FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aacsbr.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * AAC Spectral Band Replication decoding functions
26  * @author Robert Swain ( rob opendot cl )
27  */
28 
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "aacsbr_tablegen.h"
34 #include "fft.h"
35 #include "aacps.h"
36 #include "sbrdsp.h"
37 #include "libavutil/internal.h"
38 #include "libavutil/libm.h"
39 #include "libavutil/avassert.h"
40 
41 #include <stdint.h>
42 #include <float.h>
43 #include <math.h>
44 
45 #define ENVELOPE_ADJUSTMENT_OFFSET 2
46 #define NOISE_FLOOR_OFFSET 6.0f
47 
48 #if ARCH_MIPS
49 #include "mips/aacsbr_mips.h"
50 #endif /* ARCH_MIPS */
51 
52 /**
53  * SBR VLC tables
54  */
55 enum {
66 };
67 
68 /**
69  * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
70  */
71 enum {
76 };
77 
78 enum {
80 };
81 
82 static VLC vlc_sbr[10];
83 static const int8_t vlc_sbr_lav[10] =
84  { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
85 
86 #define SBR_INIT_VLC_STATIC(num, size) \
87  INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
88  sbr_tmp[num].sbr_bits , 1, 1, \
89  sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
90  size)
91 
92 #define SBR_VLC_ROW(name) \
93  { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
94 
96 
98 {
99  static const struct {
100  const void *sbr_codes, *sbr_bits;
101  const unsigned int table_size, elem_size;
102  } sbr_tmp[] = {
103  SBR_VLC_ROW(t_huffman_env_1_5dB),
104  SBR_VLC_ROW(f_huffman_env_1_5dB),
105  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
106  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
107  SBR_VLC_ROW(t_huffman_env_3_0dB),
108  SBR_VLC_ROW(f_huffman_env_3_0dB),
109  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
110  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
111  SBR_VLC_ROW(t_huffman_noise_3_0dB),
112  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
113  };
114 
115  // SBR VLC table initialization
116  SBR_INIT_VLC_STATIC(0, 1098);
117  SBR_INIT_VLC_STATIC(1, 1092);
118  SBR_INIT_VLC_STATIC(2, 768);
119  SBR_INIT_VLC_STATIC(3, 1026);
120  SBR_INIT_VLC_STATIC(4, 1058);
121  SBR_INIT_VLC_STATIC(5, 1052);
122  SBR_INIT_VLC_STATIC(6, 544);
123  SBR_INIT_VLC_STATIC(7, 544);
124  SBR_INIT_VLC_STATIC(8, 592);
125  SBR_INIT_VLC_STATIC(9, 512);
126 
128 
129  ff_ps_init();
130 }
131 
132 /** Places SBR in pure upsampling mode. */
134  sbr->start = 0;
135  // Init defults used in pure upsampling mode
136  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
137  sbr->m[1] = 0;
138  // Reset values for first SBR header
139  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
140  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
141 }
142 
144 {
145  if(sbr->mdct.mdct_bits)
146  return;
147  sbr->kx[0] = sbr->kx[1];
148  sbr_turnoff(sbr);
151  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
152  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
153  * and scale back down at synthesis. */
154  ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
155  ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
156  ff_ps_ctx_init(&sbr->ps);
157  ff_sbrdsp_init(&sbr->dsp);
158  aacsbr_func_ptr_init(&sbr->c);
159 }
160 
162 {
163  ff_mdct_end(&sbr->mdct);
164  ff_mdct_end(&sbr->mdct_ana);
165 }
166 
167 static int qsort_comparison_function_int16(const void *a, const void *b)
168 {
169  return *(const int16_t *)a - *(const int16_t *)b;
170 }
171 
172 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
173 {
174  int i;
175  for (i = 0; i <= last_el; i++)
176  if (table[i] == needle)
177  return 1;
178  return 0;
179 }
180 
181 /// Limiter Frequency Band Table (14496-3 sp04 p198)
183 {
184  int k;
185  if (sbr->bs_limiter_bands > 0) {
186  static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
187  1.18509277094158210129f, //2^(0.49/2)
188  1.11987160404675912501f }; //2^(0.49/3)
189  const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
190  int16_t patch_borders[7];
191  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
192 
193  patch_borders[0] = sbr->kx[1];
194  for (k = 1; k <= sbr->num_patches; k++)
195  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
196 
197  memcpy(sbr->f_tablelim, sbr->f_tablelow,
198  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
199  if (sbr->num_patches > 1)
200  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
201  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
202 
203  qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
204  sizeof(sbr->f_tablelim[0]),
206 
207  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
208  while (out < sbr->f_tablelim + sbr->n_lim) {
209  if (*in >= *out * lim_bands_per_octave_warped) {
210  *++out = *in++;
211  } else if (*in == *out ||
212  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
213  in++;
214  sbr->n_lim--;
215  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
216  *out = *in++;
217  sbr->n_lim--;
218  } else {
219  *++out = *in++;
220  }
221  }
222  } else {
223  sbr->f_tablelim[0] = sbr->f_tablelow[0];
224  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
225  sbr->n_lim = 1;
226  }
227 }
228 
230 {
231  unsigned int cnt = get_bits_count(gb);
232  uint8_t bs_header_extra_1;
233  uint8_t bs_header_extra_2;
234  int old_bs_limiter_bands = sbr->bs_limiter_bands;
235  SpectrumParameters old_spectrum_params;
236 
237  sbr->start = 1;
238 
239  // Save last spectrum parameters variables to compare to new ones
240  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
241 
242  sbr->bs_amp_res_header = get_bits1(gb);
243  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
244  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
245  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
246  skip_bits(gb, 2); // bs_reserved
247 
248  bs_header_extra_1 = get_bits1(gb);
249  bs_header_extra_2 = get_bits1(gb);
250 
251  if (bs_header_extra_1) {
252  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
255  } else {
259  }
260 
261  // Check if spectrum parameters changed
262  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
263  sbr->reset = 1;
264 
265  if (bs_header_extra_2) {
266  sbr->bs_limiter_bands = get_bits(gb, 2);
267  sbr->bs_limiter_gains = get_bits(gb, 2);
268  sbr->bs_interpol_freq = get_bits1(gb);
269  sbr->bs_smoothing_mode = get_bits1(gb);
270  } else {
271  sbr->bs_limiter_bands = 2;
272  sbr->bs_limiter_gains = 2;
273  sbr->bs_interpol_freq = 1;
274  sbr->bs_smoothing_mode = 1;
275  }
276 
277  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
278  sbr_make_f_tablelim(sbr);
279 
280  return get_bits_count(gb) - cnt;
281 }
282 
283 static int array_min_int16(const int16_t *array, int nel)
284 {
285  int i, min = array[0];
286  for (i = 1; i < nel; i++)
287  min = FFMIN(array[i], min);
288  return min;
289 }
290 
291 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
292 {
293  int k, previous, present;
294  float base, prod;
295 
296  base = powf((float)stop / start, 1.0f / num_bands);
297  prod = start;
298  previous = start;
299 
300  for (k = 0; k < num_bands-1; k++) {
301  prod *= base;
302  present = lrintf(prod);
303  bands[k] = present - previous;
304  previous = present;
305  }
306  bands[num_bands-1] = stop - previous;
307 }
308 
309 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
310 {
311  // Requirements (14496-3 sp04 p205)
312  if (n_master <= 0) {
313  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
314  return -1;
315  }
316  if (bs_xover_band >= n_master) {
317  av_log(avctx, AV_LOG_ERROR,
318  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
319  bs_xover_band);
320  return -1;
321  }
322  return 0;
323 }
324 
325 /// Master Frequency Band Table (14496-3 sp04 p194)
327  SpectrumParameters *spectrum)
328 {
329  unsigned int temp, max_qmf_subbands = 0;
330  unsigned int start_min, stop_min;
331  int k;
332  const int8_t *sbr_offset_ptr;
333  int16_t stop_dk[13];
334 
335  if (sbr->sample_rate < 32000) {
336  temp = 3000;
337  } else if (sbr->sample_rate < 64000) {
338  temp = 4000;
339  } else
340  temp = 5000;
341 
342  switch (sbr->sample_rate) {
343  case 16000:
344  sbr_offset_ptr = sbr_offset[0];
345  break;
346  case 22050:
347  sbr_offset_ptr = sbr_offset[1];
348  break;
349  case 24000:
350  sbr_offset_ptr = sbr_offset[2];
351  break;
352  case 32000:
353  sbr_offset_ptr = sbr_offset[3];
354  break;
355  case 44100: case 48000: case 64000:
356  sbr_offset_ptr = sbr_offset[4];
357  break;
358  case 88200: case 96000: case 128000: case 176400: case 192000:
359  sbr_offset_ptr = sbr_offset[5];
360  break;
361  default:
363  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
364  return -1;
365  }
366 
367  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
368  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
369 
370  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
371 
372  if (spectrum->bs_stop_freq < 14) {
373  sbr->k[2] = stop_min;
374  make_bands(stop_dk, stop_min, 64, 13);
375  qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
376  for (k = 0; k < spectrum->bs_stop_freq; k++)
377  sbr->k[2] += stop_dk[k];
378  } else if (spectrum->bs_stop_freq == 14) {
379  sbr->k[2] = 2*sbr->k[0];
380  } else if (spectrum->bs_stop_freq == 15) {
381  sbr->k[2] = 3*sbr->k[0];
382  } else {
384  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
385  return -1;
386  }
387  sbr->k[2] = FFMIN(64, sbr->k[2]);
388 
389  // Requirements (14496-3 sp04 p205)
390  if (sbr->sample_rate <= 32000) {
391  max_qmf_subbands = 48;
392  } else if (sbr->sample_rate == 44100) {
393  max_qmf_subbands = 35;
394  } else if (sbr->sample_rate >= 48000)
395  max_qmf_subbands = 32;
396  else
397  av_assert0(0);
398 
399  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
401  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
402  return -1;
403  }
404 
405  if (!spectrum->bs_freq_scale) {
406  int dk, k2diff;
407 
408  dk = spectrum->bs_alter_scale + 1;
409  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
411  return -1;
412 
413  for (k = 1; k <= sbr->n_master; k++)
414  sbr->f_master[k] = dk;
415 
416  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
417  if (k2diff < 0) {
418  sbr->f_master[1]--;
419  sbr->f_master[2]-= (k2diff < -1);
420  } else if (k2diff) {
421  sbr->f_master[sbr->n_master]++;
422  }
423 
424  sbr->f_master[0] = sbr->k[0];
425  for (k = 1; k <= sbr->n_master; k++)
426  sbr->f_master[k] += sbr->f_master[k - 1];
427 
428  } else {
429  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
430  int two_regions, num_bands_0;
431  int vdk0_max, vdk1_min;
432  int16_t vk0[49];
433 
434  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
435  two_regions = 1;
436  sbr->k[1] = 2 * sbr->k[0];
437  } else {
438  two_regions = 0;
439  sbr->k[1] = sbr->k[2];
440  }
441 
442  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
443 
444  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
445  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
446  return -1;
447  }
448 
449  vk0[0] = 0;
450 
451  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
452 
453  qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
454  vdk0_max = vk0[num_bands_0];
455 
456  vk0[0] = sbr->k[0];
457  for (k = 1; k <= num_bands_0; k++) {
458  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
459  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
460  return -1;
461  }
462  vk0[k] += vk0[k-1];
463  }
464 
465  if (two_regions) {
466  int16_t vk1[49];
467  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
468  : 1.0f; // bs_alter_scale = {0,1}
469  int num_bands_1 = lrintf(half_bands * invwarp *
470  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
471 
472  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
473 
474  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
475 
476  if (vdk1_min < vdk0_max) {
477  int change;
478  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
479  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
480  vk1[1] += change;
481  vk1[num_bands_1] -= change;
482  }
483 
484  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
485 
486  vk1[0] = sbr->k[1];
487  for (k = 1; k <= num_bands_1; k++) {
488  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
489  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
490  return -1;
491  }
492  vk1[k] += vk1[k-1];
493  }
494 
495  sbr->n_master = num_bands_0 + num_bands_1;
497  return -1;
498  memcpy(&sbr->f_master[0], vk0,
499  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
500  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
501  num_bands_1 * sizeof(sbr->f_master[0]));
502 
503  } else {
504  sbr->n_master = num_bands_0;
506  return -1;
507  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
508  }
509  }
510 
511  return 0;
512 }
513 
514 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
516 {
517  int i, k, sb = 0;
518  int msb = sbr->k[0];
519  int usb = sbr->kx[1];
520  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
521 
522  sbr->num_patches = 0;
523 
524  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
525  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
526  } else
527  k = sbr->n_master;
528 
529  do {
530  int odd = 0;
531  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
532  sb = sbr->f_master[i];
533  odd = (sb + sbr->k[0]) & 1;
534  }
535 
536  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
537  // After this check the final number of patches can still be six which is
538  // illegal however the Coding Technologies decoder check stream has a final
539  // count of 6 patches
540  if (sbr->num_patches > 5) {
541  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
542  return -1;
543  }
544 
545  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
546  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
547 
548  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
549  usb = sb;
550  msb = sb;
551  sbr->num_patches++;
552  } else
553  msb = sbr->kx[1];
554 
555  if (sbr->f_master[k] - sb < 3)
556  k = sbr->n_master;
557  } while (sb != sbr->kx[1] + sbr->m[1]);
558 
559  if (sbr->num_patches > 1 &&
560  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
561  sbr->num_patches--;
562 
563  return 0;
564 }
565 
566 /// Derived Frequency Band Tables (14496-3 sp04 p197)
568 {
569  int k, temp;
570 
571  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
572  sbr->n[0] = (sbr->n[1] + 1) >> 1;
573 
574  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
575  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
576  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
577  sbr->kx[1] = sbr->f_tablehigh[0];
578 
579  // Requirements (14496-3 sp04 p205)
580  if (sbr->kx[1] + sbr->m[1] > 64) {
582  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
583  return -1;
584  }
585  if (sbr->kx[1] > 32) {
586  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
587  return -1;
588  }
589 
590  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
591  temp = sbr->n[1] & 1;
592  for (k = 1; k <= sbr->n[0]; k++)
593  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
594 
596  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
597  if (sbr->n_q > 5) {
598  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
599  return -1;
600  }
601 
602  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
603  temp = 0;
604  for (k = 1; k <= sbr->n_q; k++) {
605  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
606  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
607  }
608 
609  if (sbr_hf_calc_npatches(ac, sbr) < 0)
610  return -1;
611 
612  sbr_make_f_tablelim(sbr);
613 
614  sbr->data[0].f_indexnoise = 0;
615  sbr->data[1].f_indexnoise = 0;
616 
617  return 0;
618 }
619 
621  int elements)
622 {
623  int i;
624  for (i = 0; i < elements; i++) {
625  vec[i] = get_bits1(gb);
626  }
627 }
628 
629 /** ceil(log2(index+1)) */
630 static const int8_t ceil_log2[] = {
631  0, 1, 2, 2, 3, 3,
632 };
633 
635  GetBitContext *gb, SBRData *ch_data)
636 {
637  int i;
638  int bs_pointer = 0;
639  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
640  int abs_bord_trail = 16;
641  int num_rel_lead, num_rel_trail;
642  unsigned bs_num_env_old = ch_data->bs_num_env;
643 
644  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
645  ch_data->bs_amp_res = sbr->bs_amp_res_header;
646  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
647 
648  switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
649  case FIXFIX:
650  ch_data->bs_num_env = 1 << get_bits(gb, 2);
651  num_rel_lead = ch_data->bs_num_env - 1;
652  if (ch_data->bs_num_env == 1)
653  ch_data->bs_amp_res = 0;
654 
655  if (ch_data->bs_num_env > 4) {
657  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
658  ch_data->bs_num_env);
659  return -1;
660  }
661 
662  ch_data->t_env[0] = 0;
663  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
664 
665  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
666  ch_data->bs_num_env;
667  for (i = 0; i < num_rel_lead; i++)
668  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
669 
670  ch_data->bs_freq_res[1] = get_bits1(gb);
671  for (i = 1; i < ch_data->bs_num_env; i++)
672  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
673  break;
674  case FIXVAR:
675  abs_bord_trail += get_bits(gb, 2);
676  num_rel_trail = get_bits(gb, 2);
677  ch_data->bs_num_env = num_rel_trail + 1;
678  ch_data->t_env[0] = 0;
679  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
680 
681  for (i = 0; i < num_rel_trail; i++)
682  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
683  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
684 
685  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
686 
687  for (i = 0; i < ch_data->bs_num_env; i++)
688  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
689  break;
690  case VARFIX:
691  ch_data->t_env[0] = get_bits(gb, 2);
692  num_rel_lead = get_bits(gb, 2);
693  ch_data->bs_num_env = num_rel_lead + 1;
694  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
695 
696  for (i = 0; i < num_rel_lead; i++)
697  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
698 
699  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
700 
701  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
702  break;
703  case VARVAR:
704  ch_data->t_env[0] = get_bits(gb, 2);
705  abs_bord_trail += get_bits(gb, 2);
706  num_rel_lead = get_bits(gb, 2);
707  num_rel_trail = get_bits(gb, 2);
708  ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
709 
710  if (ch_data->bs_num_env > 5) {
712  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
713  ch_data->bs_num_env);
714  return -1;
715  }
716 
717  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
718 
719  for (i = 0; i < num_rel_lead; i++)
720  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
721  for (i = 0; i < num_rel_trail; i++)
722  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
723  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
724 
725  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
726 
727  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
728  break;
729  }
730 
731  av_assert0(bs_pointer >= 0);
732  if (bs_pointer > ch_data->bs_num_env + 1) {
734  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
735  bs_pointer);
736  return -1;
737  }
738 
739  for (i = 1; i <= ch_data->bs_num_env; i++) {
740  if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
741  av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
742  return -1;
743  }
744  }
745 
746  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
747 
748  ch_data->t_q[0] = ch_data->t_env[0];
749  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
750  if (ch_data->bs_num_noise > 1) {
751  int idx;
752  if (ch_data->bs_frame_class == FIXFIX) {
753  idx = ch_data->bs_num_env >> 1;
754  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
755  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
756  } else { // VARFIX
757  if (!bs_pointer)
758  idx = 1;
759  else if (bs_pointer == 1)
760  idx = ch_data->bs_num_env - 1;
761  else // bs_pointer > 1
762  idx = bs_pointer - 1;
763  }
764  ch_data->t_q[1] = ch_data->t_env[idx];
765  }
766 
767  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
768  ch_data->e_a[1] = -1;
769  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
770  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
771  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
772  ch_data->e_a[1] = bs_pointer - 1;
773 
774  return 0;
775 }
776 
777 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
778  //These variables are saved from the previous frame rather than copied
779  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
780  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
781  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
782 
783  //These variables are read from the bitstream and therefore copied
784  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
785  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
786  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
787  dst->bs_num_env = src->bs_num_env;
788  dst->bs_amp_res = src->bs_amp_res;
789  dst->bs_num_noise = src->bs_num_noise;
790  dst->bs_frame_class = src->bs_frame_class;
791  dst->e_a[1] = src->e_a[1];
792 }
793 
794 /// Read how the envelope and noise floor data is delta coded
796  SBRData *ch_data)
797 {
798  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
799  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
800 }
801 
802 /// Read inverse filtering data
804  SBRData *ch_data)
805 {
806  int i;
807 
808  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
809  for (i = 0; i < sbr->n_q; i++)
810  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
811 }
812 
814  SBRData *ch_data, int ch)
815 {
816  int bits;
817  int i, j, k;
818  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
819  int t_lav, f_lav;
820  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
821  const int odd = sbr->n[1] & 1;
822 
823  if (sbr->bs_coupling && ch) {
824  if (ch_data->bs_amp_res) {
825  bits = 5;
826  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
828  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
830  } else {
831  bits = 6;
832  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
834  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
836  }
837  } else {
838  if (ch_data->bs_amp_res) {
839  bits = 6;
840  t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
842  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
844  } else {
845  bits = 7;
846  t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
848  f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
850  }
851  }
852 
853  for (i = 0; i < ch_data->bs_num_env; i++) {
854  if (ch_data->bs_df_env[i]) {
855  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
856  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
857  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
858  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
859  } else if (ch_data->bs_freq_res[i + 1]) {
860  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
861  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
862  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
863  }
864  } else {
865  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
866  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
867  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
868  }
869  }
870  } else {
871  ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
872  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
873  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
874  }
875  }
876 
877  //assign 0th elements of env_facs from last elements
878  memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
879  sizeof(ch_data->env_facs[0]));
880 }
881 
883  SBRData *ch_data, int ch)
884 {
885  int i, j;
886  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
887  int t_lav, f_lav;
888  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
889 
890  if (sbr->bs_coupling && ch) {
891  t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
893  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
895  } else {
896  t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
898  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
900  }
901 
902  for (i = 0; i < ch_data->bs_num_noise; i++) {
903  if (ch_data->bs_df_noise[i]) {
904  for (j = 0; j < sbr->n_q; j++)
905  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
906  } else {
907  ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
908  for (j = 1; j < sbr->n_q; j++)
909  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
910  }
911  }
912 
913  //assign 0th elements of noise_facs from last elements
914  memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
915  sizeof(ch_data->noise_facs[0]));
916 }
917 
919  GetBitContext *gb,
920  int bs_extension_id, int *num_bits_left)
921 {
922  switch (bs_extension_id) {
923  case EXTENSION_ID_PS:
924  if (!ac->oc[1].m4ac.ps) {
925  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
926  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
927  *num_bits_left = 0;
928  } else {
929 #if 1
930  *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
932 #else
933  avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
934  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
935  *num_bits_left = 0;
936 #endif
937  }
938  break;
939  default:
940  // some files contain 0-padding
941  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
942  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
943  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
944  *num_bits_left = 0;
945  break;
946  }
947 }
948 
951  GetBitContext *gb)
952 {
953  if (get_bits1(gb)) // bs_data_extra
954  skip_bits(gb, 4); // bs_reserved
955 
956  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
957  return -1;
958  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
959  read_sbr_invf(sbr, gb, &sbr->data[0]);
960  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
961  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
962 
963  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
964  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
965 
966  return 0;
967 }
968 
971  GetBitContext *gb)
972 {
973  if (get_bits1(gb)) // bs_data_extra
974  skip_bits(gb, 8); // bs_reserved
975 
976  if ((sbr->bs_coupling = get_bits1(gb))) {
977  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
978  return -1;
979  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
980  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
981  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
982  read_sbr_invf(sbr, gb, &sbr->data[0]);
983  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
984  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
985  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
986  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
987  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
988  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
989  } else {
990  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
991  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
992  return -1;
993  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
994  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
995  read_sbr_invf(sbr, gb, &sbr->data[0]);
996  read_sbr_invf(sbr, gb, &sbr->data[1]);
997  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
998  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
999  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1000  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1001  }
1002 
1003  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1004  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1005  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1006  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1007 
1008  return 0;
1009 }
1010 
1011 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1012  GetBitContext *gb, int id_aac)
1013 {
1014  unsigned int cnt = get_bits_count(gb);
1015 
1016  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1017  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1018  sbr_turnoff(sbr);
1019  return get_bits_count(gb) - cnt;
1020  }
1021  } else if (id_aac == TYPE_CPE) {
1022  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1023  sbr_turnoff(sbr);
1024  return get_bits_count(gb) - cnt;
1025  }
1026  } else {
1027  av_log(ac->avctx, AV_LOG_ERROR,
1028  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1029  sbr_turnoff(sbr);
1030  return get_bits_count(gb) - cnt;
1031  }
1032  if (get_bits1(gb)) { // bs_extended_data
1033  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1034  if (num_bits_left == 15)
1035  num_bits_left += get_bits(gb, 8); // bs_esc_count
1036 
1037  num_bits_left <<= 3;
1038  while (num_bits_left > 7) {
1039  num_bits_left -= 2;
1040  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1041  }
1042  if (num_bits_left < 0) {
1043  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1044  }
1045  if (num_bits_left > 0)
1046  skip_bits(gb, num_bits_left);
1047  }
1048 
1049  return get_bits_count(gb) - cnt;
1050 }
1051 
1053 {
1054  int err;
1055  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1056  if (err >= 0)
1057  err = sbr_make_f_derived(ac, sbr);
1058  if (err < 0) {
1059  av_log(ac->avctx, AV_LOG_ERROR,
1060  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1061  sbr_turnoff(sbr);
1062  }
1063 }
1064 
1065 /**
1066  * Decode Spectral Band Replication extension data; reference: table 4.55.
1067  *
1068  * @param crc flag indicating the presence of CRC checksum
1069  * @param cnt length of TYPE_FIL syntactic element in bytes
1070  *
1071  * @return Returns number of bytes consumed from the TYPE_FIL element.
1072  */
1074  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1075 {
1076  unsigned int num_sbr_bits = 0, num_align_bits;
1077  unsigned bytes_read;
1078  GetBitContext gbc = *gb_host, *gb = &gbc;
1079  skip_bits_long(gb_host, cnt*8 - 4);
1080 
1081  sbr->reset = 0;
1082 
1083  if (!sbr->sample_rate)
1084  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1085  if (!ac->oc[1].m4ac.ext_sample_rate)
1086  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1087 
1088  if (crc) {
1089  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1090  num_sbr_bits += 10;
1091  }
1092 
1093  //Save some state from the previous frame.
1094  sbr->kx[0] = sbr->kx[1];
1095  sbr->m[0] = sbr->m[1];
1096  sbr->kx_and_m_pushed = 1;
1097 
1098  num_sbr_bits++;
1099  if (get_bits1(gb)) // bs_header_flag
1100  num_sbr_bits += read_sbr_header(sbr, gb);
1101 
1102  if (sbr->reset)
1103  sbr_reset(ac, sbr);
1104 
1105  if (sbr->start)
1106  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1107 
1108  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1109  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1110 
1111  if (bytes_read > cnt) {
1112  av_log(ac->avctx, AV_LOG_ERROR,
1113  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1114  }
1115  return cnt;
1116 }
1117 
1118 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1119 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1120 {
1121  int k, e;
1122  int ch;
1123 
1124  if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1125  float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1126  float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1127  for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1128  for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1129  float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1130  float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1131  float fac;
1132  if (temp1 > 1E20) {
1133  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1134  temp1 = 1;
1135  }
1136  fac = temp1 / (1.0f + temp2);
1137  sbr->data[0].env_facs[e][k] = fac;
1138  sbr->data[1].env_facs[e][k] = fac * temp2;
1139  }
1140  }
1141  for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1142  for (k = 0; k < sbr->n_q; k++) {
1143  float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1144  float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1145  float fac;
1146  if (temp1 > 1E20) {
1147  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1148  temp1 = 1;
1149  }
1150  fac = temp1 / (1.0f + temp2);
1151  sbr->data[0].noise_facs[e][k] = fac;
1152  sbr->data[1].noise_facs[e][k] = fac * temp2;
1153  }
1154  }
1155  } else { // SCE or one non-coupled CPE
1156  for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1157  float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1158  for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1159  for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
1160  sbr->data[ch].env_facs[e][k] =
1161  exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1162  if (sbr->data[ch].env_facs[e][k] > 1E20) {
1163  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1164  sbr->data[ch].env_facs[e][k] = 1;
1165  }
1166  }
1167 
1168  for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1169  for (k = 0; k < sbr->n_q; k++)
1170  sbr->data[ch].noise_facs[e][k] =
1171  exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1172  }
1173  }
1174 }
1175 
1176 /**
1177  * Analysis QMF Bank (14496-3 sp04 p206)
1178  *
1179  * @param x pointer to the beginning of the first sample window
1180  * @param W array of complex-valued samples split into subbands
1181  */
1182 #ifndef sbr_qmf_analysis
1184  SBRDSPContext *sbrdsp, const float *in, float *x,
1185  float z[320], float W[2][32][32][2], int buf_idx)
1186 {
1187  int i;
1188  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1189  memcpy(x+288, in, 1024*sizeof(x[0]));
1190  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1191  // are not supported
1192  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1193  sbrdsp->sum64x5(z);
1194  sbrdsp->qmf_pre_shuffle(z);
1195  mdct->imdct_half(mdct, z, z+64);
1196  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1197  x += 32;
1198  }
1199 }
1200 #endif
1201 
1202 /**
1203  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1204  * (14496-3 sp04 p206)
1205  */
1206 #ifndef sbr_qmf_synthesis
1207 static void sbr_qmf_synthesis(FFTContext *mdct,
1208  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1209  float *out, float X[2][38][64],
1210  float mdct_buf[2][64],
1211  float *v0, int *v_off, const unsigned int div)
1212 {
1213  int i, n;
1214  const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1215  const int step = 128 >> div;
1216  float *v;
1217  for (i = 0; i < 32; i++) {
1218  if (*v_off < step) {
1219  int saved_samples = (1280 - 128) >> div;
1220  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1221  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1222  } else {
1223  *v_off -= step;
1224  }
1225  v = v0 + *v_off;
1226  if (div) {
1227  for (n = 0; n < 32; n++) {
1228  X[0][i][ n] = -X[0][i][n];
1229  X[0][i][32+n] = X[1][i][31-n];
1230  }
1231  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1232  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1233  } else {
1234  sbrdsp->neg_odd_64(X[1][i]);
1235  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1236  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1237  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1238  }
1239  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1240  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1241  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1242  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1243  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1244  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1245  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1246  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1247  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1248  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1249  out += 64 >> div;
1250  }
1251 }
1252 #endif
1253 
1254 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1255  * (14496-3 sp04 p214)
1256  * Warning: This routine does not seem numerically stable.
1257  */
1259  float (*alpha0)[2], float (*alpha1)[2],
1260  const float X_low[32][40][2], int k0)
1261 {
1262  int k;
1263  for (k = 0; k < k0; k++) {
1264  LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
1265  float dk;
1266 
1267  dsp->autocorrelate(X_low[k], phi);
1268 
1269  dk = phi[2][1][0] * phi[1][0][0] -
1270  (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1271 
1272  if (!dk) {
1273  alpha1[k][0] = 0;
1274  alpha1[k][1] = 0;
1275  } else {
1276  float temp_real, temp_im;
1277  temp_real = phi[0][0][0] * phi[1][1][0] -
1278  phi[0][0][1] * phi[1][1][1] -
1279  phi[0][1][0] * phi[1][0][0];
1280  temp_im = phi[0][0][0] * phi[1][1][1] +
1281  phi[0][0][1] * phi[1][1][0] -
1282  phi[0][1][1] * phi[1][0][0];
1283 
1284  alpha1[k][0] = temp_real / dk;
1285  alpha1[k][1] = temp_im / dk;
1286  }
1287 
1288  if (!phi[1][0][0]) {
1289  alpha0[k][0] = 0;
1290  alpha0[k][1] = 0;
1291  } else {
1292  float temp_real, temp_im;
1293  temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1294  alpha1[k][1] * phi[1][1][1];
1295  temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1296  alpha1[k][0] * phi[1][1][1];
1297 
1298  alpha0[k][0] = -temp_real / phi[1][0][0];
1299  alpha0[k][1] = -temp_im / phi[1][0][0];
1300  }
1301 
1302  if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1303  alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1304  alpha1[k][0] = 0;
1305  alpha1[k][1] = 0;
1306  alpha0[k][0] = 0;
1307  alpha0[k][1] = 0;
1308  }
1309  }
1310 }
1311 
1312 /// Chirp Factors (14496-3 sp04 p214)
1313 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1314 {
1315  int i;
1316  float new_bw;
1317  static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1318 
1319  for (i = 0; i < sbr->n_q; i++) {
1320  if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1321  new_bw = 0.6f;
1322  } else
1323  new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1324 
1325  if (new_bw < ch_data->bw_array[i]) {
1326  new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1327  } else
1328  new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1329  ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1330  }
1331 }
1332 
1333 /// Generate the subband filtered lowband
1335  float X_low[32][40][2], const float W[2][32][32][2],
1336  int buf_idx)
1337 {
1338  int i, k;
1339  const int t_HFGen = 8;
1340  const int i_f = 32;
1341  memset(X_low, 0, 32*sizeof(*X_low));
1342  for (k = 0; k < sbr->kx[1]; k++) {
1343  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1344  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1345  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1346  }
1347  }
1348  buf_idx = 1-buf_idx;
1349  for (k = 0; k < sbr->kx[0]; k++) {
1350  for (i = 0; i < t_HFGen; i++) {
1351  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1352  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1353  }
1354  }
1355  return 0;
1356 }
1357 
1358 /// High Frequency Generator (14496-3 sp04 p215)
1360  float X_high[64][40][2], const float X_low[32][40][2],
1361  const float (*alpha0)[2], const float (*alpha1)[2],
1362  const float bw_array[5], const uint8_t *t_env,
1363  int bs_num_env)
1364 {
1365  int j, x;
1366  int g = 0;
1367  int k = sbr->kx[1];
1368  for (j = 0; j < sbr->num_patches; j++) {
1369  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1370  const int p = sbr->patch_start_subband[j] + x;
1371  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1372  g++;
1373  g--;
1374 
1375  if (g < 0) {
1376  av_log(ac->avctx, AV_LOG_ERROR,
1377  "ERROR : no subband found for frequency %d\n", k);
1378  return -1;
1379  }
1380 
1381  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1382  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1383  alpha0[p], alpha1[p], bw_array[g],
1384  2 * t_env[0], 2 * t_env[bs_num_env]);
1385  }
1386  }
1387  if (k < sbr->m[1] + sbr->kx[1])
1388  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1389 
1390  return 0;
1391 }
1392 
1393 /// Generate the subband filtered lowband
1394 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1395  const float Y0[38][64][2], const float Y1[38][64][2],
1396  const float X_low[32][40][2], int ch)
1397 {
1398  int k, i;
1399  const int i_f = 32;
1400  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1401  memset(X, 0, 2*sizeof(*X));
1402  for (k = 0; k < sbr->kx[0]; k++) {
1403  for (i = 0; i < i_Temp; i++) {
1404  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1405  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1406  }
1407  }
1408  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1409  for (i = 0; i < i_Temp; i++) {
1410  X[0][i][k] = Y0[i + i_f][k][0];
1411  X[1][i][k] = Y0[i + i_f][k][1];
1412  }
1413  }
1414 
1415  for (k = 0; k < sbr->kx[1]; k++) {
1416  for (i = i_Temp; i < 38; i++) {
1417  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1418  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1419  }
1420  }
1421  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1422  for (i = i_Temp; i < i_f; i++) {
1423  X[0][i][k] = Y1[i][k][0];
1424  X[1][i][k] = Y1[i][k][1];
1425  }
1426  }
1427  return 0;
1428 }
1429 
1430 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1431  * (14496-3 sp04 p217)
1432  */
1434  SBRData *ch_data, int e_a[2])
1435 {
1436  int e, i, m;
1437 
1438  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1439  for (e = 0; e < ch_data->bs_num_env; e++) {
1440  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1441  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1442  int k;
1443 
1444  if (sbr->kx[1] != table[0]) {
1445  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1446  "Derived frequency tables were not regenerated.\n");
1447  sbr_turnoff(sbr);
1448  return AVERROR_BUG;
1449  }
1450  for (i = 0; i < ilim; i++)
1451  for (m = table[i]; m < table[i + 1]; m++)
1452  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1453 
1454  // ch_data->bs_num_noise > 1 => 2 noise floors
1455  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1456  for (i = 0; i < sbr->n_q; i++)
1457  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1458  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1459 
1460  for (i = 0; i < sbr->n[1]; i++) {
1461  if (ch_data->bs_add_harmonic_flag) {
1462  const unsigned int m_midpoint =
1463  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1464 
1465  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1466  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1467  }
1468  }
1469 
1470  for (i = 0; i < ilim; i++) {
1471  int additional_sinusoid_present = 0;
1472  for (m = table[i]; m < table[i + 1]; m++) {
1473  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1474  additional_sinusoid_present = 1;
1475  break;
1476  }
1477  }
1478  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1479  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1480  }
1481  }
1482 
1483  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1484  return 0;
1485 }
1486 
1487 /// Estimation of current envelope (14496-3 sp04 p218)
1488 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1489  SpectralBandReplication *sbr, SBRData *ch_data)
1490 {
1491  int e, m;
1492  int kx1 = sbr->kx[1];
1493 
1494  if (sbr->bs_interpol_freq) {
1495  for (e = 0; e < ch_data->bs_num_env; e++) {
1496  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1497  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1498  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1499 
1500  for (m = 0; m < sbr->m[1]; m++) {
1501  float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1502  e_curr[e][m] = sum * recip_env_size;
1503  }
1504  }
1505  } else {
1506  int k, p;
1507 
1508  for (e = 0; e < ch_data->bs_num_env; e++) {
1509  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1510  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1511  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1512  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1513 
1514  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1515  float sum = 0.0f;
1516  const int den = env_size * (table[p + 1] - table[p]);
1517 
1518  for (k = table[p]; k < table[p + 1]; k++) {
1519  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1520  }
1521  sum /= den;
1522  for (k = table[p]; k < table[p + 1]; k++) {
1523  e_curr[e][k - kx1] = sum;
1524  }
1525  }
1526  }
1527  }
1528 }
1529 
1530 /**
1531  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1532  * and Calculation of gain (14496-3 sp04 p219)
1533  */
1535  SBRData *ch_data, const int e_a[2])
1536 {
1537  int e, k, m;
1538  // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1539  static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1540 
1541  for (e = 0; e < ch_data->bs_num_env; e++) {
1542  int delta = !((e == e_a[1]) || (e == e_a[0]));
1543  for (k = 0; k < sbr->n_lim; k++) {
1544  float gain_boost, gain_max;
1545  float sum[2] = { 0.0f, 0.0f };
1546  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1547  const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1548  sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1549  sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1550  if (!sbr->s_mapped[e][m]) {
1551  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1552  ((1.0f + sbr->e_curr[e][m]) *
1553  (1.0f + sbr->q_mapped[e][m] * delta)));
1554  } else {
1555  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1556  ((1.0f + sbr->e_curr[e][m]) *
1557  (1.0f + sbr->q_mapped[e][m])));
1558  }
1559  }
1560  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1561  sum[0] += sbr->e_origmapped[e][m];
1562  sum[1] += sbr->e_curr[e][m];
1563  }
1564  gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1565  gain_max = FFMIN(100000.f, gain_max);
1566  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1567  float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1568  sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1569  sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1570  }
1571  sum[0] = sum[1] = 0.0f;
1572  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1573  sum[0] += sbr->e_origmapped[e][m];
1574  sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1575  + sbr->s_m[e][m] * sbr->s_m[e][m]
1576  + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1577  }
1578  gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1579  gain_boost = FFMIN(1.584893192f, gain_boost);
1580  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1581  sbr->gain[e][m] *= gain_boost;
1582  sbr->q_m[e][m] *= gain_boost;
1583  sbr->s_m[e][m] *= gain_boost;
1584  }
1585  }
1586  }
1587 }
1588 
1589 /// Assembling HF Signals (14496-3 sp04 p220)
1590 static void sbr_hf_assemble(float Y1[38][64][2],
1591  const float X_high[64][40][2],
1592  SpectralBandReplication *sbr, SBRData *ch_data,
1593  const int e_a[2])
1594 {
1595  int e, i, j, m;
1596  const int h_SL = 4 * !sbr->bs_smoothing_mode;
1597  const int kx = sbr->kx[1];
1598  const int m_max = sbr->m[1];
1599  static const float h_smooth[5] = {
1600  0.33333333333333,
1601  0.30150283239582,
1602  0.21816949906249,
1603  0.11516383427084,
1604  0.03183050093751,
1605  };
1606  float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1607  int indexnoise = ch_data->f_indexnoise;
1608  int indexsine = ch_data->f_indexsine;
1609 
1610  if (sbr->reset) {
1611  for (i = 0; i < h_SL; i++) {
1612  memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1613  memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1614  }
1615  } else if (h_SL) {
1616  for (i = 0; i < 4; i++) {
1617  memcpy(g_temp[i + 2 * ch_data->t_env[0]],
1618  g_temp[i + 2 * ch_data->t_env_num_env_old],
1619  sizeof(g_temp[0]));
1620  memcpy(q_temp[i + 2 * ch_data->t_env[0]],
1621  q_temp[i + 2 * ch_data->t_env_num_env_old],
1622  sizeof(q_temp[0]));
1623  }
1624  }
1625 
1626  for (e = 0; e < ch_data->bs_num_env; e++) {
1627  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1628  memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1629  memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1630  }
1631  }
1632 
1633  for (e = 0; e < ch_data->bs_num_env; e++) {
1634  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1635  LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
1636  LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
1637  float *g_filt, *q_filt;
1638 
1639  if (h_SL && e != e_a[0] && e != e_a[1]) {
1640  g_filt = g_filt_tab;
1641  q_filt = q_filt_tab;
1642  for (m = 0; m < m_max; m++) {
1643  const int idx1 = i + h_SL;
1644  g_filt[m] = 0.0f;
1645  q_filt[m] = 0.0f;
1646  for (j = 0; j <= h_SL; j++) {
1647  g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1648  q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1649  }
1650  }
1651  } else {
1652  g_filt = g_temp[i + h_SL];
1653  q_filt = q_temp[i];
1654  }
1655 
1656  sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1658 
1659  if (e != e_a[0] && e != e_a[1]) {
1660  sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
1661  q_filt, indexnoise,
1662  kx, m_max);
1663  } else {
1664  int idx = indexsine&1;
1665  int A = (1-((indexsine+(kx & 1))&2));
1666  int B = (A^(-idx)) + idx;
1667  float *out = &Y1[i][kx][idx];
1668  float *in = sbr->s_m[e];
1669  for (m = 0; m+1 < m_max; m+=2) {
1670  out[2*m ] += in[m ] * A;
1671  out[2*m+2] += in[m+1] * B;
1672  }
1673  if(m_max&1)
1674  out[2*m ] += in[m ] * A;
1675  }
1676  indexnoise = (indexnoise + m_max) & 0x1ff;
1677  indexsine = (indexsine + 1) & 3;
1678  }
1679  }
1680  ch_data->f_indexnoise = indexnoise;
1681  ch_data->f_indexsine = indexsine;
1682 }
1683 
1685  float* L, float* R)
1686 {
1687  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1688  int ch;
1689  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1690  int err;
1691 
1692  if (!sbr->kx_and_m_pushed) {
1693  sbr->kx[0] = sbr->kx[1];
1694  sbr->m[0] = sbr->m[1];
1695  } else {
1696  sbr->kx_and_m_pushed = 0;
1697  }
1698 
1699  if (sbr->start) {
1700  sbr_dequant(sbr, id_aac);
1701  }
1702  for (ch = 0; ch < nch; ch++) {
1703  /* decode channel */
1704  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1705  (float*)sbr->qmf_filter_scratch,
1706  sbr->data[ch].W, sbr->data[ch].Ypos);
1707  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1708  (const float (*)[32][32][2]) sbr->data[ch].W,
1709  sbr->data[ch].Ypos);
1710  sbr->data[ch].Ypos ^= 1;
1711  if (sbr->start) {
1712  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1713  (const float (*)[40][2]) sbr->X_low, sbr->k[0]);
1714  sbr_chirp(sbr, &sbr->data[ch]);
1715  sbr_hf_gen(ac, sbr, sbr->X_high,
1716  (const float (*)[40][2]) sbr->X_low,
1717  (const float (*)[2]) sbr->alpha0,
1718  (const float (*)[2]) sbr->alpha1,
1719  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1720  sbr->data[ch].bs_num_env);
1721 
1722  // hf_adj
1723  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1724  if (!err) {
1725  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1726  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1727  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1728  (const float (*)[40][2]) sbr->X_high,
1729  sbr, &sbr->data[ch],
1730  sbr->data[ch].e_a);
1731  }
1732  }
1733 
1734  /* synthesis */
1735  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1736  (const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1737  (const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1738  (const float (*)[40][2]) sbr->X_low, ch);
1739  }
1740 
1741  if (ac->oc[1].m4ac.ps == 1) {
1742  if (sbr->ps.start) {
1743  ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1744  } else {
1745  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1746  }
1747  nch = 2;
1748  }
1749 
1750  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1751  L, sbr->X[0], sbr->qmf_filter_scratch,
1754  downsampled);
1755  if (nch == 2)
1756  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1757  R, sbr->X[1], sbr->qmf_filter_scratch,
1760  downsampled);
1761 }
1762 
1764 {
1765  c->sbr_lf_gen = sbr_lf_gen;
1767  c->sbr_x_gen = sbr_x_gen;
1769 
1770  if(ARCH_MIPS)
1772 }