FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aacsbr_template.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  * MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
36 {
37  static const struct {
38  const void *sbr_codes, *sbr_bits;
39  const unsigned int table_size, elem_size;
40  } sbr_tmp[] = {
41  SBR_VLC_ROW(t_huffman_env_1_5dB),
42  SBR_VLC_ROW(f_huffman_env_1_5dB),
43  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
44  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
45  SBR_VLC_ROW(t_huffman_env_3_0dB),
46  SBR_VLC_ROW(f_huffman_env_3_0dB),
47  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
48  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
49  SBR_VLC_ROW(t_huffman_noise_3_0dB),
50  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
51  };
52 
53  // SBR VLC table initialization
54  SBR_INIT_VLC_STATIC(0, 1098);
55  SBR_INIT_VLC_STATIC(1, 1092);
56  SBR_INIT_VLC_STATIC(2, 768);
57  SBR_INIT_VLC_STATIC(3, 1026);
58  SBR_INIT_VLC_STATIC(4, 1058);
59  SBR_INIT_VLC_STATIC(5, 1052);
60  SBR_INIT_VLC_STATIC(6, 544);
61  SBR_INIT_VLC_STATIC(7, 544);
62  SBR_INIT_VLC_STATIC(8, 592);
63  SBR_INIT_VLC_STATIC(9, 512);
64 
66 
68 }
69 
70 /** Places SBR in pure upsampling mode. */
72  sbr->start = 0;
73  // Init defults used in pure upsampling mode
74  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
75  sbr->m[1] = 0;
76  // Reset values for first SBR header
77  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
78  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
79 }
80 
82 {
83  if(sbr->mdct.mdct_bits)
84  return;
85  sbr->kx[0] = sbr->kx[1];
86  sbr_turnoff(sbr);
87  sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
88  sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
89  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
90  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
91  * and scale back down at synthesis. */
92  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
93  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
94  AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
95  AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
96  aacsbr_func_ptr_init(&sbr->c);
97 }
98 
100 {
101  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
102  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
103 }
104 
105 static int qsort_comparison_function_int16(const void *a, const void *b)
106 {
107  return *(const int16_t *)a - *(const int16_t *)b;
108 }
109 
110 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
111 {
112  int i;
113  for (i = 0; i <= last_el; i++)
114  if (table[i] == needle)
115  return 1;
116  return 0;
117 }
118 
119 /// Limiter Frequency Band Table (14496-3 sp04 p198)
121 {
122  int k;
123  if (sbr->bs_limiter_bands > 0) {
124  static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
125  Q23(1.18509277094158210129f), //2^(0.49/2)
126  Q23(1.11987160404675912501f) }; //2^(0.49/3)
127  const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
128  int16_t patch_borders[7];
129  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
130 
131  patch_borders[0] = sbr->kx[1];
132  for (k = 1; k <= sbr->num_patches; k++)
133  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
134 
135  memcpy(sbr->f_tablelim, sbr->f_tablelow,
136  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
137  if (sbr->num_patches > 1)
138  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
139  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
140 
141  qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
142  sizeof(sbr->f_tablelim[0]),
144 
145  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
146  while (out < sbr->f_tablelim + sbr->n_lim) {
147 #if USE_FIXED
148  if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
149 #else
150  if (*in >= *out * lim_bands_per_octave_warped) {
151 #endif /* USE_FIXED */
152  *++out = *in++;
153  } else if (*in == *out ||
154  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
155  in++;
156  sbr->n_lim--;
157  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
158  *out = *in++;
159  sbr->n_lim--;
160  } else {
161  *++out = *in++;
162  }
163  }
164  } else {
165  sbr->f_tablelim[0] = sbr->f_tablelow[0];
166  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
167  sbr->n_lim = 1;
168  }
169 }
170 
172 {
173  unsigned int cnt = get_bits_count(gb);
174  uint8_t bs_header_extra_1;
175  uint8_t bs_header_extra_2;
176  int old_bs_limiter_bands = sbr->bs_limiter_bands;
177  SpectrumParameters old_spectrum_params;
178 
179  sbr->start = 1;
180 
181  // Save last spectrum parameters variables to compare to new ones
182  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
183 
184  sbr->bs_amp_res_header = get_bits1(gb);
185  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
186  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
187  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
188  skip_bits(gb, 2); // bs_reserved
189 
190  bs_header_extra_1 = get_bits1(gb);
191  bs_header_extra_2 = get_bits1(gb);
192 
193  if (bs_header_extra_1) {
194  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
197  } else {
201  }
202 
203  // Check if spectrum parameters changed
204  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
205  sbr->reset = 1;
206 
207  if (bs_header_extra_2) {
208  sbr->bs_limiter_bands = get_bits(gb, 2);
209  sbr->bs_limiter_gains = get_bits(gb, 2);
210  sbr->bs_interpol_freq = get_bits1(gb);
211  sbr->bs_smoothing_mode = get_bits1(gb);
212  } else {
213  sbr->bs_limiter_bands = 2;
214  sbr->bs_limiter_gains = 2;
215  sbr->bs_interpol_freq = 1;
216  sbr->bs_smoothing_mode = 1;
217  }
218 
219  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
220  sbr_make_f_tablelim(sbr);
221 
222  return get_bits_count(gb) - cnt;
223 }
224 
225 static int array_min_int16(const int16_t *array, int nel)
226 {
227  int i, min = array[0];
228  for (i = 1; i < nel; i++)
229  min = FFMIN(array[i], min);
230  return min;
231 }
232 
233 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
234 {
235  // Requirements (14496-3 sp04 p205)
236  if (n_master <= 0) {
237  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
238  return -1;
239  }
240  if (bs_xover_band >= n_master) {
241  av_log(avctx, AV_LOG_ERROR,
242  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
243  bs_xover_band);
244  return -1;
245  }
246  return 0;
247 }
248 
249 /// Master Frequency Band Table (14496-3 sp04 p194)
251  SpectrumParameters *spectrum)
252 {
253  unsigned int temp, max_qmf_subbands = 0;
254  unsigned int start_min, stop_min;
255  int k;
256  const int8_t *sbr_offset_ptr;
257  int16_t stop_dk[13];
258 
259  if (sbr->sample_rate < 32000) {
260  temp = 3000;
261  } else if (sbr->sample_rate < 64000) {
262  temp = 4000;
263  } else
264  temp = 5000;
265 
266  switch (sbr->sample_rate) {
267  case 16000:
268  sbr_offset_ptr = sbr_offset[0];
269  break;
270  case 22050:
271  sbr_offset_ptr = sbr_offset[1];
272  break;
273  case 24000:
274  sbr_offset_ptr = sbr_offset[2];
275  break;
276  case 32000:
277  sbr_offset_ptr = sbr_offset[3];
278  break;
279  case 44100: case 48000: case 64000:
280  sbr_offset_ptr = sbr_offset[4];
281  break;
282  case 88200: case 96000: case 128000: case 176400: case 192000:
283  sbr_offset_ptr = sbr_offset[5];
284  break;
285  default:
287  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
288  return -1;
289  }
290 
291  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
292  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
293 
294  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
295 
296  if (spectrum->bs_stop_freq < 14) {
297  sbr->k[2] = stop_min;
298  make_bands(stop_dk, stop_min, 64, 13);
299  qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
300  for (k = 0; k < spectrum->bs_stop_freq; k++)
301  sbr->k[2] += stop_dk[k];
302  } else if (spectrum->bs_stop_freq == 14) {
303  sbr->k[2] = 2*sbr->k[0];
304  } else if (spectrum->bs_stop_freq == 15) {
305  sbr->k[2] = 3*sbr->k[0];
306  } else {
308  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
309  return -1;
310  }
311  sbr->k[2] = FFMIN(64, sbr->k[2]);
312 
313  // Requirements (14496-3 sp04 p205)
314  if (sbr->sample_rate <= 32000) {
315  max_qmf_subbands = 48;
316  } else if (sbr->sample_rate == 44100) {
317  max_qmf_subbands = 35;
318  } else if (sbr->sample_rate >= 48000)
319  max_qmf_subbands = 32;
320  else
321  av_assert0(0);
322 
323  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
325  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
326  return -1;
327  }
328 
329  if (!spectrum->bs_freq_scale) {
330  int dk, k2diff;
331 
332  dk = spectrum->bs_alter_scale + 1;
333  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
335  return -1;
336 
337  for (k = 1; k <= sbr->n_master; k++)
338  sbr->f_master[k] = dk;
339 
340  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
341  if (k2diff < 0) {
342  sbr->f_master[1]--;
343  sbr->f_master[2]-= (k2diff < -1);
344  } else if (k2diff) {
345  sbr->f_master[sbr->n_master]++;
346  }
347 
348  sbr->f_master[0] = sbr->k[0];
349  for (k = 1; k <= sbr->n_master; k++)
350  sbr->f_master[k] += sbr->f_master[k - 1];
351 
352  } else {
353  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
354  int two_regions, num_bands_0;
355  int vdk0_max, vdk1_min;
356  int16_t vk0[49];
357 #if USE_FIXED
358  int tmp, nz = 0;
359 #endif /* USE_FIXED */
360 
361  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
362  two_regions = 1;
363  sbr->k[1] = 2 * sbr->k[0];
364  } else {
365  two_regions = 0;
366  sbr->k[1] = sbr->k[2];
367  }
368 
369 #if USE_FIXED
370  tmp = (sbr->k[1] << 23) / sbr->k[0];
371  while (tmp < 0x40000000) {
372  tmp <<= 1;
373  nz++;
374  }
375  tmp = fixed_log(tmp - 0x80000000);
376  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
377  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
378  num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
379 #else
380  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
381 #endif /* USE_FIXED */
382 
383  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
384  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
385  return -1;
386  }
387 
388  vk0[0] = 0;
389 
390  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
391 
392  qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
393  vdk0_max = vk0[num_bands_0];
394 
395  vk0[0] = sbr->k[0];
396  for (k = 1; k <= num_bands_0; k++) {
397  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
398  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
399  return -1;
400  }
401  vk0[k] += vk0[k-1];
402  }
403 
404  if (two_regions) {
405  int16_t vk1[49];
406 #if USE_FIXED
407  int num_bands_1;
408 
409  tmp = (sbr->k[2] << 23) / sbr->k[1];
410  nz = 0;
411  while (tmp < 0x40000000) {
412  tmp <<= 1;
413  nz++;
414  }
415  tmp = fixed_log(tmp - 0x80000000);
416  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
417  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
418  if (spectrum->bs_alter_scale)
419  tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
420  num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
421 #else
422  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
423  : 1.0f; // bs_alter_scale = {0,1}
424  int num_bands_1 = lrintf(half_bands * invwarp *
425  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
426 #endif /* USE_FIXED */
427  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
428 
429  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
430 
431  if (vdk1_min < vdk0_max) {
432  int change;
433  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
434  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
435  vk1[1] += change;
436  vk1[num_bands_1] -= change;
437  }
438 
439  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
440 
441  vk1[0] = sbr->k[1];
442  for (k = 1; k <= num_bands_1; k++) {
443  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
444  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
445  return -1;
446  }
447  vk1[k] += vk1[k-1];
448  }
449 
450  sbr->n_master = num_bands_0 + num_bands_1;
452  return -1;
453  memcpy(&sbr->f_master[0], vk0,
454  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
455  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
456  num_bands_1 * sizeof(sbr->f_master[0]));
457 
458  } else {
459  sbr->n_master = num_bands_0;
461  return -1;
462  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
463  }
464  }
465 
466  return 0;
467 }
468 
469 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
471 {
472  int i, k, last_k = -1, last_msb = -1, sb = 0;
473  int msb = sbr->k[0];
474  int usb = sbr->kx[1];
475  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
476 
477  sbr->num_patches = 0;
478 
479  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
480  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
481  } else
482  k = sbr->n_master;
483 
484  do {
485  int odd = 0;
486  if (k == last_k && msb == last_msb) {
487  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
488  return AVERROR_INVALIDDATA;
489  }
490  last_k = k;
491  last_msb = msb;
492  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
493  sb = sbr->f_master[i];
494  odd = (sb + sbr->k[0]) & 1;
495  }
496 
497  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
498  // After this check the final number of patches can still be six which is
499  // illegal however the Coding Technologies decoder check stream has a final
500  // count of 6 patches
501  if (sbr->num_patches > 5) {
502  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
503  return -1;
504  }
505 
506  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
507  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
508 
509  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
510  usb = sb;
511  msb = sb;
512  sbr->num_patches++;
513  } else
514  msb = sbr->kx[1];
515 
516  if (sbr->f_master[k] - sb < 3)
517  k = sbr->n_master;
518  } while (sb != sbr->kx[1] + sbr->m[1]);
519 
520  if (sbr->num_patches > 1 &&
521  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
522  sbr->num_patches--;
523 
524  return 0;
525 }
526 
527 /// Derived Frequency Band Tables (14496-3 sp04 p197)
529 {
530  int k, temp;
531 #if USE_FIXED
532  int nz = 0;
533 #endif /* USE_FIXED */
534 
535  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
536  sbr->n[0] = (sbr->n[1] + 1) >> 1;
537 
538  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
539  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
540  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
541  sbr->kx[1] = sbr->f_tablehigh[0];
542 
543  // Requirements (14496-3 sp04 p205)
544  if (sbr->kx[1] + sbr->m[1] > 64) {
546  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
547  return -1;
548  }
549  if (sbr->kx[1] > 32) {
550  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
551  return -1;
552  }
553 
554  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
555  temp = sbr->n[1] & 1;
556  for (k = 1; k <= sbr->n[0]; k++)
557  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
558 #if USE_FIXED
559  temp = (sbr->k[2] << 23) / sbr->kx[1];
560  while (temp < 0x40000000) {
561  temp <<= 1;
562  nz++;
563  }
564  temp = fixed_log(temp - 0x80000000);
565  temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
566  temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
567 
568  sbr->n_q = (temp + 0x400000) >> 23;
569  if (sbr->n_q < 1)
570  sbr->n_q = 1;
571 #else
573  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
574 #endif /* USE_FIXED */
575 
576  if (sbr->n_q > 5) {
577  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
578  return -1;
579  }
580 
581  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
582  temp = 0;
583  for (k = 1; k <= sbr->n_q; k++) {
584  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
585  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
586  }
587 
588  if (sbr_hf_calc_npatches(ac, sbr) < 0)
589  return -1;
590 
591  sbr_make_f_tablelim(sbr);
592 
593  sbr->data[0].f_indexnoise = 0;
594  sbr->data[1].f_indexnoise = 0;
595 
596  return 0;
597 }
598 
600  int elements)
601 {
602  int i;
603  for (i = 0; i < elements; i++) {
604  vec[i] = get_bits1(gb);
605  }
606 }
607 
608 /** ceil(log2(index+1)) */
609 static const int8_t ceil_log2[] = {
610  0, 1, 2, 2, 3, 3,
611 };
612 
614  GetBitContext *gb, SBRData *ch_data)
615 {
616  int i;
617  int bs_pointer = 0;
618  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
619  int abs_bord_trail = 16;
620  int num_rel_lead, num_rel_trail;
621  unsigned bs_num_env_old = ch_data->bs_num_env;
622 
623  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
624  ch_data->bs_amp_res = sbr->bs_amp_res_header;
625  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
626 
627  switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
628  case FIXFIX:
629  ch_data->bs_num_env = 1 << get_bits(gb, 2);
630  num_rel_lead = ch_data->bs_num_env - 1;
631  if (ch_data->bs_num_env == 1)
632  ch_data->bs_amp_res = 0;
633 
634  if (ch_data->bs_num_env > 4) {
636  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
637  ch_data->bs_num_env);
638  return -1;
639  }
640 
641  ch_data->t_env[0] = 0;
642  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
643 
644  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
645  ch_data->bs_num_env;
646  for (i = 0; i < num_rel_lead; i++)
647  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
648 
649  ch_data->bs_freq_res[1] = get_bits1(gb);
650  for (i = 1; i < ch_data->bs_num_env; i++)
651  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
652  break;
653  case FIXVAR:
654  abs_bord_trail += get_bits(gb, 2);
655  num_rel_trail = get_bits(gb, 2);
656  ch_data->bs_num_env = num_rel_trail + 1;
657  ch_data->t_env[0] = 0;
658  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
659 
660  for (i = 0; i < num_rel_trail; i++)
661  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
662  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
663 
664  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
665 
666  for (i = 0; i < ch_data->bs_num_env; i++)
667  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
668  break;
669  case VARFIX:
670  ch_data->t_env[0] = get_bits(gb, 2);
671  num_rel_lead = get_bits(gb, 2);
672  ch_data->bs_num_env = num_rel_lead + 1;
673  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
674 
675  for (i = 0; i < num_rel_lead; i++)
676  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
677 
678  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
679 
680  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
681  break;
682  case VARVAR:
683  ch_data->t_env[0] = get_bits(gb, 2);
684  abs_bord_trail += get_bits(gb, 2);
685  num_rel_lead = get_bits(gb, 2);
686  num_rel_trail = get_bits(gb, 2);
687  ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
688 
689  if (ch_data->bs_num_env > 5) {
691  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
692  ch_data->bs_num_env);
693  return -1;
694  }
695 
696  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
697 
698  for (i = 0; i < num_rel_lead; i++)
699  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
700  for (i = 0; i < num_rel_trail; i++)
701  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
702  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
703 
704  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
705 
706  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
707  break;
708  }
709 
710  av_assert0(bs_pointer >= 0);
711  if (bs_pointer > ch_data->bs_num_env + 1) {
713  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
714  bs_pointer);
715  return -1;
716  }
717 
718  for (i = 1; i <= ch_data->bs_num_env; i++) {
719  if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
720  av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
721  return -1;
722  }
723  }
724 
725  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
726 
727  ch_data->t_q[0] = ch_data->t_env[0];
728  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
729  if (ch_data->bs_num_noise > 1) {
730  int idx;
731  if (ch_data->bs_frame_class == FIXFIX) {
732  idx = ch_data->bs_num_env >> 1;
733  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
734  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
735  } else { // VARFIX
736  if (!bs_pointer)
737  idx = 1;
738  else if (bs_pointer == 1)
739  idx = ch_data->bs_num_env - 1;
740  else // bs_pointer > 1
741  idx = bs_pointer - 1;
742  }
743  ch_data->t_q[1] = ch_data->t_env[idx];
744  }
745 
746  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
747  ch_data->e_a[1] = -1;
748  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
749  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
750  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
751  ch_data->e_a[1] = bs_pointer - 1;
752 
753  return 0;
754 }
755 
756 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
757  //These variables are saved from the previous frame rather than copied
758  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
759  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
760  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
761 
762  //These variables are read from the bitstream and therefore copied
763  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
764  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
765  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
766  dst->bs_num_env = src->bs_num_env;
767  dst->bs_amp_res = src->bs_amp_res;
768  dst->bs_num_noise = src->bs_num_noise;
769  dst->bs_frame_class = src->bs_frame_class;
770  dst->e_a[1] = src->e_a[1];
771 }
772 
773 /// Read how the envelope and noise floor data is delta coded
775  SBRData *ch_data)
776 {
777  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
778  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
779 }
780 
781 /// Read inverse filtering data
783  SBRData *ch_data)
784 {
785  int i;
786 
787  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
788  for (i = 0; i < sbr->n_q; i++)
789  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
790 }
791 
793  SBRData *ch_data, int ch)
794 {
795  int bits;
796  int i, j, k;
797  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
798  int t_lav, f_lav;
799  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
800  const int odd = sbr->n[1] & 1;
801 
802  if (sbr->bs_coupling && ch) {
803  if (ch_data->bs_amp_res) {
804  bits = 5;
809  } else {
810  bits = 6;
815  }
816  } else {
817  if (ch_data->bs_amp_res) {
818  bits = 6;
823  } else {
824  bits = 7;
829  }
830  }
831 
832 #if USE_FIXED
833  for (i = 0; i < ch_data->bs_num_env; i++) {
834  if (ch_data->bs_df_env[i]) {
835  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
836  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
837  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
838  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][j].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
839  } else if (ch_data->bs_freq_res[i + 1]) {
840  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
841  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
842  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][k].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
843  }
844  } else {
845  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
846  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
847  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][k].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
848  }
849  }
850  } else {
851  ch_data->env_facs[i + 1][0].mant = delta * get_bits(gb, bits); // bs_env_start_value_balance
852  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
853  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i + 1][j - 1].mant + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
854  }
855  }
856 #else
857  for (i = 0; i < ch_data->bs_num_env; i++) {
858  if (ch_data->bs_df_env[i]) {
859  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
860  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
861  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
862  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
863  } else if (ch_data->bs_freq_res[i + 1]) {
864  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
865  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
866  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
867  }
868  } else {
869  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
870  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
871  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
872  }
873  }
874  } else {
875  ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
876  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
877  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
878  }
879  }
880 #endif /* USE_FIXED */
881 
882  //assign 0th elements of env_facs from last elements
883  memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
884  sizeof(ch_data->env_facs[0]));
885 }
886 
888  SBRData *ch_data, int ch)
889 {
890  int i, j;
891  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
892  int t_lav, f_lav;
893  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
894 
895  if (sbr->bs_coupling && ch) {
900  } else {
905  }
906 
907 #if USE_FIXED
908  for (i = 0; i < ch_data->bs_num_noise; i++) {
909  if (ch_data->bs_df_noise[i]) {
910  for (j = 0; j < sbr->n_q; j++)
911  ch_data->noise_facs[i + 1][j].mant = ch_data->noise_facs[i][j].mant + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
912  } else {
913  ch_data->noise_facs[i + 1][0].mant = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
914  for (j = 1; j < sbr->n_q; j++)
915  ch_data->noise_facs[i + 1][j].mant = ch_data->noise_facs[i + 1][j - 1].mant + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
916  }
917  }
918 #else
919  for (i = 0; i < ch_data->bs_num_noise; i++) {
920  if (ch_data->bs_df_noise[i]) {
921  for (j = 0; j < sbr->n_q; j++)
922  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
923  } else {
924  ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
925  for (j = 1; j < sbr->n_q; j++)
926  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
927  }
928  }
929 #endif /* USE_FIXED */
930 
931  //assign 0th elements of noise_facs from last elements
932  memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
933  sizeof(ch_data->noise_facs[0]));
934 }
935 
937  GetBitContext *gb,
938  int bs_extension_id, int *num_bits_left)
939 {
940  switch (bs_extension_id) {
941  case EXTENSION_ID_PS:
942  if (!ac->oc[1].m4ac.ps) {
943  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
944  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
945  *num_bits_left = 0;
946  } else {
947 #if 1
948  *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
950 #else
951  avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
952  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
953  *num_bits_left = 0;
954 #endif
955  }
956  break;
957  default:
958  // some files contain 0-padding
959  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
960  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
961  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
962  *num_bits_left = 0;
963  break;
964  }
965 }
966 
969  GetBitContext *gb)
970 {
971  if (get_bits1(gb)) // bs_data_extra
972  skip_bits(gb, 4); // bs_reserved
973 
974  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
975  return -1;
976  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
977  read_sbr_invf(sbr, gb, &sbr->data[0]);
978  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
979  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
980 
981  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
982  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
983 
984  return 0;
985 }
986 
989  GetBitContext *gb)
990 {
991  if (get_bits1(gb)) // bs_data_extra
992  skip_bits(gb, 8); // bs_reserved
993 
994  if ((sbr->bs_coupling = get_bits1(gb))) {
995  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
996  return -1;
997  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
998  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
999  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1000  read_sbr_invf(sbr, gb, &sbr->data[0]);
1001  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1002  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1003  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
1004  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1005  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
1006  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1007  } else {
1008  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1009  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1010  return -1;
1011  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1012  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1013  read_sbr_invf(sbr, gb, &sbr->data[0]);
1014  read_sbr_invf(sbr, gb, &sbr->data[1]);
1015  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
1016  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
1017  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1018  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1019  }
1020 
1021  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1022  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1023  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1024  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1025 
1026  return 0;
1027 }
1028 
1029 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1030  GetBitContext *gb, int id_aac)
1031 {
1032  unsigned int cnt = get_bits_count(gb);
1033 
1034  sbr->id_aac = id_aac;
1035 
1036  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1037  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1038  sbr_turnoff(sbr);
1039  return get_bits_count(gb) - cnt;
1040  }
1041  } else if (id_aac == TYPE_CPE) {
1042  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1043  sbr_turnoff(sbr);
1044  return get_bits_count(gb) - cnt;
1045  }
1046  } else {
1047  av_log(ac->avctx, AV_LOG_ERROR,
1048  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1049  sbr_turnoff(sbr);
1050  return get_bits_count(gb) - cnt;
1051  }
1052  if (get_bits1(gb)) { // bs_extended_data
1053  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1054  if (num_bits_left == 15)
1055  num_bits_left += get_bits(gb, 8); // bs_esc_count
1056 
1057  num_bits_left <<= 3;
1058  while (num_bits_left > 7) {
1059  num_bits_left -= 2;
1060  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1061  }
1062  if (num_bits_left < 0) {
1063  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1064  }
1065  if (num_bits_left > 0)
1066  skip_bits(gb, num_bits_left);
1067  }
1068 
1069  return get_bits_count(gb) - cnt;
1070 }
1071 
1073 {
1074  int err;
1075  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1076  if (err >= 0)
1077  err = sbr_make_f_derived(ac, sbr);
1078  if (err < 0) {
1079  av_log(ac->avctx, AV_LOG_ERROR,
1080  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1081  sbr_turnoff(sbr);
1082  }
1083 }
1084 
1085 /**
1086  * Decode Spectral Band Replication extension data; reference: table 4.55.
1087  *
1088  * @param crc flag indicating the presence of CRC checksum
1089  * @param cnt length of TYPE_FIL syntactic element in bytes
1090  *
1091  * @return Returns number of bytes consumed from the TYPE_FIL element.
1092  */
1094  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1095 {
1096  unsigned int num_sbr_bits = 0, num_align_bits;
1097  unsigned bytes_read;
1098  GetBitContext gbc = *gb_host, *gb = &gbc;
1099  skip_bits_long(gb_host, cnt*8 - 4);
1100 
1101  sbr->reset = 0;
1102 
1103  if (!sbr->sample_rate)
1104  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1105  if (!ac->oc[1].m4ac.ext_sample_rate)
1106  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1107 
1108  if (crc) {
1109  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1110  num_sbr_bits += 10;
1111  }
1112 
1113  //Save some state from the previous frame.
1114  sbr->kx[0] = sbr->kx[1];
1115  sbr->m[0] = sbr->m[1];
1116  sbr->kx_and_m_pushed = 1;
1117 
1118  num_sbr_bits++;
1119  if (get_bits1(gb)) // bs_header_flag
1120  num_sbr_bits += read_sbr_header(sbr, gb);
1121 
1122  if (sbr->reset)
1123  sbr_reset(ac, sbr);
1124 
1125  if (sbr->start)
1126  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1127 
1128  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1129  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1130 
1131  if (bytes_read > cnt) {
1132  av_log(ac->avctx, AV_LOG_ERROR,
1133  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1134  }
1135  return cnt;
1136 }
1137 
1138 /**
1139  * Analysis QMF Bank (14496-3 sp04 p206)
1140  *
1141  * @param x pointer to the beginning of the first sample window
1142  * @param W array of complex-valued samples split into subbands
1143  */
1144 #ifndef sbr_qmf_analysis
1145 #if USE_FIXED
1146 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1147 #else
1149 #endif /* USE_FIXED */
1150  SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1151  INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1152 {
1153  int i;
1154  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1155  memcpy(x+288, in, 1024*sizeof(x[0]));
1156  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1157  // are not supported
1158  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1159  sbrdsp->sum64x5(z);
1160  sbrdsp->qmf_pre_shuffle(z);
1161  mdct->imdct_half(mdct, z, z+64);
1162  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1163  x += 32;
1164  }
1165 }
1166 #endif
1167 
1168 /**
1169  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1170  * (14496-3 sp04 p206)
1171  */
1172 #ifndef sbr_qmf_synthesis
1173 static void sbr_qmf_synthesis(FFTContext *mdct,
1174 #if USE_FIXED
1175  SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1176 #else
1177  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1178 #endif /* USE_FIXED */
1179  INTFLOAT *out, INTFLOAT X[2][38][64],
1180  INTFLOAT mdct_buf[2][64],
1181  INTFLOAT *v0, int *v_off, const unsigned int div)
1182 {
1183  int i, n;
1184  const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1185  const int step = 128 >> div;
1186  INTFLOAT *v;
1187  for (i = 0; i < 32; i++) {
1188  if (*v_off < step) {
1189  int saved_samples = (1280 - 128) >> div;
1190  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1191  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1192  } else {
1193  *v_off -= step;
1194  }
1195  v = v0 + *v_off;
1196  if (div) {
1197  for (n = 0; n < 32; n++) {
1198  X[0][i][ n] = -X[0][i][n];
1199  X[0][i][32+n] = X[1][i][31-n];
1200  }
1201  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1202  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1203  } else {
1204  sbrdsp->neg_odd_64(X[1][i]);
1205  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1206  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1207  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1208  }
1209  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1210  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1211  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1212  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1213  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1214  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1215  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1216  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1217  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1218  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1219  out += 64 >> div;
1220  }
1221 }
1222 #endif
1223 
1224 /// Generate the subband filtered lowband
1226  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1227  int buf_idx)
1228 {
1229  int i, k;
1230  const int t_HFGen = 8;
1231  const int i_f = 32;
1232  memset(X_low, 0, 32*sizeof(*X_low));
1233  for (k = 0; k < sbr->kx[1]; k++) {
1234  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1235  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1236  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1237  }
1238  }
1239  buf_idx = 1-buf_idx;
1240  for (k = 0; k < sbr->kx[0]; k++) {
1241  for (i = 0; i < t_HFGen; i++) {
1242  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1243  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1244  }
1245  }
1246  return 0;
1247 }
1248 
1249 /// High Frequency Generator (14496-3 sp04 p215)
1251  INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1252  const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1253  const INTFLOAT bw_array[5], const uint8_t *t_env,
1254  int bs_num_env)
1255 {
1256  int j, x;
1257  int g = 0;
1258  int k = sbr->kx[1];
1259  for (j = 0; j < sbr->num_patches; j++) {
1260  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1261  const int p = sbr->patch_start_subband[j] + x;
1262  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1263  g++;
1264  g--;
1265 
1266  if (g < 0) {
1267  av_log(ac->avctx, AV_LOG_ERROR,
1268  "ERROR : no subband found for frequency %d\n", k);
1269  return -1;
1270  }
1271 
1272  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1273  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1274  alpha0[p], alpha1[p], bw_array[g],
1275  2 * t_env[0], 2 * t_env[bs_num_env]);
1276  }
1277  }
1278  if (k < sbr->m[1] + sbr->kx[1])
1279  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1280 
1281  return 0;
1282 }
1283 
1284 /// Generate the subband filtered lowband
1285 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1286  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1287  const INTFLOAT X_low[32][40][2], int ch)
1288 {
1289  int k, i;
1290  const int i_f = 32;
1291  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1292  memset(X, 0, 2*sizeof(*X));
1293  for (k = 0; k < sbr->kx[0]; k++) {
1294  for (i = 0; i < i_Temp; i++) {
1295  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1296  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1297  }
1298  }
1299  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1300  for (i = 0; i < i_Temp; i++) {
1301  X[0][i][k] = Y0[i + i_f][k][0];
1302  X[1][i][k] = Y0[i + i_f][k][1];
1303  }
1304  }
1305 
1306  for (k = 0; k < sbr->kx[1]; k++) {
1307  for (i = i_Temp; i < 38; i++) {
1308  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1309  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1310  }
1311  }
1312  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1313  for (i = i_Temp; i < i_f; i++) {
1314  X[0][i][k] = Y1[i][k][0];
1315  X[1][i][k] = Y1[i][k][1];
1316  }
1317  }
1318  return 0;
1319 }
1320 
1321 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1322  * (14496-3 sp04 p217)
1323  */
1325  SBRData *ch_data, int e_a[2])
1326 {
1327  int e, i, m;
1328 
1329  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1330  for (e = 0; e < ch_data->bs_num_env; e++) {
1331  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1332  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1333  int k;
1334 
1335  if (sbr->kx[1] != table[0]) {
1336  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1337  "Derived frequency tables were not regenerated.\n");
1338  sbr_turnoff(sbr);
1339  return AVERROR_BUG;
1340  }
1341  for (i = 0; i < ilim; i++)
1342  for (m = table[i]; m < table[i + 1]; m++)
1343  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1344 
1345  // ch_data->bs_num_noise > 1 => 2 noise floors
1346  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1347  for (i = 0; i < sbr->n_q; i++)
1348  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1349  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1350 
1351  for (i = 0; i < sbr->n[1]; i++) {
1352  if (ch_data->bs_add_harmonic_flag) {
1353  const unsigned int m_midpoint =
1354  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1355 
1356  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1357  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1358  }
1359  }
1360 
1361  for (i = 0; i < ilim; i++) {
1362  int additional_sinusoid_present = 0;
1363  for (m = table[i]; m < table[i + 1]; m++) {
1364  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1365  additional_sinusoid_present = 1;
1366  break;
1367  }
1368  }
1369  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1370  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1371  }
1372  }
1373 
1374  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1375  return 0;
1376 }
1377 
1378 /// Estimation of current envelope (14496-3 sp04 p218)
1379 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1380  SpectralBandReplication *sbr, SBRData *ch_data)
1381 {
1382  int e, m;
1383  int kx1 = sbr->kx[1];
1384 
1385  if (sbr->bs_interpol_freq) {
1386  for (e = 0; e < ch_data->bs_num_env; e++) {
1387 #if USE_FIXED
1388  const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1389 #else
1390  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1391 #endif /* USE_FIXED */
1392  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1393  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1394 
1395  for (m = 0; m < sbr->m[1]; m++) {
1396  AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1397 #if USE_FIXED
1398  e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1399 #else
1400  e_curr[e][m] = sum * recip_env_size;
1401 #endif /* USE_FIXED */
1402  }
1403  }
1404  } else {
1405  int k, p;
1406 
1407  for (e = 0; e < ch_data->bs_num_env; e++) {
1408  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1409  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1410  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1411  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1412 
1413  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1414 #if USE_FIXED
1415  SoftFloat sum = { 0, 0 };
1416  const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1417  for (k = table[p]; k < table[p + 1]; k++) {
1418  sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1419  }
1420  sum = av_mul_sf(sum, den);
1421 #else
1422  float sum = 0.0f;
1423  const int den = env_size * (table[p + 1] - table[p]);
1424 
1425  for (k = table[p]; k < table[p + 1]; k++) {
1426  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1427  }
1428  sum /= den;
1429 #endif /* USE_FIXED */
1430  for (k = table[p]; k < table[p + 1]; k++) {
1431  e_curr[e][k - kx1] = sum;
1432  }
1433  }
1434  }
1435  }
1436 }
1437 
1439  INTFLOAT* L, INTFLOAT* R)
1440 {
1441  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1442  int ch;
1443  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1444  int err;
1445 
1446  if (id_aac != sbr->id_aac) {
1447  av_log(ac->avctx, AV_LOG_ERROR,
1448  "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1449  sbr_turnoff(sbr);
1450  }
1451 
1452  if (!sbr->kx_and_m_pushed) {
1453  sbr->kx[0] = sbr->kx[1];
1454  sbr->m[0] = sbr->m[1];
1455  } else {
1456  sbr->kx_and_m_pushed = 0;
1457  }
1458 
1459  if (sbr->start) {
1460  sbr_dequant(sbr, id_aac);
1461  }
1462  for (ch = 0; ch < nch; ch++) {
1463  /* decode channel */
1464  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1465  (INTFLOAT*)sbr->qmf_filter_scratch,
1466  sbr->data[ch].W, sbr->data[ch].Ypos);
1467  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1468  (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1469  sbr->data[ch].Ypos);
1470  sbr->data[ch].Ypos ^= 1;
1471  if (sbr->start) {
1472  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1473  (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1474  sbr_chirp(sbr, &sbr->data[ch]);
1475  av_assert0(sbr->data[ch].bs_num_env > 0);
1476  sbr_hf_gen(ac, sbr, sbr->X_high,
1477  (const INTFLOAT (*)[40][2]) sbr->X_low,
1478  (const INTFLOAT (*)[2]) sbr->alpha0,
1479  (const INTFLOAT (*)[2]) sbr->alpha1,
1480  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1481  sbr->data[ch].bs_num_env);
1482 
1483  // hf_adj
1484  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1485  if (!err) {
1486  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1487  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1488  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1489  (const INTFLOAT (*)[40][2]) sbr->X_high,
1490  sbr, &sbr->data[ch],
1491  sbr->data[ch].e_a);
1492  }
1493  }
1494 
1495  /* synthesis */
1496  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1497  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1498  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1499  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1500  }
1501 
1502  if (ac->oc[1].m4ac.ps == 1) {
1503  if (sbr->ps.start) {
1504  AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1505  } else {
1506  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1507  }
1508  nch = 2;
1509  }
1510 
1511  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1512  L, sbr->X[0], sbr->qmf_filter_scratch,
1513  sbr->data[0].synthesis_filterbank_samples,
1514  &sbr->data[0].synthesis_filterbank_samples_offset,
1515  downsampled);
1516  if (nch == 2)
1517  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1518  R, sbr->X[1], sbr->qmf_filter_scratch,
1519  sbr->data[1].synthesis_filterbank_samples,
1520  &sbr->data[1].synthesis_filterbank_samples_offset,
1521  downsampled);
1522 }
1523 
1525 {
1526  c->sbr_lf_gen = sbr_lf_gen;
1528  c->sbr_x_gen = sbr_x_gen;
1530 
1531 #if !USE_FIXED
1532  if(ARCH_MIPS)
1534 #endif
1535 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
void AAC_RENAME() ff_sbrdsp_init(SBRDSPContext *s)
static int qsort_comparison_function_int16(const void *a, const void *b)
float v
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static int array_min_int16(const int16_t *array, int nel)
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:268
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.h:69
unsigned bs_smoothing_mode
Definition: sbr.h:151
AVCodecContext * avctx
Definition: aac.h:290
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
AAC_FLOAT(* sum_square)(INTFLOAT(*x)[2], int n)
Definition: sbrdsp.h:30
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:260
static float sbr_qmf_window_us[640]
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, INTFLOAT *out, INTFLOAT X[2][38][64], INTFLOAT mdct_buf[2][64], INTFLOAT *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
else temp
Definition: vf_mcdeint.c:257
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:217
const char * g
Definition: vf_curves.c:108
Definition: aac.h:56
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2], const INTFLOAT(*alpha0)[2], const INTFLOAT(*alpha1)[2], const INTFLOAT bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aac.h:57
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
int AAC_RENAME() ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:158
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
const char * b
Definition: vf_curves.c:109
Definition: aacsbr.h:59
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:157
#define VLC_TYPE
Definition: get_bits.h:61
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:138
void(* sbr_hf_assemble)(INTFLOAT Y1[38][64][2], const INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:122
GLfloat v0
Definition: opengl_enc.c:107
int(* sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Definition: sbr.h:126
Definition: aacsbr.h:61
uint8_t bs_xover_band
Definition: sbr.h:45
int profile
profile
Definition: avcodec.h:3115
SpectrumParameters spectrum_params
Definition: sbr.h:142
Definition: aac.h:58
Definition: aacsbr.h:60
#define USE_FIXED
Definition: aac_defines.h:25
#define AAC_RENAME_32(x)
Definition: aac_defines.h:84
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:984
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:261
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
AAC_SIGNE num_patches
Definition: sbr.h:181
uint8_t bits
Definition: crc.c:295
uint8_t
#define av_cold
Definition: attributes.h:74
AAC_FLOAT noise_facs[3][5]
Noise scalefactors.
Definition: sbr.h:101
float delta
AAC_SIGNE n_lim
Number of limiter bands.
Definition: sbr.h:170
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.h:36
#define INTFLOAT
Definition: aac_defines.h:85
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:176
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:609
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:212
AAC_SIGNE bs_num_noise
Definition: sbr.h:71
#define lrintf(x)
Definition: libm_mips.h:70
av_cold void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
SBRData data[2]
Definition: sbr.h:163
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
uint8_t bs_df_noise[2]
Definition: sbr.h:73
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, INTFLOAT(*alpha0)[2], INTFLOAT(*alpha1)[2], const INTFLOAT X_low[32][40][2], int k0)
Definition: sbr.h:129
static int fixed_log(int x)
Definition: aacsbr_fixed.c:87
#define av_log(a,...)
uint8_t patch_num_subbands[6]
Definition: sbr.h:182
unsigned m
Definition: audioconvert.c:187
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:178
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.h:72
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
MPEG4AudioConfig m4ac
Definition: aac.h:124
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:107
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:174
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:133
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:3124
AAC_SIGNE k[5]
k0, k1, k2
Definition: sbr.h:154
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:159
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:72
static const struct endianess table[]
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
#define ff_mdct_init
Definition: fft.h:167
#define FFMAX(a, b)
Definition: common.h:79
unsigned bs_interpol_freq
Definition: sbr.h:150
#define AAC_RENAME(x)
Definition: aac_defines.h:83
unsigned f_indexnoise
Definition: sbr.h:108
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:105
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
#define FFMIN(a, b)
Definition: common.h:81
#define AAC_FLOAT
Definition: aac_defines.h:88
uint8_t bs_freq_scale
Definition: sbr.h:51
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
static float sbr_qmf_window_ds[320]
< window coefficients for analysis/synthesis QMF banks
unsigned bs_limiter_gains
Definition: sbr.h:149
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static const int CONST_RECIP_LN2
Definition: aacsbr_fixed.c:78
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:287
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:195
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:199
static void aacsbr_func_ptr_init(AACSBRContext *c)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:555
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
static void sbr_env_estimate(AAC_FLOAT(*e_curr)[48], INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
int n
Definition: avisynth_c.h:547
uint8_t bs_freq_res[7]
Definition: sbr.h:70
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:1014
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:212
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
AAC_SIGNE bs_num_env
Definition: sbr.h:69
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:57
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:197
static const int8_t ceil_log2[]
ceil(log2(index+1))
void(* hf_gen)(INTFLOAT(*X_high)[2], const INTFLOAT(*X_low)[2], const INTFLOAT alpha0[2], const INTFLOAT alpha1[2], INTFLOAT bw, int start, int end)
Definition: sbrdsp.h:37
AVS_Value src
Definition: avisynth_c.h:482
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
main external API structure.
Definition: avcodec.h:1502
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the entry wise product of two vectors of floats, add a third vector of floats and store the...
Definition: float_dsp.h:121
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:304
static const int CONST_076923
Definition: aacsbr_fixed.c:79
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:297
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
#define W(a, i, v)
Definition: jpegls.h:122
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:188
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:1046
AAC_FLOAT env_facs[6][48]
Envelope scalefactors.
Definition: sbr.h:99
uint8_t bs_noise_bands
Definition: sbr.h:53
main AAC context
Definition: aac.h:288
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:162
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
uint8_t bs_stop_freq
Definition: sbr.h:44
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:172
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:127
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Generate the subband filtered lowband.
OutputConfiguration oc[2]
Definition: aac.h:349
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Definition: sbr.h:119
if(ret< 0)
Definition: vf_mcdeint.c:280
#define log2f(x)
Definition: libm.h:127
#define ff_mdct_end
Definition: fft.h:168
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:97
static double c[64]
uint8_t patch_start_subband[6]
Definition: sbr.h:183
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:103
aacsbr functions pointers
Definition: sbr.h:118
Definition: aacsbr.h:62
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:180
Spectral Band Replication per channel data.
Definition: sbr.h:62
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:53
#define SBR_VLC_ROW(name)
Definition: aacsbr.h:78
unsigned bs_limiter_bands
Definition: sbr.h:148
uint8_t bs_alter_scale
Definition: sbr.h:52
unsigned bs_frame_class
Definition: sbr.h:67
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
uint8_t bs_df_env[5]
Definition: sbr.h:72
VLC_TYPE(* table)[2]
code, bits
Definition: get_bits.h:65
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
SBRDSPContext dsp
Definition: sbr.h:210
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:145
#define Q23(x)
Definition: aac_defines.h:92
#define av_always_inline
Definition: attributes.h:37
Definition: vf_geq.c:46
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:40
static VLC vlc_sbr[10]
Definition: aacsbr.c:50
AAC_SIGNE n_q
Number of noise floor bands.
Definition: sbr.h:168
unsigned bs_coupling
Definition: sbr.h:153
Spectral Band Replication.
Definition: sbr.h:137
static av_cold void aacsbr_tableinit(void)
float min
av_cold void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
av_cold void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
Initialize one SBR context.
PSContext ps
Definition: sbr.h:164
uint8_t bs_start_freq
Definition: sbr.h:43
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:166
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)