *b->cur_dec++ = GET_HUFF(gb, b->tree);
334  }
335  return 0;
336 }
337 
339 {
340  int t, sign, v;
341  const uint8_t *dec_end;
342 
343  CHECK_READ_VAL(gb, b, t);
344  dec_end = b->cur_dec + t;
345  if (dec_end > b->data_end) {
346  av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
347  return AVERROR_INVALIDDATA;
348  }
349  if (get_bits1(gb)) {
350  v = get_bits(gb, 4);
351  if (v) {
352  sign = -get_bits1(gb);
353  v = (v ^ sign) - sign;
354  }
355  memset(b->cur_dec, v, t);
356  b->cur_dec += t;
357  } else {
358  while (b->cur_dec < dec_end) {
359  v = GET_HUFF(gb, b->tree);
360  if (v) {
361  sign = -get_bits1(gb);
362  v = (v ^ sign) - sign;
363  }
364  *b->cur_dec++ = v;
365  }
366  }
367  return 0;
368 }
369 
370 static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
371 
373 {
374  int t, v;
375  int last = 0;
376  const uint8_t *dec_end;
377 
378  CHECK_READ_VAL(gb, b, t);
379  dec_end = b->cur_dec + t;
380  if (dec_end > b->data_end) {
381  av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
382  return AVERROR_INVALIDDATA;
383  }
384  if (get_bits1(gb)) {
385  v = get_bits(gb, 4);
386  memset(b->cur_dec, v, t);
387  b->cur_dec += t;
388  } else {
389  while (b->cur_dec < dec_end) {
390  v = GET_HUFF(gb, b->tree);
391  if (v < 12) {
392  last = v;
393  *b->cur_dec++ = v;
394  } else {
395  int run = bink_rlelens[v - 12];
396 
397  if (dec_end - b->cur_dec < run)
398  return AVERROR_INVALIDDATA;
399  memset(b->cur_dec, last, run);
400  b->cur_dec += run;
401  }
402  }
403  }
404  return 0;
405 }
406 
408 {
409  int t, v;
410  const uint8_t *dec_end;
411 
412  CHECK_READ_VAL(gb, b, t);
413  dec_end = b->cur_dec + t;
414  if (dec_end > b->data_end) {
415  av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
416  return AVERROR_INVALIDDATA;
417  }
418  while (b->cur_dec < dec_end) {
419  v = GET_HUFF(gb, b->tree);
420  v |= GET_HUFF(gb, b->tree) << 4;
421  *b->cur_dec++ = v;
422  }
423 
424  return 0;
425 }
426 
428 {
429  int t, sign, v;
430  const uint8_t *dec_end;
431 
432  CHECK_READ_VAL(gb, b, t);
433  dec_end = b->cur_dec + t;
434  if (dec_end > b->data_end) {
435  av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
436  return AVERROR_INVALIDDATA;
437  }
438  if (get_bits1(gb)) {
439  c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
440  v = GET_HUFF(gb, b->tree);
441  v = (c->col_lastval << 4) | v;
442  if (c->version < 'i') {
443  sign = ((int8_t) v) >> 7;
444  v = ((v & 0x7F) ^ sign) - sign;
445  v += 0x80;
446  }
447  memset(b->cur_dec, v, t);
448  b->cur_dec += t;
449  } else {
450  while (b->cur_dec < dec_end) {
451  c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
452  v = GET_HUFF(gb, b->tree);
453  v = (c->col_lastval << 4) | v;
454  if (c->version < 'i') {
455  sign = ((int8_t) v) >> 7;
456  v = ((v & 0x7F) ^ sign) - sign;
457  v += 0x80;
458  }
459  *b->cur_dec++ = v;
460  }
461  }
462  return 0;
463 }
464 
465 /** number of bits used to store first DC value in bundle */
466 #define DC_START_BITS 11
467 
468 static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
469  int start_bits, int has_sign)
470 {
471  int i, j, len, len2, bsize, sign, v, v2;
472  int16_t *dst = (int16_t*)b->cur_dec;
473  int16_t *dst_end = (int16_t*)b->data_end;
474 
475  CHECK_READ_VAL(gb, b, len);
476  v = get_bits(gb, start_bits - has_sign);
477  if (v && has_sign) {
478  sign = -get_bits1(gb);
479  v = (v ^ sign) - sign;
480  }
481  if (dst_end - dst < 1)
482  return AVERROR_INVALIDDATA;
483  *dst++ = v;
484  len--;
485  for (i = 0; i < len; i += 8) {
486  len2 = FFMIN(len - i, 8);
487  if (dst_end - dst < len2)
488  return AVERROR_INVALIDDATA;
489  bsize = get_bits(gb, 4);
490  if (bsize) {
491  for (j = 0; j < len2; j++) {
492  v2 = get_bits(gb, bsize);
493  if (v2) {
494  sign = -get_bits1(gb);
495  v2 = (v2 ^ sign) - sign;
496  }
497  v += v2;
498  *dst++ = v;
499  if (v < -32768 || v > 32767) {
500  av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
501  return AVERROR_INVALIDDATA;
502  }
503  }
504  } else {
505  for (j = 0; j < len2; j++)
506  *dst++ = v;
507  }
508  }
509 
510  b->cur_dec = (uint8_t*)dst;
511  return 0;
512 }
513 
514 /**
515  * Retrieve next value from bundle.
516  *
517  * @param c decoder context
518  * @param bundle bundle number
519  */
520 static inline int get_value(BinkContext *c, int bundle)
521 {
522  int ret;
523 
524  if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
525  return *c->bundle[bundle].cur_ptr++;
526  if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
527  return (int8_t)*c->bundle[bundle].cur_ptr++;
528  ret = *(int16_t*)c->bundle[bundle].cur_ptr;
529  c->bundle[bundle].cur_ptr += 2;
530  return ret;
531 }
532 
533 static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num)
534 {
535  c->bundle[bundle_num].cur_dec =
536  c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
537  c->bundle[bundle_num].len = 13;
538 }
539 
541 {
542  int i;
543  for (i = 0; i < BINKB_NB_SRC; i++)
544  binkb_init_bundle(c, i);
545 }
546 
547 static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
548 {
549  const int bits = binkb_bundle_sizes[bundle_num];
550  const int mask = 1 << (bits - 1);
551  const int issigned = binkb_bundle_signed[bundle_num];
552  Bundle *b = &c->bundle[bundle_num];
553  int i, len;
554 
555  CHECK_READ_VAL(gb, b, len);
556  if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
557  return AVERROR_INVALIDDATA;
558  if (bits <= 8) {
559  if (!issigned) {
560  for (i = 0; i < len; i++)
561  *b->cur_dec++ = get_bits(gb, bits);
562  } else {
563  for (i = 0; i < len; i++)
564  *b->cur_dec++ = get_bits(gb, bits) - mask;
565  }
566  } else {
567  int16_t *dst = (int16_t*)b->cur_dec;
568 
569  if (!issigned) {
570  for (i = 0; i < len; i++)
571  *dst++ = get_bits(gb, bits);
572  } else {
573  for (i = 0; i < len; i++)
574  *dst++ = get_bits(gb, bits) - mask;
575  }
576  b->cur_dec = (uint8_t*)dst;
577  }
578  return 0;
579 }
580 
581 static inline int binkb_get_value(BinkContext *c, int bundle_num)
582 {
583  int16_t ret;
584  const int bits = binkb_bundle_sizes[bundle_num];
585 
586  if (bits <= 8) {
587  int val = *c->bundle[bundle_num].cur_ptr++;
588  return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
589  }
590  ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
591  c->bundle[bundle_num].cur_ptr += 2;
592  return ret;
593 }
594 
595 /**
596  * Read 8x8 block of DCT coefficients.
597  *
598  * @param gb context for reading bits
599  * @param block place for storing coefficients
600  * @param scan scan order table
601  * @param quant_matrices quantization matrices
602  * @return 0 for success, negative value in other cases
603  */
604 static int read_dct_coeffs(GetBitContext *gb, int32_t block[64], const uint8_t *scan,
605  const int32_t quant_matrices[16][64], int q)
606 {
607  int coef_list[128];
608  int mode_list[128];
609  int i, t, bits, ccoef, mode, sign;
610  int list_start = 64, list_end = 64, list_pos;
611  int coef_count = 0;
612  int coef_idx[64];
613  int quant_idx;
614  const int32_t *quant;
615 
616  coef_list[list_end] = 4; mode_list[list_end++] = 0;
617  coef_list[list_end] = 24; mode_list[list_end++] = 0;
618  coef_list[list_end] = 44; mode_list[list_end++] = 0;
619  coef_list[list_end] = 1; mode_list[list_end++] = 3;
620  coef_list[list_end] = 2; mode_list[list_end++] = 3;
621  coef_list[list_end] = 3; mode_list[list_end++] = 3;
622 
623  for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) {
624  list_pos = list_start;
625  while (list_pos < list_end) {
626  if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
627  list_pos++;
628  continue;
629  }
630  ccoef = coef_list[list_pos];
631  mode = mode_list[list_pos];
632  switch (mode) {
633  case 0:
634  coef_list[list_pos] = ccoef + 4;
635  mode_list[list_pos] = 1;
636  case 2:
637  if (mode == 2) {
638  coef_list[list_pos] = 0;
639  mode_list[list_pos++] = 0;
640  }
641  for (i = 0; i < 4; i++, ccoef++) {
642  if (get_bits1(gb)) {
643  coef_list[--list_start] = ccoef;
644  mode_list[ list_start] = 3;
645  } else {
646  if (!bits) {
647  t = 1 - (get_bits1(gb) << 1);
648  } else {
649  t = get_bits(gb, bits) | 1 << bits;
650  sign = -get_bits1(gb);
651  t = (t ^ sign) - sign;
652  }
653  block[scan[ccoef]] = t;
654  coef_idx[coef_count++] = ccoef;
655  }
656  }
657  break;
658  case 1:
659  mode_list[list_pos] = 2;
660  for (i = 0; i < 3; i++) {
661  ccoef += 4;
662  coef_list[list_end] = ccoef;
663  mode_list[list_end++] = 2;
664  }
665  break;
666  case 3:
667  if (!bits) {
668  t = 1 - (get_bits1(gb) << 1);
669  } else {
670  t = get_bits(gb, bits) | 1 << bits;
671  sign = -get_bits1(gb);
672  t = (t ^ sign) - sign;
673  }
674  block[scan[ccoef]] = t;
675  coef_idx[coef_count++] = ccoef;
676  coef_list[list_pos] = 0;
677  mode_list[list_pos++] = 0;
678  break;
679  }
680  }
681  }
682 
683  if (q == -1) {
684  quant_idx = get_bits(gb, 4);
685  } else {
686  quant_idx = q;
687  if (quant_idx > 15U) {
688  av_log(NULL, AV_LOG_ERROR, "quant_index %d out of range\n", quant_idx);
689  return AVERROR_INVALIDDATA;
690  }
691  }
692 
693  quant = quant_matrices[quant_idx];
694 
695  block[0] = (block[0] * quant[0]) >> 11;
696  for (i = 0; i < coef_count; i++) {
697  int idx = coef_idx[i];
698  block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
699  }
700 
701  return 0;
702 }
703 
704 /**
705  * Read 8x8 block with residue after motion compensation.
706  *
707  * @param gb context for reading bits
708  * @param block place to store read data
709  * @param masks_count number of masks to decode
710  * @return 0 on success, negative value in other cases
711  */
712 static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count)
713 {
714  int coef_list[128];
715  int mode_list[128];
716  int i, sign, mask, ccoef, mode;
717  int list_start = 64, list_end = 64, list_pos;
718  int nz_coeff[64];
719  int nz_coeff_count = 0;
720 
721  coef_list[list_end] = 4; mode_list[list_end++] = 0;
722  coef_list[list_end] = 24; mode_list[list_end++] = 0;
723  coef_list[list_end] = 44; mode_list[list_end++] = 0;
724  coef_list[list_end] = 0; mode_list[list_end++] = 2;
725 
726  for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
727  for (i = 0; i < nz_coeff_count; i++) {
728  if (!get_bits1(gb))
729  continue;
730  if (block[nz_coeff[i]] < 0)
731  block[nz_coeff[i]] -= mask;
732  else
733  block[nz_coeff[i]] += mask;
734  masks_count--;
735  if (masks_count < 0)
736  return 0;
737  }
738  list_pos = list_start;
739  while (list_pos < list_end) {
740  if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
741  list_pos++;
742  continue;
743  }
744  ccoef = coef_list[list_pos];
745  mode = mode_list[list_pos];
746  switch (mode) {
747  case 0:
748  coef_list[list_pos] = ccoef + 4;
749  mode_list[list_pos] = 1;
750  case 2:
751  if (mode == 2) {
752  coef_list[list_pos] = 0;
753  mode_list[list_pos++] = 0;
754  }
755  for (i = 0; i < 4; i++, ccoef++) {
756  if (get_bits1(gb)) {
757  coef_list[--list_start] = ccoef;
758  mode_list[ list_start] = 3;
759  } else {
760  nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
761  sign = -get_bits1(gb);
762  block[bink_scan[ccoef]] = (mask ^ sign) - sign;
763  masks_count--;
764  if (masks_count < 0)
765  return 0;
766  }
767  }
768  break;
769  case 1:
770  mode_list[list_pos] = 2;
771  for (i = 0; i < 3; i++) {
772  ccoef += 4;
773  coef_list[list_end] = ccoef;
774  mode_list[list_end++] = 2;
775  }
776  break;
777  case 3:
778  nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
779  sign = -get_bits1(gb);
780  block[bink_scan[ccoef]] = (mask ^ sign) - sign;
781  coef_list[list_pos] = 0;
782  mode_list[list_pos++] = 0;
783  masks_count--;
784  if (masks_count < 0)
785  return 0;
786  break;
787  }
788  }
789  }
790 
791  return 0;
792 }
793 
794 /**
795  * Copy 8x8 block from source to destination, where src and dst may be overlapped
796  */
797 static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
798 {
799  uint8_t tmp[64];
800  int i;
801  for (i = 0; i < 8; i++)
802  memcpy(tmp + i*8, src + i*stride, 8);
803  for (i = 0; i < 8; i++)
804  memcpy(dst + i*stride, tmp + i*8, 8);
805 }
806 
808  int plane_idx, int is_key, int is_chroma)
809 {
810  int blk, ret;
811  int i, j, bx, by;
812  uint8_t *dst, *ref, *ref_start, *ref_end;
813  int v, col[2];
814  const uint8_t *scan;
815  int xoff, yoff;
816  LOCAL_ALIGNED_16(int16_t, block, [64]);
817  LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
818  int coordmap[64];
819  int ybias = is_key ? -15 : 0;
820  int qp;
821 
822  const int stride = frame->linesize[plane_idx];
823  int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
824  int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
825 
827  ref_start = frame->data[plane_idx];
828  ref_end = frame->data[plane_idx] + (bh * frame->linesize[plane_idx] + bw) * 8;
829 
830  for (i = 0; i < 64; i++)
831  coordmap[i] = (i & 7) + (i >> 3) * stride;
832 
833  for (by = 0; by < bh; by++) {
834  for (i = 0; i < BINKB_NB_SRC; i++) {
835  if ((ret = binkb_read_bundle(c, gb, i)) < 0)
836  return ret;
837  }
838 
839  dst = frame->data[plane_idx] + 8*by*stride;
840  for (bx = 0; bx < bw; bx++, dst += 8) {
842  switch (blk) {
843  case 0:
844  break;
845  case 1:
846  scan = bink_patterns[get_bits(gb, 4)];
847  i = 0;
848  do {
849  int mode, run;
850 
851  mode = get_bits1(gb);
852  run = get_bits(gb, binkb_runbits[i]) + 1;
853 
854  i += run;
855  if (i > 64) {
856  av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
857  return AVERROR_INVALIDDATA;
858  }
859  if (mode) {
861  for (j = 0; j < run; j++)
862  dst[coordmap[*scan++]] = v;
863  } else {
864  for (j = 0; j < run; j++)
865  dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
866  }
867  } while (i < 63);
868  if (i == 63)
869  dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
870  break;
871  case 2:
872  memset(dctblock, 0, sizeof(*dctblock) * 64);
873  dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
875  read_dct_coeffs(gb, dctblock, bink_scan, (const int32_t (*)[64])binkb_intra_quant, qp);
876  c->binkdsp.idct_put(dst, stride, dctblock);
877  break;
878  case 3:
879  xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
880  yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
881  ref = dst + xoff + yoff * stride;
882  if (ref < ref_start || ref + 8*stride > ref_end) {
883  av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
884  } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
885  c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
886  } else {
887  put_pixels8x8_overlapped(dst, ref, stride);
888  }
889  c->bdsp.clear_block(block);
891  read_residue(gb, block, v);
892  c->binkdsp.add_pixels8(dst, block, stride);
893  break;
894  case 4:
895  xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
896  yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
897  ref = dst + xoff + yoff * stride;
898  if (ref < ref_start || ref + 8 * stride > ref_end) {
899  av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
900  } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
901  c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
902  } else {
903  put_pixels8x8_overlapped(dst, ref, stride);
904  }
905  memset(dctblock, 0, sizeof(*dctblock) * 64);
906  dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
908  read_dct_coeffs(gb, dctblock, bink_scan, (const int32_t (*)[64])binkb_inter_quant, qp);
909  c->binkdsp.idct_add(dst, stride, dctblock);
910  break;
911  case 5:
913  c->bdsp.fill_block_tab[1](dst, v, stride, 8);
914  break;
915  case 6:
916  for (i = 0; i < 2; i++)
917  col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
918  for (i = 0; i < 8; i++) {
920  for (j = 0; j < 8; j++, v >>= 1)
921  dst[i*stride + j] = col[v & 1];
922  }
923  break;
924  case 7:
925  xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
926  yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
927  ref = dst + xoff + yoff * stride;
928  if (ref < ref_start || ref + 8 * stride > ref_end) {
929  av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
930  } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
931  c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
932  } else {
933  put_pixels8x8_overlapped(dst, ref, stride);
934  }
935  break;
936  case 8:
937  for (i = 0; i < 8; i++)
938  memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
939  c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
940  break;
941  default:
942  av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
943  return AVERROR_INVALIDDATA;
944  }
945  }
946  }
947  if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
948  skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
949 
950  return 0;
951 }
952 
954  int plane_idx, int is_chroma)
955 {
956  int blk, ret;
957  int i, j, bx, by;
958  uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
959  int v, col[2];
960  const uint8_t *scan;
961  int xoff, yoff;
962  LOCAL_ALIGNED_16(int16_t, block, [64]);
963  LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
964  LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
965  int coordmap[64];
966 
967  const int stride = frame->linesize[plane_idx];
968  int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
969  int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
970  int width = c->avctx->width >> is_chroma;
971 
972  init_lengths(c, FFMAX(width, 8), bw);
973  for (i = 0; i < BINK_NB_SRC; i++)
974  read_bundle(gb, c, i);
975 
976  ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
977  : frame->data[plane_idx];
978  ref_end = ref_start
979  + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
980 
981  for (i = 0; i < 64; i++)
982  coordmap[i] = (i & 7) + (i >> 3) * stride;
983 
984  for (by = 0; by < bh; by++) {
985  if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
986  return ret;
987  if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
988  return ret;
989  if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0)
990  return ret;
991  if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0)
992  return ret;
993  if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0)
994  return ret;
995  if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0)
996  return ret;
997  if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
998  return ret;
999  if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
1000  return ret;
1001  if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0)
1002  return ret;
1003 
1004  if (by == bh)
1005  break;
1006  dst = frame->data[plane_idx] + 8*by*stride;
1007  prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
1008  : frame->data[plane_idx]) + 8*by*stride;
1009  for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
1010  blk = get_value(c, BINK_SRC_BLOCK_TYPES);
1011  // 16x16 block type on odd line means part of the already decoded block, so skip it
1012  if ((by & 1) && blk == SCALED_BLOCK) {
1013  bx++;
1014  dst += 8;
1015  prev += 8;
1016  continue;
1017  }
1018  switch (blk) {
1019  case SKIP_BLOCK:
1020  c->hdsp.put_pixels_tab[1][0](dst, prev, stride, 8);
1021  break;
1022  case SCALED_BLOCK:
1024  switch (blk) {
1025  case RUN_BLOCK:
1026  scan = bink_patterns[get_bits(gb, 4)];
1027  i = 0;
1028  do {
1029  int run = get_value(c, BINK_SRC_RUN) + 1;
1030 
1031  i += run;
1032  if (i > 64) {
1033  av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1034  return AVERROR_INVALIDDATA;
1035  }
1036  if (get_bits1(gb)) {
1037  v = get_value(c, BINK_SRC_COLORS);
1038  for (j = 0; j < run; j++)
1039  ublock[*scan++] = v;
1040  } else {
1041  for (j = 0; j < run; j++)
1042  ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1043  }
1044  } while (i < 63);
1045  if (i == 63)
1046  ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1047  break;
1048  case INTRA_BLOCK:
1049  memset(dctblock, 0, sizeof(*dctblock) * 64);
1050  dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1051  read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1052  c->binkdsp.idct_put(ublock, 8, dctblock);
1053  break;
1054  case FILL_BLOCK:
1055  v = get_value(c, BINK_SRC_COLORS);
1056  c->bdsp.fill_block_tab[0](dst, v, stride, 16);
1057  break;
1058  case PATTERN_BLOCK:
1059  for (i = 0; i < 2; i++)
1060  col[i] = get_value(c, BINK_SRC_COLORS);
1061  for (j = 0; j < 8; j++) {
1062  v = get_value(c, BINK_SRC_PATTERN);
1063  for (i = 0; i < 8; i++, v >>= 1)
1064  ublock[i + j*8] = col[v & 1];
1065  }
1066  break;
1067  case RAW_BLOCK:
1068  for (j = 0; j < 8; j++)
1069  for (i = 0; i < 8; i++)
1070  ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
1071  break;
1072  default:
1073  av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
1074  return AVERROR_INVALIDDATA;
1075  }
1076  if (blk != FILL_BLOCK)
1077  c->binkdsp.scale_block(ublock, dst, stride);
1078  bx++;
1079  dst += 8;
1080  prev += 8;
1081  break;
1082  case MOTION_BLOCK:
1083  xoff = get_value(c, BINK_SRC_X_OFF);
1084  yoff = get_value(c, BINK_SRC_Y_OFF);
1085  ref = prev + xoff + yoff * stride;
1086  if (ref < ref_start || ref > ref_end) {
1087  av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1088  bx*8 + xoff, by*8 + yoff);
1089  return AVERROR_INVALIDDATA;
1090  }
1091  c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1092  break;
1093  case RUN_BLOCK:
1094  scan = bink_patterns[get_bits(gb, 4)];
1095  i = 0;
1096  do {
1097  int run = get_value(c, BINK_SRC_RUN) + 1;
1098 
1099  i += run;
1100  if (i > 64) {
1101  av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1102  return AVERROR_INVALIDDATA;
1103  }
1104  if (get_bits1(gb)) {
1105  v = get_value(c, BINK_SRC_COLORS);
1106  for (j = 0; j < run; j++)
1107  dst[coordmap[*scan++]] = v;
1108  } else {
1109  for (j = 0; j < run; j++)
1110  dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1111  }
1112  } while (i < 63);
1113  if (i == 63)
1114  dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1115  break;
1116  case RESIDUE_BLOCK:
1117  xoff = get_value(c, BINK_SRC_X_OFF);
1118  yoff = get_value(c, BINK_SRC_Y_OFF);
1119  ref = prev + xoff + yoff * stride;
1120  if (ref < ref_start || ref > ref_end) {
1121  av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1122  bx*8 + xoff, by*8 + yoff);
1123  return AVERROR_INVALIDDATA;
1124  }
1125  c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1126  c->bdsp.clear_block(block);
1127  v = get_bits(gb, 7);
1128  read_residue(gb, block, v);
1129  c->binkdsp.add_pixels8(dst, block, stride);
1130  break;
1131  case INTRA_BLOCK:
1132  memset(dctblock, 0, sizeof(*dctblock) * 64);
1133  dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1134  read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1135  c->binkdsp.idct_put(dst, stride, dctblock);
1136  break;
1137  case FILL_BLOCK:
1138  v = get_value(c, BINK_SRC_COLORS);
1139  c->bdsp.fill_block_tab[1](dst, v, stride, 8);
1140  break;
1141  case INTER_BLOCK:
1142  xoff = get_value(c, BINK_SRC_X_OFF);
1143  yoff = get_value(c, BINK_SRC_Y_OFF);
1144  ref = prev + xoff + yoff * stride;
1145  if (ref < ref_start || ref > ref_end) {
1146  av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1147  bx*8 + xoff, by*8 + yoff);
1148  return -1;
1149  }
1150  c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1151  memset(dctblock, 0, sizeof(*dctblock) * 64);
1152  dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
1153  read_dct_coeffs(gb, dctblock, bink_scan, bink_inter_quant, -1);
1154  c->binkdsp.idct_add(dst, stride, dctblock);
1155  break;
1156  case PATTERN_BLOCK:
1157  for (i = 0; i < 2; i++)
1158  col[i] = get_value(c, BINK_SRC_COLORS);
1159  for (i = 0; i < 8; i++) {
1160  v = get_value(c, BINK_SRC_PATTERN);
1161  for (j = 0; j < 8; j++, v >>= 1)
1162  dst[i*stride + j] = col[v & 1];
1163  }
1164  break;
1165  case RAW_BLOCK:
1166  for (i = 0; i < 8; i++)
1167  memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
1168  c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
1169  break;
1170  default:
1171  av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
1172  return AVERROR_INVALIDDATA;
1173  }
1174  }
1175  }
1176  if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
1177  skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
1178 
1179  return 0;
1180 }
1181 
1182 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
1183 {
1184  BinkContext * const c = avctx->priv_data;
1185  AVFrame *frame = data;
1186  GetBitContext gb;
1187  int plane, plane_idx, ret;
1188  int bits_count = pkt->size << 3;
1189 
1190  if (c->version > 'b') {
1191  if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
1192  return ret;
1193  } else {
1194  if ((ret = ff_reget_buffer(avctx, c->last)) < 0)
1195  return ret;
1196  if ((ret = av_frame_ref(frame, c->last)) < 0)
1197  return ret;
1198  }
1199 
1200  init_get_bits(&gb, pkt->data, bits_count);
1201  if (c->has_alpha) {
1202  if (c->version >= 'i')
1203  skip_bits_long(&gb, 32);
1204  if ((ret = bink_decode_plane(c, frame, &gb, 3, 0)) < 0)
1205  return ret;
1206  }
1207  if (c->version >= 'i')
1208  skip_bits_long(&gb, 32);
1209 
1210  c->frame_num++;
1211 
1212  for (plane = 0; plane < 3; plane++) {
1213  plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
1214 
1215  if (c->version > 'b') {
1216  if ((ret = bink_decode_plane(c, frame, &gb, plane_idx, !!plane)) < 0)
1217  return ret;
1218  } else {
1219  if ((ret = binkb_decode_plane(c, frame, &gb, plane_idx,
1220  c->frame_num == 1, !!plane)) < 0)
1221  return ret;
1222  }
1223  if (get_bits_count(&gb) >= bits_count)
1224  break;
1225  }
1226  emms_c();
1227 
1228  if (c->version > 'b') {
1229  av_frame_unref(c->last);
1230  if ((ret = av_frame_ref(c->last, frame)) < 0)
1231  return ret;
1232  }
1233 
1234  *got_frame = 1;
1235 
1236  /* always report that the buffer was completely consumed */
1237  return pkt->size;
1238 }
1239 
1240 /**
1241  * Caclulate quantization tables for version b
1242  */
1243 static av_cold void binkb_calc_quant(void)
1244 {
1245  uint8_t inv_bink_scan[64];
1246  static const int s[64]={
1247  1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1248  1489322693,2065749918,1945893874,1751258219,1489322693,1170153332, 806015634, 410903207,
1249  1402911301,1945893874,1832991949,1649649171,1402911301,1102260336, 759250125, 387062357,
1250  1262586814,1751258219,1649649171,1484645031,1262586814, 992008094, 683307060, 348346918,
1251  1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1252  843633538,1170153332,1102260336, 992008094, 843633538, 662838617, 456571181, 232757969,
1253  581104888, 806015634, 759250125, 683307060, 581104888, 456571181, 314491699, 160326478,
1254  296244703, 410903207, 387062357, 348346918, 296244703, 232757969, 160326478, 81733730,
1255  };
1256  int i, j;
1257 #define C (1LL<<30)
1258  for (i = 0; i < 64; i++)
1259  inv_bink_scan[bink_scan[i]] = i;
1260 
1261  for (j = 0; j < 16; j++) {
1262  for (i = 0; i < 64; i++) {
1263  int k = inv_bink_scan[i];
1264  binkb_intra_quant[j][k] = binkb_intra_seed[i] * (int64_t)s[i] *
1265  binkb_num[j]/(binkb_den[j] * (C>>12));
1266  binkb_inter_quant[j][k] = binkb_inter_seed[i] * (int64_t)s[i] *
1267  binkb_num[j]/(binkb_den[j] * (C>>12));
1268  }
1269  }
1270 }
1271 
1273 {
1274  BinkContext * const c = avctx->priv_data;
1275  static VLC_TYPE table[16 * 128][2];
1276  static int binkb_initialised = 0;
1277  int i, ret;
1278  int flags;
1279 
1280  c->version = avctx->codec_tag >> 24;
1281  if (avctx->extradata_size < 4) {
1282  av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
1283  return AVERROR_INVALIDDATA;
1284  }
1285  flags = AV_RL32(avctx->extradata);
1286  c->has_alpha = flags & BINK_FLAG_ALPHA;
1287  c->swap_planes = c->version >= 'h';
1288  if (!bink_trees[15].table) {
1289  for (i = 0; i < 16; i++) {
1290  const int maxbits = bink_tree_lens[i][15];
1291  bink_trees[i].table = table + i*128;
1292  bink_trees[i].table_allocated = 1 << maxbits;
1293  init_vlc(&bink_trees[i], maxbits, 16,
1294  bink_tree_lens[i], 1, 1,
1296  }
1297  }
1298  c->avctx = avctx;
1299 
1300  c->last = av_frame_alloc();
1301  if (!c->last)
1302  return AVERROR(ENOMEM);
1303 
1304  if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
1305  return ret;
1306 
1308 
1309  ff_blockdsp_init(&c->bdsp, avctx);
1310  ff_hpeldsp_init(&c->hdsp, avctx->flags);
1311  ff_binkdsp_init(&c->binkdsp);
1312 
1313  if ((ret = init_bundles(c)) < 0) {
1314  free_bundles(c);
1315  return ret;
1316  }
1317 
1318  if (c->version == 'b') {
1319  if (!binkb_initialised) {
1320  binkb_calc_quant();
1321  binkb_initialised = 1;
1322  }
1323  }
1324 
1325  return 0;
1326 }
1327 
1329 {
1330  BinkContext * const c = avctx->priv_data;
1331 
1332  av_frame_free(&c->last);
1333 
1334  free_bundles(c);
1335  return 0;
1336 }
1337 
1338 static void flush(AVCodecContext *avctx)
1339 {
1340  BinkContext * const c = avctx->priv_data;
1341 
1342  c->frame_num = 0;
1343 }
1344 
1346  .name = "binkvideo",
1347  .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
1348  .type = AVMEDIA_TYPE_VIDEO,
1349  .id = AV_CODEC_ID_BINKVIDEO,
1350  .priv_data_size = sizeof(BinkContext),
1351  .init = decode_init,
1352  .close = decode_end,
1353  .decode = decode_frame,
1354  .flush = flush,
1355  .capabilities = CODEC_CAP_DR1,
1356 };