FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #define UNCHECKED_BITSTREAM_READER 1
29 
30 #include "libavutil/avassert.h"
31 #include "libavutil/display.h"
32 #include "libavutil/imgutils.h"
33 #include "libavutil/opt.h"
34 #include "libavutil/stereo3d.h"
35 #include "libavutil/timer.h"
36 #include "internal.h"
37 #include "cabac.h"
38 #include "cabac_functions.h"
39 #include "error_resilience.h"
40 #include "avcodec.h"
41 #include "h264.h"
42 #include "h264data.h"
43 #include "h264chroma.h"
44 #include "h264_mvpred.h"
45 #include "golomb.h"
46 #include "mathops.h"
47 #include "me_cmp.h"
48 #include "mpegutils.h"
49 #include "rectangle.h"
50 #include "svq3.h"
51 #include "thread.h"
52 #include "vdpau_internal.h"
53 
54 #include <assert.h>
55 
56 const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 };
57 
59 {
60  H264Context *h = avctx->priv_data;
61  return h ? h->sps.num_reorder_frames : 0;
62 }
63 
64 static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type,
65  int (*mv)[2][4][2],
66  int mb_x, int mb_y, int mb_intra, int mb_skipped)
67 {
68  H264Context *h = opaque;
69 
70  h->mb_x = mb_x;
71  h->mb_y = mb_y;
72  h->mb_xy = mb_x + mb_y * h->mb_stride;
73  memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache));
74  av_assert1(ref >= 0);
75  /* FIXME: It is possible albeit uncommon that slice references
76  * differ between slices. We take the easy approach and ignore
77  * it for now. If this turns out to have any relevance in
78  * practice then correct remapping should be added. */
79  if (ref >= h->ref_count[0])
80  ref = 0;
81  if (!h->ref_list[0][ref].f.data[0]) {
82  av_log(h->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n");
83  ref = 0;
84  }
85  if ((h->ref_list[0][ref].reference&3) != 3) {
86  av_log(h->avctx, AV_LOG_DEBUG, "Reference invalid\n");
87  return;
88  }
89  fill_rectangle(&h->cur_pic.ref_index[0][4 * h->mb_xy],
90  2, 2, 2, ref, 1);
91  fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
92  fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8,
93  pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4);
94  h->mb_mbaff =
97 }
98 
100 {
101  AVCodecContext *avctx = h->avctx;
102  AVFrame *cur = &h->cur_pic.f;
103  AVFrame *last = h->ref_list[0][0].f.data[0] ? &h->ref_list[0][0].f : NULL;
104  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
105  int vshift = desc->log2_chroma_h;
106  const int field_pic = h->picture_structure != PICT_FRAME;
107  if (field_pic) {
108  height <<= 1;
109  y <<= 1;
110  }
111 
112  height = FFMIN(height, avctx->height - y);
113 
114  if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD))
115  return;
116 
117  if (avctx->draw_horiz_band) {
118  AVFrame *src;
120  int i;
121 
122  if (cur->pict_type == AV_PICTURE_TYPE_B || h->low_delay ||
124  src = cur;
125  else if (last)
126  src = last;
127  else
128  return;
129 
130  offset[0] = y * src->linesize[0];
131  offset[1] =
132  offset[2] = (y >> vshift) * src->linesize[1];
133  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
134  offset[i] = 0;
135 
136  emms_c();
137 
138  avctx->draw_horiz_band(avctx, src, offset,
139  y, h->picture_structure, height);
140  }
141 }
142 
143 /**
144  * Check if the top & left blocks are available if needed and
145  * change the dc mode so it only uses the available blocks.
146  */
148 {
149  static const int8_t top[12] = {
150  -1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0
151  };
152  static const int8_t left[12] = {
153  0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED
154  };
155  int i;
156 
157  if (!(h->top_samples_available & 0x8000)) {
158  for (i = 0; i < 4; i++) {
159  int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]];
160  if (status < 0) {
162  "top block unavailable for requested intra4x4 mode %d at %d %d\n",
163  status, h->mb_x, h->mb_y);
164  return AVERROR_INVALIDDATA;
165  } else if (status) {
166  h->intra4x4_pred_mode_cache[scan8[0] + i] = status;
167  }
168  }
169  }
170 
171  if ((h->left_samples_available & 0x8888) != 0x8888) {
172  static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 };
173  for (i = 0; i < 4; i++)
174  if (!(h->left_samples_available & mask[i])) {
175  int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]];
176  if (status < 0) {
178  "left block unavailable for requested intra4x4 mode %d at %d %d\n",
179  status, h->mb_x, h->mb_y);
180  return AVERROR_INVALIDDATA;
181  } else if (status) {
182  h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status;
183  }
184  }
185  }
186 
187  return 0;
188 } // FIXME cleanup like ff_h264_check_intra_pred_mode
189 
190 /**
191  * Check if the top & left blocks are available if needed and
192  * change the dc mode so it only uses the available blocks.
193  */
194 int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma)
195 {
196  static const int8_t top[4] = { LEFT_DC_PRED8x8, 1, -1, -1 };
197  static const int8_t left[5] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 };
198 
199  if (mode > 3U) {
201  "out of range intra chroma pred mode at %d %d\n",
202  h->mb_x, h->mb_y);
203  return AVERROR_INVALIDDATA;
204  }
205 
206  if (!(h->top_samples_available & 0x8000)) {
207  mode = top[mode];
208  if (mode < 0) {
210  "top block unavailable for requested intra mode at %d %d\n",
211  h->mb_x, h->mb_y);
212  return AVERROR_INVALIDDATA;
213  }
214  }
215 
216  if ((h->left_samples_available & 0x8080) != 0x8080) {
217  mode = left[mode];
218  if (is_chroma && (h->left_samples_available & 0x8080)) {
219  // mad cow disease mode, aka MBAFF + constrained_intra_pred
220  mode = ALZHEIMER_DC_L0T_PRED8x8 +
221  (!(h->left_samples_available & 0x8000)) +
222  2 * (mode == DC_128_PRED8x8);
223  }
224  if (mode < 0) {
226  "left block unavailable for requested intra mode at %d %d\n",
227  h->mb_x, h->mb_y);
228  return AVERROR_INVALIDDATA;
229  }
230  }
231 
232  return mode;
233 }
234 
236  int *dst_length, int *consumed, int length)
237 {
238  int i, si, di;
239  uint8_t *dst;
240  int bufidx;
241 
242  // src[0]&0x80; // forbidden bit
243  h->nal_ref_idc = src[0] >> 5;
244  h->nal_unit_type = src[0] & 0x1F;
245 
246  src++;
247  length--;
248 
249 #define STARTCODE_TEST \
250  if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
251  if (src[i + 2] != 3) { \
252  /* startcode, so we must be past the end */ \
253  length = i; \
254  } \
255  break; \
256  }
257 
258 #if HAVE_FAST_UNALIGNED
259 #define FIND_FIRST_ZERO \
260  if (i > 0 && !src[i]) \
261  i--; \
262  while (src[i]) \
263  i++
264 
265 #if HAVE_FAST_64BIT
266  for (i = 0; i + 1 < length; i += 9) {
267  if (!((~AV_RN64A(src + i) &
268  (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
269  0x8000800080008080ULL))
270  continue;
271  FIND_FIRST_ZERO;
273  i -= 7;
274  }
275 #else
276  for (i = 0; i + 1 < length; i += 5) {
277  if (!((~AV_RN32A(src + i) &
278  (AV_RN32A(src + i) - 0x01000101U)) &
279  0x80008080U))
280  continue;
281  FIND_FIRST_ZERO;
283  i -= 3;
284  }
285 #endif
286 #else
287  for (i = 0; i + 1 < length; i += 2) {
288  if (src[i])
289  continue;
290  if (i > 0 && src[i - 1] == 0)
291  i--;
293  }
294 #endif
295 
296  // use second escape buffer for inter data
297  bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0;
298 
299  si = h->rbsp_buffer_size[bufidx];
300  av_fast_padded_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+MAX_MBPAIR_SIZE);
301  dst = h->rbsp_buffer[bufidx];
302 
303  if (dst == NULL)
304  return NULL;
305 
306  if(i>=length-1){ //no escaped 0
307  *dst_length= length;
308  *consumed= length+1; //+1 for the header
309  if(h->avctx->flags2 & CODEC_FLAG2_FAST){
310  return src;
311  }else{
312  memcpy(dst, src, length);
313  return dst;
314  }
315  }
316 
317  memcpy(dst, src, i);
318  si = di = i;
319  while (si + 2 < length) {
320  // remove escapes (very rare 1:2^22)
321  if (src[si + 2] > 3) {
322  dst[di++] = src[si++];
323  dst[di++] = src[si++];
324  } else if (src[si] == 0 && src[si + 1] == 0) {
325  if (src[si + 2] == 3) { // escape
326  dst[di++] = 0;
327  dst[di++] = 0;
328  si += 3;
329  continue;
330  } else // next start code
331  goto nsc;
332  }
333 
334  dst[di++] = src[si++];
335  }
336  while (si < length)
337  dst[di++] = src[si++];
338 
339 nsc:
340  memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
341 
342  *dst_length = di;
343  *consumed = si + 1; // +1 for the header
344  /* FIXME store exact number of bits in the getbitcontext
345  * (it is needed for decoding) */
346  return dst;
347 }
348 
349 /**
350  * Identify the exact end of the bitstream
351  * @return the length of the trailing, or 0 if damaged
352  */
354 {
355  int v = *src;
356  int r;
357 
358  tprintf(h->avctx, "rbsp trailing %X\n", v);
359 
360  for (r = 1; r < 9; r++) {
361  if (v & 1)
362  return r;
363  v >>= 1;
364  }
365  return 0;
366 }
367 
368 void ff_h264_free_tables(H264Context *h, int free_rbsp)
369 {
370  int i;
371  H264Context *hx;
372 
375  av_freep(&h->cbp_table);
376  av_freep(&h->mvd_table[0]);
377  av_freep(&h->mvd_table[1]);
378  av_freep(&h->direct_table);
381  h->slice_table = NULL;
382  av_freep(&h->list_counts);
383 
384  av_freep(&h->mb2b_xy);
385  av_freep(&h->mb2br_xy);
386 
391 
392  if (free_rbsp && h->DPB) {
393  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
394  ff_h264_unref_picture(h, &h->DPB[i]);
395  av_freep(&h->DPB);
396  } else if (h->DPB) {
397  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
398  h->DPB[i].needs_realloc = 1;
399  }
400 
401  h->cur_pic_ptr = NULL;
402 
403  for (i = 0; i < H264_MAX_THREADS; i++) {
404  hx = h->thread_context[i];
405  if (!hx)
406  continue;
407  av_freep(&hx->top_borders[1]);
408  av_freep(&hx->top_borders[0]);
411  av_freep(&hx->dc_val_base);
412  av_freep(&hx->er.mb_index2xy);
414  av_freep(&hx->er.er_temp_buffer);
415  av_freep(&hx->er.mbintra_table);
416  av_freep(&hx->er.mbskip_table);
417 
418  if (free_rbsp) {
419  av_freep(&hx->rbsp_buffer[1]);
420  av_freep(&hx->rbsp_buffer[0]);
421  hx->rbsp_buffer_size[0] = 0;
422  hx->rbsp_buffer_size[1] = 0;
423  }
424  if (i)
425  av_freep(&h->thread_context[i]);
426  }
427 }
428 
430 {
431  const int big_mb_num = h->mb_stride * (h->mb_height + 1);
432  const int row_mb_num = 2*h->mb_stride*FFMAX(h->avctx->thread_count, 1);
433  int x, y, i;
434 
436  row_mb_num * 8 * sizeof(uint8_t), fail)
438  big_mb_num * 48 * sizeof(uint8_t), fail)
440  (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail)
442  big_mb_num * sizeof(uint16_t), fail)
444  big_mb_num * sizeof(uint8_t), fail)
446  16 * row_mb_num * sizeof(uint8_t), fail);
448  16 * row_mb_num * sizeof(uint8_t), fail);
450  4 * big_mb_num * sizeof(uint8_t), fail);
452  big_mb_num * sizeof(uint8_t), fail)
453 
454  memset(h->slice_table_base, -1,
455  (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base));
456  h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1;
457 
459  big_mb_num * sizeof(uint32_t), fail);
461  big_mb_num * sizeof(uint32_t), fail);
462  for (y = 0; y < h->mb_height; y++)
463  for (x = 0; x < h->mb_width; x++) {
464  const int mb_xy = x + y * h->mb_stride;
465  const int b_xy = 4 * x + 4 * y * h->b_stride;
466 
467  h->mb2b_xy[mb_xy] = b_xy;
468  h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride)));
469  }
470 
471  if (!h->dequant4_coeff[0])
473 
474  if (!h->DPB) {
475  h->DPB = av_mallocz_array(H264_MAX_PICTURE_COUNT, sizeof(*h->DPB));
476  if (!h->DPB)
477  return AVERROR(ENOMEM);
478  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
479  av_frame_unref(&h->DPB[i].f);
480  av_frame_unref(&h->cur_pic.f);
481  }
482 
483  return 0;
484 
485 fail:
486  ff_h264_free_tables(h, 1);
487  return AVERROR(ENOMEM);
488 }
489 
490 /**
491  * Init context
492  * Allocate buffers which are not shared amongst multiple threads.
493  */
495 {
496  ERContext *er = &h->er;
497  int mb_array_size = h->mb_height * h->mb_stride;
498  int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1);
499  int c_size = h->mb_stride * (h->mb_height + 1);
500  int yc_size = y_size + 2 * c_size;
501  int x, y, i;
502 
504  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
506  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
507 
508  h->ref_cache[0][scan8[5] + 1] =
509  h->ref_cache[0][scan8[7] + 1] =
510  h->ref_cache[0][scan8[13] + 1] =
511  h->ref_cache[1][scan8[5] + 1] =
512  h->ref_cache[1][scan8[7] + 1] =
513  h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE;
514 
515  if (CONFIG_ERROR_RESILIENCE) {
516  /* init ER */
517  er->avctx = h->avctx;
518  er->mecc = &h->mecc;
520  er->opaque = h;
521  er->quarter_sample = 1;
522 
523  er->mb_num = h->mb_num;
524  er->mb_width = h->mb_width;
525  er->mb_height = h->mb_height;
526  er->mb_stride = h->mb_stride;
527  er->b8_stride = h->mb_width * 2 + 1;
528 
529  // error resilience code looks cleaner with this
531  (h->mb_num + 1) * sizeof(int), fail);
532 
533  for (y = 0; y < h->mb_height; y++)
534  for (x = 0; x < h->mb_width; x++)
535  er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride;
536 
537  er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) *
538  h->mb_stride + h->mb_width;
539 
541  mb_array_size * sizeof(uint8_t), fail);
542 
543  FF_ALLOC_OR_GOTO(h->avctx, er->mbintra_table, mb_array_size, fail);
544  memset(er->mbintra_table, 1, mb_array_size);
545 
546  FF_ALLOCZ_OR_GOTO(h->avctx, er->mbskip_table, mb_array_size + 2, fail);
547 
549  h->mb_height * h->mb_stride, fail);
550 
552  yc_size * sizeof(int16_t), fail);
553  er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2;
554  er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1;
555  er->dc_val[2] = er->dc_val[1] + c_size;
556  for (i = 0; i < yc_size; i++)
557  h->dc_val_base[i] = 1024;
558  }
559 
560  return 0;
561 
562 fail:
563  return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us
564 }
565 
566 static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
567  int parse_extradata);
568 
570 {
571  AVCodecContext *avctx = h->avctx;
572  int ret;
573 
574  if (!buf || size <= 0)
575  return -1;
576 
577  if (buf[0] == 1) {
578  int i, cnt, nalsize;
579  const unsigned char *p = buf;
580 
581  h->is_avc = 1;
582 
583  if (size < 7) {
584  av_log(avctx, AV_LOG_ERROR,
585  "avcC %d too short\n", size);
586  return AVERROR_INVALIDDATA;
587  }
588  /* sps and pps in the avcC always have length coded with 2 bytes,
589  * so put a fake nal_length_size = 2 while parsing them */
590  h->nal_length_size = 2;
591  // Decode sps from avcC
592  cnt = *(p + 5) & 0x1f; // Number of sps
593  p += 6;
594  for (i = 0; i < cnt; i++) {
595  nalsize = AV_RB16(p) + 2;
596  if(nalsize > size - (p-buf))
597  return AVERROR_INVALIDDATA;
598  ret = decode_nal_units(h, p, nalsize, 1);
599  if (ret < 0) {
600  av_log(avctx, AV_LOG_ERROR,
601  "Decoding sps %d from avcC failed\n", i);
602  return ret;
603  }
604  p += nalsize;
605  }
606  // Decode pps from avcC
607  cnt = *(p++); // Number of pps
608  for (i = 0; i < cnt; i++) {
609  nalsize = AV_RB16(p) + 2;
610  if(nalsize > size - (p-buf))
611  return AVERROR_INVALIDDATA;
612  ret = decode_nal_units(h, p, nalsize, 1);
613  if (ret < 0) {
614  av_log(avctx, AV_LOG_ERROR,
615  "Decoding pps %d from avcC failed\n", i);
616  return ret;
617  }
618  p += nalsize;
619  }
620  // Store right nal length size that will be used to parse all other nals
621  h->nal_length_size = (buf[4] & 0x03) + 1;
622  } else {
623  h->is_avc = 0;
624  ret = decode_nal_units(h, buf, size, 1);
625  if (ret < 0)
626  return ret;
627  }
628  return size;
629 }
630 
632 {
633  H264Context *h = avctx->priv_data;
634  int i;
635  int ret;
636 
637  h->avctx = avctx;
638 
639  h->bit_depth_luma = 8;
640  h->chroma_format_idc = 1;
641 
642  h->avctx->bits_per_raw_sample = 8;
643  h->cur_chroma_format_idc = 1;
644 
645  ff_h264dsp_init(&h->h264dsp, 8, 1);
648  ff_h264qpel_init(&h->h264qpel, 8);
649  ff_h264_pred_init(&h->hpc, h->avctx->codec_id, 8, 1);
650 
651  h->dequant_coeff_pps = -1;
652  h->current_sps_id = -1;
653 
654  /* needed so that IDCT permutation is known early */
655  if (CONFIG_ERROR_RESILIENCE)
656  ff_me_cmp_init(&h->mecc, h->avctx);
657  ff_videodsp_init(&h->vdsp, 8);
658 
659  memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t));
660  memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t));
661 
663  h->slice_context_count = 1;
664  h->workaround_bugs = avctx->workaround_bugs;
665  h->flags = avctx->flags;
666 
667  /* set defaults */
668  // s->decode_mb = ff_h263_decode_mb;
669  if (!avctx->has_b_frames)
670  h->low_delay = 1;
671 
673 
675 
677 
678  h->pixel_shift = 0;
679  h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
680 
681  h->thread_context[0] = h;
682  h->outputed_poc = h->next_outputed_poc = INT_MIN;
683  for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
684  h->last_pocs[i] = INT_MIN;
685  h->prev_poc_msb = 1 << 16;
686  h->prev_frame_num = -1;
687  h->x264_build = -1;
690  if (avctx->codec_id == AV_CODEC_ID_H264) {
691  if (avctx->ticks_per_frame == 1) {
692  if(h->avctx->time_base.den < INT_MAX/2) {
693  h->avctx->time_base.den *= 2;
694  } else
695  h->avctx->time_base.num /= 2;
696  }
697  avctx->ticks_per_frame = 2;
698  }
699 
700  if (avctx->extradata_size > 0 && avctx->extradata) {
701  ret = ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size);
702  if (ret < 0) {
704  return ret;
705  }
706  }
707 
711  h->low_delay = 0;
712  }
713 
714  avctx->internal->allocate_progress = 1;
715 
717 
718  return 0;
719 }
720 
722 {
723  H264Context *h = avctx->priv_data;
724 
725  if (!avctx->internal->is_copy)
726  return 0;
727  memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
728  memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
729 
730  h->rbsp_buffer[0] = NULL;
731  h->rbsp_buffer[1] = NULL;
732  h->rbsp_buffer_size[0] = 0;
733  h->rbsp_buffer_size[1] = 0;
734  h->context_initialized = 0;
735 
736  return 0;
737 }
738 
739 /**
740  * Run setup operations that must be run after slice header decoding.
741  * This includes finding the next displayed frame.
742  *
743  * @param h h264 master context
744  * @param setup_finished enough NALs have been read that we can call
745  * ff_thread_finish_setup()
746  */
747 static void decode_postinit(H264Context *h, int setup_finished)
748 {
750  H264Picture *cur = h->cur_pic_ptr;
751  int i, pics, out_of_order, out_idx;
752 
753  h->cur_pic_ptr->f.pict_type = h->pict_type;
754 
755  if (h->next_output_pic)
756  return;
757 
758  if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) {
759  /* FIXME: if we have two PAFF fields in one packet, we can't start
760  * the next thread here. If we have one field per packet, we can.
761  * The check in decode_nal_units() is not good enough to find this
762  * yet, so we assume the worst for now. */
763  // if (setup_finished)
764  // ff_thread_finish_setup(h->avctx);
765  return;
766  }
767 
768  cur->f.interlaced_frame = 0;
769  cur->f.repeat_pict = 0;
770 
771  /* Signal interlacing information externally. */
772  /* Prioritize picture timing SEI information over used
773  * decoding process if it exists. */
774 
775  if (h->sps.pic_struct_present_flag) {
776  switch (h->sei_pic_struct) {
778  break;
781  cur->f.interlaced_frame = 1;
782  break;
785  if (FIELD_OR_MBAFF_PICTURE(h))
786  cur->f.interlaced_frame = 1;
787  else
788  // try to flag soft telecine progressive
790  break;
793  /* Signal the possibility of telecined film externally
794  * (pic_struct 5,6). From these hints, let the applications
795  * decide if they apply deinterlacing. */
796  cur->f.repeat_pict = 1;
797  break;
799  cur->f.repeat_pict = 2;
800  break;
802  cur->f.repeat_pict = 4;
803  break;
804  }
805 
806  if ((h->sei_ct_type & 3) &&
808  cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
809  } else {
810  /* Derive interlacing flag from used decoding process. */
812  }
814 
815  if (cur->field_poc[0] != cur->field_poc[1]) {
816  /* Derive top_field_first from field pocs. */
817  cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
818  } else {
820  /* Use picture timing SEI information. Even if it is a
821  * information of a past frame, better than nothing. */
824  cur->f.top_field_first = 1;
825  else
826  cur->f.top_field_first = 0;
827  } else {
828  /* Most likely progressive */
829  cur->f.top_field_first = 0;
830  }
831  }
832 
833  if (h->sei_frame_packing_present &&
838  AVStereo3D *stereo = av_stereo3d_create_side_data(&cur->f);
839  if (!stereo)
840  return;
841 
842  switch (h->frame_packing_arrangement_type) {
843  case 0:
844  stereo->type = AV_STEREO3D_CHECKERBOARD;
845  break;
846  case 1:
847  stereo->type = AV_STEREO3D_LINES;
848  break;
849  case 2:
850  stereo->type = AV_STEREO3D_COLUMNS;
851  break;
852  case 3:
853  if (h->quincunx_subsampling)
855  else
856  stereo->type = AV_STEREO3D_SIDEBYSIDE;
857  break;
858  case 4:
859  stereo->type = AV_STEREO3D_TOPBOTTOM;
860  break;
861  case 5:
863  break;
864  case 6:
865  stereo->type = AV_STEREO3D_2D;
866  break;
867  }
868 
869  if (h->content_interpretation_type == 2)
870  stereo->flags = AV_STEREO3D_FLAG_INVERT;
871  }
872 
875  double angle = h->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
876  AVFrameSideData *rotation = av_frame_new_side_data(&cur->f,
878  sizeof(int32_t) * 9);
879  if (!rotation)
880  return;
881 
882  av_display_rotation_set((int32_t *)rotation->data, angle);
883  av_display_matrix_flip((int32_t *)rotation->data,
884  h->sei_vflip, h->sei_hflip);
885  }
886 
887  cur->mmco_reset = h->mmco_reset;
888  h->mmco_reset = 0;
889 
890  // FIXME do something with unavailable reference frames
891 
892  /* Sort B-frames into display order */
893 
897  h->low_delay = 0;
898  }
899 
903  h->low_delay = 0;
904  }
905 
906  for (i = 0; 1; i++) {
907  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
908  if(i)
909  h->last_pocs[i-1] = cur->poc;
910  break;
911  } else if(i) {
912  h->last_pocs[i-1]= h->last_pocs[i];
913  }
914  }
915  out_of_order = MAX_DELAYED_PIC_COUNT - i;
916  if( cur->f.pict_type == AV_PICTURE_TYPE_B
918  out_of_order = FFMAX(out_of_order, 1);
919  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
920  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
921  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
922  h->last_pocs[i] = INT_MIN;
923  h->last_pocs[0] = cur->poc;
924  cur->mmco_reset = 1;
925  } else if(h->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){
926  av_log(h->avctx, AV_LOG_VERBOSE, "Increasing reorder buffer to %d\n", out_of_order);
927  h->avctx->has_b_frames = out_of_order;
928  h->low_delay = 0;
929  }
930 
931  pics = 0;
932  while (h->delayed_pic[pics])
933  pics++;
934 
936 
937  h->delayed_pic[pics++] = cur;
938  if (cur->reference == 0)
939  cur->reference = DELAYED_PIC_REF;
940 
941  out = h->delayed_pic[0];
942  out_idx = 0;
943  for (i = 1; h->delayed_pic[i] &&
944  !h->delayed_pic[i]->f.key_frame &&
945  !h->delayed_pic[i]->mmco_reset;
946  i++)
947  if (h->delayed_pic[i]->poc < out->poc) {
948  out = h->delayed_pic[i];
949  out_idx = i;
950  }
951  if (h->avctx->has_b_frames == 0 &&
952  (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset))
953  h->next_outputed_poc = INT_MIN;
954  out_of_order = out->poc < h->next_outputed_poc;
955 
956  if (out_of_order || pics > h->avctx->has_b_frames) {
957  out->reference &= ~DELAYED_PIC_REF;
958  // for frame threading, the owner must be the second field's thread or
959  // else the first thread can release the picture and reuse it unsafely
960  for (i = out_idx; h->delayed_pic[i]; i++)
961  h->delayed_pic[i] = h->delayed_pic[i + 1];
962  }
963  if (!out_of_order && pics > h->avctx->has_b_frames) {
964  h->next_output_pic = out;
965  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) {
966  h->next_outputed_poc = INT_MIN;
967  } else
968  h->next_outputed_poc = out->poc;
969  } else {
970  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
971  }
972 
973  if (h->next_output_pic) {
974  if (h->next_output_pic->recovered) {
975  // We have reached an recovery point and all frames after it in
976  // display order are "recovered".
978  }
980  }
981 
982  if (setup_finished && !h->avctx->hwaccel)
984 }
985 
987 {
988  int list, i;
989  int luma_def, chroma_def;
990 
991  h->use_weight = 0;
992  h->use_weight_chroma = 0;
994  if (h->sps.chroma_format_idc)
996  luma_def = 1 << h->luma_log2_weight_denom;
997  chroma_def = 1 << h->chroma_log2_weight_denom;
998 
999  for (list = 0; list < 2; list++) {
1000  h->luma_weight_flag[list] = 0;
1001  h->chroma_weight_flag[list] = 0;
1002  for (i = 0; i < h->ref_count[list]; i++) {
1003  int luma_weight_flag, chroma_weight_flag;
1004 
1005  luma_weight_flag = get_bits1(&h->gb);
1006  if (luma_weight_flag) {
1007  h->luma_weight[i][list][0] = get_se_golomb(&h->gb);
1008  h->luma_weight[i][list][1] = get_se_golomb(&h->gb);
1009  if (h->luma_weight[i][list][0] != luma_def ||
1010  h->luma_weight[i][list][1] != 0) {
1011  h->use_weight = 1;
1012  h->luma_weight_flag[list] = 1;
1013  }
1014  } else {
1015  h->luma_weight[i][list][0] = luma_def;
1016  h->luma_weight[i][list][1] = 0;
1017  }
1018 
1019  if (h->sps.chroma_format_idc) {
1020  chroma_weight_flag = get_bits1(&h->gb);
1021  if (chroma_weight_flag) {
1022  int j;
1023  for (j = 0; j < 2; j++) {
1024  h->chroma_weight[i][list][j][0] = get_se_golomb(&h->gb);
1025  h->chroma_weight[i][list][j][1] = get_se_golomb(&h->gb);
1026  if (h->chroma_weight[i][list][j][0] != chroma_def ||
1027  h->chroma_weight[i][list][j][1] != 0) {
1028  h->use_weight_chroma = 1;
1029  h->chroma_weight_flag[list] = 1;
1030  }
1031  }
1032  } else {
1033  int j;
1034  for (j = 0; j < 2; j++) {
1035  h->chroma_weight[i][list][j][0] = chroma_def;
1036  h->chroma_weight[i][list][j][1] = 0;
1037  }
1038  }
1039  }
1040  }
1042  break;
1043  }
1044  h->use_weight = h->use_weight || h->use_weight_chroma;
1045  return 0;
1046 }
1047 
1048 /**
1049  * instantaneous decoder refresh.
1050  */
1051 static void idr(H264Context *h)
1052 {
1053  int i;
1055  h->prev_frame_num =
1056  h->prev_frame_num_offset = 0;
1057  h->prev_poc_msb = 1<<16;
1058  h->prev_poc_lsb = 0;
1059  for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
1060  h->last_pocs[i] = INT_MIN;
1061 }
1062 
1063 /* forget old pics after a seek */
1065 {
1066  int i, j;
1067 
1068  h->outputed_poc = h->next_outputed_poc = INT_MIN;
1069  h->prev_interlaced_frame = 1;
1070  idr(h);
1071 
1072  h->prev_frame_num = -1;
1073  if (h->cur_pic_ptr) {
1074  h->cur_pic_ptr->reference = 0;
1075  for (j=i=0; h->delayed_pic[i]; i++)
1076  if (h->delayed_pic[i] != h->cur_pic_ptr)
1077  h->delayed_pic[j++] = h->delayed_pic[i];
1078  h->delayed_pic[j] = NULL;
1079  }
1080  h->first_field = 0;
1081  memset(h->ref_list[0], 0, sizeof(h->ref_list[0]));
1082  memset(h->ref_list[1], 0, sizeof(h->ref_list[1]));
1083  memset(h->default_ref_list[0], 0, sizeof(h->default_ref_list[0]));
1084  memset(h->default_ref_list[1], 0, sizeof(h->default_ref_list[1]));
1085  ff_h264_reset_sei(h);
1086  h->recovery_frame = -1;
1087  h->frame_recovered = 0;
1088  h->list_count = 0;
1089  h->current_slice = 0;
1090  h->mmco_reset = 1;
1091 }
1092 
1093 /* forget old pics after a seek */
1094 static void flush_dpb(AVCodecContext *avctx)
1095 {
1096  H264Context *h = avctx->priv_data;
1097  int i;
1098 
1099  for (i = 0; i <= MAX_DELAYED_PIC_COUNT; i++) {
1100  if (h->delayed_pic[i])
1101  h->delayed_pic[i]->reference = 0;
1102  h->delayed_pic[i] = NULL;
1103  }
1104 
1106 
1107  if (h->DPB)
1108  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
1109  ff_h264_unref_picture(h, &h->DPB[i]);
1110  h->cur_pic_ptr = NULL;
1112 
1113  h->mb_x = h->mb_y = 0;
1114 
1115  h->parse_context.state = -1;
1117  h->parse_context.overread = 0;
1119  h->parse_context.index = 0;
1120  h->parse_context.last_index = 0;
1121 
1122  ff_h264_free_tables(h, 1);
1123  h->context_initialized = 0;
1124 }
1125 
1126 int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc)
1127 {
1128  const int max_frame_num = 1 << h->sps.log2_max_frame_num;
1129  int field_poc[2];
1130 
1132  if (h->frame_num < h->prev_frame_num)
1133  h->frame_num_offset += max_frame_num;
1134 
1135  if (h->sps.poc_type == 0) {
1136  const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb;
1137 
1138  if (h->poc_lsb < h->prev_poc_lsb &&
1139  h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2)
1140  h->poc_msb = h->prev_poc_msb + max_poc_lsb;
1141  else if (h->poc_lsb > h->prev_poc_lsb &&
1142  h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2)
1143  h->poc_msb = h->prev_poc_msb - max_poc_lsb;
1144  else
1145  h->poc_msb = h->prev_poc_msb;
1146  field_poc[0] =
1147  field_poc[1] = h->poc_msb + h->poc_lsb;
1148  if (h->picture_structure == PICT_FRAME)
1149  field_poc[1] += h->delta_poc_bottom;
1150  } else if (h->sps.poc_type == 1) {
1151  int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
1152  int i;
1153 
1154  if (h->sps.poc_cycle_length != 0)
1155  abs_frame_num = h->frame_num_offset + h->frame_num;
1156  else
1157  abs_frame_num = 0;
1158 
1159  if (h->nal_ref_idc == 0 && abs_frame_num > 0)
1160  abs_frame_num--;
1161 
1162  expected_delta_per_poc_cycle = 0;
1163  for (i = 0; i < h->sps.poc_cycle_length; i++)
1164  // FIXME integrate during sps parse
1165  expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i];
1166 
1167  if (abs_frame_num > 0) {
1168  int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
1169  int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
1170 
1171  expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
1172  for (i = 0; i <= frame_num_in_poc_cycle; i++)
1173  expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i];
1174  } else
1175  expectedpoc = 0;
1176 
1177  if (h->nal_ref_idc == 0)
1178  expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
1179 
1180  field_poc[0] = expectedpoc + h->delta_poc[0];
1181  field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
1182 
1183  if (h->picture_structure == PICT_FRAME)
1184  field_poc[1] += h->delta_poc[1];
1185  } else {
1186  int poc = 2 * (h->frame_num_offset + h->frame_num);
1187 
1188  if (!h->nal_ref_idc)
1189  poc--;
1190 
1191  field_poc[0] = poc;
1192  field_poc[1] = poc;
1193  }
1194 
1196  pic_field_poc[0] = field_poc[0];
1198  pic_field_poc[1] = field_poc[1];
1199  *pic_poc = FFMIN(pic_field_poc[0], pic_field_poc[1]);
1200 
1201  return 0;
1202 }
1203 
1204 /**
1205  * Compute profile from profile_idc and constraint_set?_flags.
1206  *
1207  * @param sps SPS
1208  *
1209  * @return profile as defined by FF_PROFILE_H264_*
1210  */
1212 {
1213  int profile = sps->profile_idc;
1214 
1215  switch (sps->profile_idc) {
1217  // constraint_set1_flag set to 1
1218  profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0;
1219  break;
1223  // constraint_set3_flag set to 1
1224  profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0;
1225  break;
1226  }
1227 
1228  return profile;
1229 }
1230 
1232 {
1233  if (h->flags & CODEC_FLAG_LOW_DELAY ||
1235  !h->sps.num_reorder_frames)) {
1236  if (h->avctx->has_b_frames > 1 || h->delayed_pic[0])
1237  av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. "
1238  "Reenabling low delay requires a codec flush.\n");
1239  else
1240  h->low_delay = 1;
1241  }
1242 
1243  if (h->avctx->has_b_frames < 2)
1244  h->avctx->has_b_frames = !h->low_delay;
1245 
1246  if (h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
1248  if (h->avctx->codec &&
1250  (h->sps.bit_depth_luma != 8 || h->sps.chroma_format_idc > 1)) {
1252  "VDPAU decoding does not support video colorspace.\n");
1253  return AVERROR_INVALIDDATA;
1254  }
1255  if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 14 &&
1256  h->sps.bit_depth_luma != 11 && h->sps.bit_depth_luma != 13) {
1259  h->pixel_shift = h->sps.bit_depth_luma > 8;
1260 
1262  h->sps.chroma_format_idc);
1266  h->sps.chroma_format_idc);
1267 
1268  if (CONFIG_ERROR_RESILIENCE)
1269  ff_me_cmp_init(&h->mecc, h->avctx);
1271  } else {
1272  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
1273  h->sps.bit_depth_luma);
1274  return AVERROR_INVALIDDATA;
1275  }
1276  }
1277  return 0;
1278 }
1279 
1281 {
1282  int ref_count[2], list_count;
1283  int num_ref_idx_active_override_flag;
1284 
1285  // set defaults, might be overridden a few lines later
1286  ref_count[0] = h->pps.ref_count[0];
1287  ref_count[1] = h->pps.ref_count[1];
1288 
1289  if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
1290  unsigned max[2];
1291  max[0] = max[1] = h->picture_structure == PICT_FRAME ? 15 : 31;
1292 
1295  num_ref_idx_active_override_flag = get_bits1(&h->gb);
1296 
1297  if (num_ref_idx_active_override_flag) {
1298  ref_count[0] = get_ue_golomb(&h->gb) + 1;
1299  if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
1300  ref_count[1] = get_ue_golomb(&h->gb) + 1;
1301  } else
1302  // full range is spec-ok in this case, even for frames
1303  ref_count[1] = 1;
1304  }
1305 
1306  if (ref_count[0]-1 > max[0] || ref_count[1]-1 > max[1]){
1307  av_log(h->avctx, AV_LOG_ERROR, "reference overflow %u > %u or %u > %u\n", ref_count[0]-1, max[0], ref_count[1]-1, max[1]);
1308  h->ref_count[0] = h->ref_count[1] = 0;
1309  h->list_count = 0;
1310  return AVERROR_INVALIDDATA;
1311  }
1312 
1314  list_count = 2;
1315  else
1316  list_count = 1;
1317  } else {
1318  list_count = 0;
1319  ref_count[0] = ref_count[1] = 0;
1320  }
1321 
1322  if (list_count != h->list_count ||
1323  ref_count[0] != h->ref_count[0] ||
1324  ref_count[1] != h->ref_count[1]) {
1325  h->ref_count[0] = ref_count[0];
1326  h->ref_count[1] = ref_count[1];
1327  h->list_count = list_count;
1328  return 1;
1329  }
1330 
1331  return 0;
1332 }
1333 
1334 static const uint8_t start_code[] = { 0x00, 0x00, 0x01 };
1335 
1336 static int find_start_code(const uint8_t *buf, int buf_size,
1337  int buf_index, int next_avc)
1338 {
1339  // start code prefix search
1340  for (; buf_index + 3 < next_avc; buf_index++)
1341  // This should always succeed in the first iteration.
1342  if (buf[buf_index] == 0 &&
1343  buf[buf_index + 1] == 0 &&
1344  buf[buf_index + 2] == 1)
1345  break;
1346 
1347  buf_index += 3;
1348 
1349  if (buf_index >= buf_size)
1350  return buf_size;
1351 
1352  return buf_index;
1353 }
1354 
1355 static int get_avc_nalsize(H264Context *h, const uint8_t *buf,
1356  int buf_size, int *buf_index)
1357 {
1358  int i, nalsize = 0;
1359 
1360  if (*buf_index >= buf_size - h->nal_length_size)
1361  return -1;
1362 
1363  for (i = 0; i < h->nal_length_size; i++)
1364  nalsize = (nalsize << 8) | buf[(*buf_index)++];
1365  if (nalsize <= 0 || nalsize > buf_size - *buf_index) {
1367  "AVC: nal size %d\n", nalsize);
1368  return -1;
1369  }
1370  return nalsize;
1371 }
1372 
1373 static int get_bit_length(H264Context *h, const uint8_t *buf,
1374  const uint8_t *ptr, int dst_length,
1375  int i, int next_avc)
1376 {
1377  if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc &&
1378  buf[i] == 0x00 && buf[i + 1] == 0x00 &&
1379  buf[i + 2] == 0x01 && buf[i + 3] == 0xE0)
1381 
1382  if (!(h->workaround_bugs & FF_BUG_TRUNCATED))
1383  while (dst_length > 0 && ptr[dst_length - 1] == 0)
1384  dst_length--;
1385 
1386  if (!dst_length)
1387  return 0;
1388 
1389  return 8 * dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1);
1390 }
1391 
1392 static int get_last_needed_nal(H264Context *h, const uint8_t *buf, int buf_size)
1393 {
1394  int next_avc = h->is_avc ? 0 : buf_size;
1395  int nal_index = 0;
1396  int buf_index = 0;
1397  int nals_needed = 0;
1398  int first_slice = 0;
1399 
1400  while(1) {
1401  int nalsize = 0;
1402  int dst_length, bit_length, consumed;
1403  const uint8_t *ptr;
1404 
1405  if (buf_index >= next_avc) {
1406  nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index);
1407  if (nalsize < 0)
1408  break;
1409  next_avc = buf_index + nalsize;
1410  } else {
1411  buf_index = find_start_code(buf, buf_size, buf_index, next_avc);
1412  if (buf_index >= buf_size)
1413  break;
1414  if (buf_index >= next_avc)
1415  continue;
1416  }
1417 
1418  ptr = ff_h264_decode_nal(h, buf + buf_index, &dst_length, &consumed,
1419  next_avc - buf_index);
1420 
1421  if (ptr == NULL || dst_length < 0)
1422  return AVERROR_INVALIDDATA;
1423 
1424  buf_index += consumed;
1425 
1426  bit_length = get_bit_length(h, buf, ptr, dst_length,
1427  buf_index, next_avc);
1428  nal_index++;
1429 
1430  /* packets can sometimes contain multiple PPS/SPS,
1431  * e.g. two PAFF field pictures in one packet, or a demuxer
1432  * which splits NALs strangely if so, when frame threading we
1433  * can't start the next thread until we've read all of them */
1434  switch (h->nal_unit_type) {
1435  case NAL_SPS:
1436  case NAL_PPS:
1437  nals_needed = nal_index;
1438  break;
1439  case NAL_DPA:
1440  case NAL_IDR_SLICE:
1441  case NAL_SLICE:
1442  init_get_bits(&h->gb, ptr, bit_length);
1443  if (!get_ue_golomb(&h->gb) ||
1444  !first_slice ||
1445  first_slice != h->nal_unit_type)
1446  nals_needed = nal_index;
1447  if (!first_slice)
1448  first_slice = h->nal_unit_type;
1449  }
1450  }
1451 
1452  return nals_needed;
1453 }
1454 
1455 static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
1456  int parse_extradata)
1457 {
1458  AVCodecContext *const avctx = h->avctx;
1459  H264Context *hx; ///< thread context
1460  int buf_index;
1461  unsigned context_count;
1462  int next_avc;
1463  int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts
1464  int nal_index;
1465  int idr_cleared=0;
1466  int ret = 0;
1467 
1468  h->nal_unit_type= 0;
1469 
1470  if(!h->slice_context_count)
1471  h->slice_context_count= 1;
1473  if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) {
1474  h->current_slice = 0;
1475  if (!h->first_field)
1476  h->cur_pic_ptr = NULL;
1477  ff_h264_reset_sei(h);
1478  }
1479 
1480  if (h->nal_length_size == 4) {
1481  if (buf_size > 8 && AV_RB32(buf) == 1 && AV_RB32(buf+5) > (unsigned)buf_size) {
1482  h->is_avc = 0;
1483  }else if(buf_size > 3 && AV_RB32(buf) > 1 && AV_RB32(buf) <= (unsigned)buf_size)
1484  h->is_avc = 1;
1485  }
1486 
1487  if (avctx->active_thread_type & FF_THREAD_FRAME)
1488  nals_needed = get_last_needed_nal(h, buf, buf_size);
1489 
1490  {
1491  buf_index = 0;
1492  context_count = 0;
1493  next_avc = h->is_avc ? 0 : buf_size;
1494  nal_index = 0;
1495  for (;;) {
1496  int consumed;
1497  int dst_length;
1498  int bit_length;
1499  const uint8_t *ptr;
1500  int nalsize = 0;
1501  int err;
1502 
1503  if (buf_index >= next_avc) {
1504  nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index);
1505  if (nalsize < 0)
1506  break;
1507  next_avc = buf_index + nalsize;
1508  } else {
1509  buf_index = find_start_code(buf, buf_size, buf_index, next_avc);
1510  if (buf_index >= buf_size)
1511  break;
1512  if (buf_index >= next_avc)
1513  continue;
1514  }
1515 
1516  hx = h->thread_context[context_count];
1517 
1518  ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length,
1519  &consumed, next_avc - buf_index);
1520  if (ptr == NULL || dst_length < 0) {
1521  ret = -1;
1522  goto end;
1523  }
1524 
1525  bit_length = get_bit_length(h, buf, ptr, dst_length,
1526  buf_index + consumed, next_avc);
1527 
1528  if (h->avctx->debug & FF_DEBUG_STARTCODE)
1530  "NAL %d/%d at %d/%d length %d\n",
1531  hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length);
1532 
1533  if (h->is_avc && (nalsize != consumed) && nalsize)
1535  "AVC: Consumed only %d bytes instead of %d\n",
1536  consumed, nalsize);
1537 
1538  buf_index += consumed;
1539  nal_index++;
1540 
1541  if (avctx->skip_frame >= AVDISCARD_NONREF &&
1542  h->nal_ref_idc == 0 &&
1543  h->nal_unit_type != NAL_SEI)
1544  continue;
1545 
1546 again:
1547  if ( !(avctx->active_thread_type & FF_THREAD_FRAME)
1548  || nals_needed >= nal_index)
1549  h->au_pps_id = -1;
1550  /* Ignore per frame NAL unit type during extradata
1551  * parsing. Decoding slices is not possible in codec init
1552  * with frame-mt */
1553  if (parse_extradata) {
1554  switch (hx->nal_unit_type) {
1555  case NAL_IDR_SLICE:
1556  case NAL_SLICE:
1557  case NAL_DPA:
1558  case NAL_DPB:
1559  case NAL_DPC:
1561  "Ignoring NAL %d in global header/extradata\n",
1562  hx->nal_unit_type);
1563  // fall through to next case
1564  case NAL_AUXILIARY_SLICE:
1566  }
1567  }
1568 
1569  err = 0;
1570 
1571  switch (hx->nal_unit_type) {
1572  case NAL_IDR_SLICE:
1573  if (h->nal_unit_type != NAL_IDR_SLICE) {
1575  "Invalid mix of idr and non-idr slices\n");
1576  ret = -1;
1577  goto end;
1578  }
1579  if(!idr_cleared)
1580  idr(h); // FIXME ensure we don't lose some frames if there is reordering
1581  idr_cleared = 1;
1582  h->has_recovery_point = 1;
1583  case NAL_SLICE:
1584  init_get_bits(&hx->gb, ptr, bit_length);
1585  hx->intra_gb_ptr =
1586  hx->inter_gb_ptr = &hx->gb;
1587  hx->data_partitioning = 0;
1588 
1589  if ((err = ff_h264_decode_slice_header(hx, h)))
1590  break;
1591 
1592  if (h->sei_recovery_frame_cnt >= 0) {
1594  h->valid_recovery_point = 1;
1595 
1596  if ( h->recovery_frame < 0
1597  || ((h->recovery_frame - h->frame_num) & ((1 << h->sps.log2_max_frame_num)-1)) > h->sei_recovery_frame_cnt) {
1599  ((1 << h->sps.log2_max_frame_num) - 1);
1600 
1601  if (!h->valid_recovery_point)
1602  h->recovery_frame = h->frame_num;
1603  }
1604  }
1605 
1606  h->cur_pic_ptr->f.key_frame |=
1607  (hx->nal_unit_type == NAL_IDR_SLICE);
1608 
1609  if (hx->nal_unit_type == NAL_IDR_SLICE ||
1610  h->recovery_frame == h->frame_num) {
1611  h->recovery_frame = -1;
1612  h->cur_pic_ptr->recovered = 1;
1613  }
1614  // If we have an IDR, all frames after it in decoded order are
1615  // "recovered".
1616  if (hx->nal_unit_type == NAL_IDR_SLICE)
1618  h->frame_recovered |= 3*!!(avctx->flags2 & CODEC_FLAG2_SHOW_ALL);
1619  h->frame_recovered |= 3*!!(avctx->flags & CODEC_FLAG_OUTPUT_CORRUPT);
1620 #if 1
1622 #else
1624 #endif
1625 
1626  if (h->current_slice == 1) {
1627  if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS))
1628  decode_postinit(h, nal_index >= nals_needed);
1629 
1630  if (h->avctx->hwaccel &&
1631  (ret = h->avctx->hwaccel->start_frame(h->avctx, NULL, 0)) < 0)
1632  return ret;
1633  if (CONFIG_H264_VDPAU_DECODER &&
1636  }
1637 
1638  if (hx->redundant_pic_count == 0) {
1639  if (avctx->hwaccel) {
1640  ret = avctx->hwaccel->decode_slice(avctx,
1641  &buf[buf_index - consumed],
1642  consumed);
1643  if (ret < 0)
1644  return ret;
1645  } else if (CONFIG_H264_VDPAU_DECODER &&
1648  start_code,
1649  sizeof(start_code));
1651  &buf[buf_index - consumed],
1652  consumed);
1653  } else
1654  context_count++;
1655  }
1656  break;
1657  case NAL_DPA:
1658  if (h->avctx->flags & CODEC_FLAG2_CHUNKS) {
1660  "Decoding in chunks is not supported for "
1661  "partitioned slices.\n");
1662  return AVERROR(ENOSYS);
1663  }
1664 
1665  init_get_bits(&hx->gb, ptr, bit_length);
1666  hx->intra_gb_ptr =
1667  hx->inter_gb_ptr = NULL;
1668 
1669  if ((err = ff_h264_decode_slice_header(hx, h))) {
1670  /* make sure data_partitioning is cleared if it was set
1671  * before, so we don't try decoding a slice without a valid
1672  * slice header later */
1673  h->data_partitioning = 0;
1674  break;
1675  }
1676 
1677  hx->data_partitioning = 1;
1678  break;
1679  case NAL_DPB:
1680  init_get_bits(&hx->intra_gb, ptr, bit_length);
1681  hx->intra_gb_ptr = &hx->intra_gb;
1682  break;
1683  case NAL_DPC:
1684  init_get_bits(&hx->inter_gb, ptr, bit_length);
1685  hx->inter_gb_ptr = &hx->inter_gb;
1686 
1687  av_log(h->avctx, AV_LOG_ERROR, "Partitioned H.264 support is incomplete\n");
1688  break;
1689 
1690  if (hx->redundant_pic_count == 0 &&
1691  hx->intra_gb_ptr &&
1692  hx->data_partitioning &&
1693  h->cur_pic_ptr && h->context_initialized &&
1694  (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) &&
1695  (avctx->skip_frame < AVDISCARD_BIDIR ||
1697  (avctx->skip_frame < AVDISCARD_NONINTRA ||
1699  avctx->skip_frame < AVDISCARD_ALL)
1700  context_count++;
1701  break;
1702  case NAL_SEI:
1703  init_get_bits(&h->gb, ptr, bit_length);
1704  ret = ff_h264_decode_sei(h);
1705  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1706  goto end;
1707  break;
1708  case NAL_SPS:
1709  init_get_bits(&h->gb, ptr, bit_length);
1710  if (ff_h264_decode_seq_parameter_set(h) < 0 && (h->is_avc ? nalsize : 1)) {
1712  "SPS decoding failure, trying again with the complete NAL\n");
1713  if (h->is_avc)
1714  av_assert0(next_avc - buf_index + consumed == nalsize);
1715  if ((next_avc - buf_index + consumed - 1) >= INT_MAX/8)
1716  break;
1717  init_get_bits(&h->gb, &buf[buf_index + 1 - consumed],
1718  8*(next_avc - buf_index + consumed - 1));
1720  }
1721 
1722  break;
1723  case NAL_PPS:
1724  init_get_bits(&h->gb, ptr, bit_length);
1725  ret = ff_h264_decode_picture_parameter_set(h, bit_length);
1726  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1727  goto end;
1728  break;
1729  case NAL_AUD:
1730  case NAL_END_SEQUENCE:
1731  case NAL_END_STREAM:
1732  case NAL_FILLER_DATA:
1733  case NAL_SPS_EXT:
1734  case NAL_AUXILIARY_SLICE:
1735  break;
1736  case NAL_FF_IGNORE:
1737  break;
1738  default:
1739  av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n",
1740  hx->nal_unit_type, bit_length);
1741  }
1742 
1743  if (context_count == h->max_contexts) {
1744  ret = ff_h264_execute_decode_slices(h, context_count);
1745  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1746  goto end;
1747  context_count = 0;
1748  }
1749 
1750  if (err < 0 || err == SLICE_SKIPED) {
1751  if (err < 0)
1752  av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n");
1753  h->ref_count[0] = h->ref_count[1] = h->list_count = 0;
1754  } else if (err == SLICE_SINGLETHREAD) {
1755  /* Slice could not be decoded in parallel mode, copy down
1756  * NAL unit stuff to context 0 and restart. Note that
1757  * rbsp_buffer is not transferred, but since we no longer
1758  * run in parallel mode this should not be an issue. */
1759  h->nal_unit_type = hx->nal_unit_type;
1760  h->nal_ref_idc = hx->nal_ref_idc;
1761  hx = h;
1762  goto again;
1763  }
1764  }
1765  }
1766  if (context_count) {
1767  ret = ff_h264_execute_decode_slices(h, context_count);
1768  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1769  goto end;
1770  }
1771 
1772  ret = 0;
1773 end:
1774  /* clean up */
1775  if (h->cur_pic_ptr && !h->droppable) {
1778  }
1779 
1780  return (ret < 0) ? ret : buf_index;
1781 }
1782 
1783 /**
1784  * Return the number of bytes consumed for building the current frame.
1785  */
1786 static int get_consumed_bytes(int pos, int buf_size)
1787 {
1788  if (pos == 0)
1789  pos = 1; // avoid infinite loops (I doubt that is needed but...)
1790  if (pos + 10 > buf_size)
1791  pos = buf_size; // oops ;)
1792 
1793  return pos;
1794 }
1795 
1797 {
1798  AVFrame *src = &srcp->f;
1799  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(src->format);
1800  int i;
1801  int ret = av_frame_ref(dst, src);
1802  if (ret < 0)
1803  return ret;
1804 
1805  av_dict_set(&dst->metadata, "stereo_mode", ff_h264_sei_stereo_mode(h), 0);
1806 
1807  if (srcp->sei_recovery_frame_cnt == 0)
1808  dst->key_frame = 1;
1809  if (!srcp->crop)
1810  return 0;
1811 
1812  for (i = 0; i < desc->nb_components; i++) {
1813  int hshift = (i > 0) ? desc->log2_chroma_w : 0;
1814  int vshift = (i > 0) ? desc->log2_chroma_h : 0;
1815  int off = ((srcp->crop_left >> hshift) << h->pixel_shift) +
1816  (srcp->crop_top >> vshift) * dst->linesize[i];
1817  dst->data[i] += off;
1818  }
1819  return 0;
1820 }
1821 
1822 static int is_extra(const uint8_t *buf, int buf_size)
1823 {
1824  int cnt= buf[5]&0x1f;
1825  const uint8_t *p= buf+6;
1826  while(cnt--){
1827  int nalsize= AV_RB16(p) + 2;
1828  if(nalsize > buf_size - (p-buf) || p[2]!=0x67)
1829  return 0;
1830  p += nalsize;
1831  }
1832  cnt = *(p++);
1833  if(!cnt)
1834  return 0;
1835  while(cnt--){
1836  int nalsize= AV_RB16(p) + 2;
1837  if(nalsize > buf_size - (p-buf) || p[2]!=0x68)
1838  return 0;
1839  p += nalsize;
1840  }
1841  return 1;
1842 }
1843 
1844 static int h264_decode_frame(AVCodecContext *avctx, void *data,
1845  int *got_frame, AVPacket *avpkt)
1846 {
1847  const uint8_t *buf = avpkt->data;
1848  int buf_size = avpkt->size;
1849  H264Context *h = avctx->priv_data;
1850  AVFrame *pict = data;
1851  int buf_index = 0;
1852  H264Picture *out;
1853  int i, out_idx;
1854  int ret;
1855 
1856  h->flags = avctx->flags;
1857  /* reset data partitioning here, to ensure GetBitContexts from previous
1858  * packets do not get used. */
1859  h->data_partitioning = 0;
1860 
1861  /* end of stream, output what is still in the buffers */
1862  if (buf_size == 0) {
1863  out:
1864 
1865  h->cur_pic_ptr = NULL;
1866  h->first_field = 0;
1867 
1868  // FIXME factorize this with the output code below
1869  out = h->delayed_pic[0];
1870  out_idx = 0;
1871  for (i = 1;
1872  h->delayed_pic[i] &&
1873  !h->delayed_pic[i]->f.key_frame &&
1874  !h->delayed_pic[i]->mmco_reset;
1875  i++)
1876  if (h->delayed_pic[i]->poc < out->poc) {
1877  out = h->delayed_pic[i];
1878  out_idx = i;
1879  }
1880 
1881  for (i = out_idx; h->delayed_pic[i]; i++)
1882  h->delayed_pic[i] = h->delayed_pic[i + 1];
1883 
1884  if (out) {
1885  out->reference &= ~DELAYED_PIC_REF;
1886  ret = output_frame(h, pict, out);
1887  if (ret < 0)
1888  return ret;
1889  *got_frame = 1;
1890  }
1891 
1892  return buf_index;
1893  }
1894  if (h->is_avc && av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, NULL)) {
1895  int side_size;
1896  uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &side_size);
1897  if (is_extra(side, side_size))
1898  ff_h264_decode_extradata(h, side, side_size);
1899  }
1900  if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){
1901  if (is_extra(buf, buf_size))
1902  return ff_h264_decode_extradata(h, buf, buf_size);
1903  }
1904 
1905  buf_index = decode_nal_units(h, buf, buf_size, 0);
1906  if (buf_index < 0)
1907  return AVERROR_INVALIDDATA;
1908 
1909  if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
1910  av_assert0(buf_index <= buf_size);
1911  goto out;
1912  }
1913 
1914  if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) {
1915  if (avctx->skip_frame >= AVDISCARD_NONREF ||
1916  buf_size >= 4 && !memcmp("Q264", buf, 4))
1917  return buf_size;
1918  av_log(avctx, AV_LOG_ERROR, "no frame!\n");
1919  return AVERROR_INVALIDDATA;
1920  }
1921 
1922  if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) ||
1923  (h->mb_y >= h->mb_height && h->mb_height)) {
1924  if (avctx->flags2 & CODEC_FLAG2_CHUNKS)
1925  decode_postinit(h, 1);
1926 
1927  ff_h264_field_end(h, 0);
1928 
1929  /* Wait for second field. */
1930  *got_frame = 0;
1931  if (h->next_output_pic && (
1932  h->next_output_pic->recovered)) {
1933  if (!h->next_output_pic->recovered)
1935 
1936  ret = output_frame(h, pict, h->next_output_pic);
1937  if (ret < 0)
1938  return ret;
1939  *got_frame = 1;
1940  if (CONFIG_MPEGVIDEO) {
1945  &h->low_delay,
1946  h->mb_width, h->mb_height, h->mb_stride, 1);
1947  }
1948  }
1949  }
1950 
1951  assert(pict->buf[0] || !*got_frame);
1952 
1953  return get_consumed_bytes(buf_index, buf_size);
1954 }
1955 
1957 {
1958  int i;
1959 
1960  ff_h264_free_tables(h, 1); // FIXME cleanup init stuff perhaps
1961 
1962  for (i = 0; i < MAX_SPS_COUNT; i++)
1963  av_freep(h->sps_buffers + i);
1964 
1965  for (i = 0; i < MAX_PPS_COUNT; i++)
1966  av_freep(h->pps_buffers + i);
1967 }
1968 
1970 {
1971  H264Context *h = avctx->priv_data;
1972 
1975 
1977 
1978  return 0;
1979 }
1980 
1981 static const AVProfile profiles[] = {
1982  { FF_PROFILE_H264_BASELINE, "Baseline" },
1983  { FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
1984  { FF_PROFILE_H264_MAIN, "Main" },
1985  { FF_PROFILE_H264_EXTENDED, "Extended" },
1986  { FF_PROFILE_H264_HIGH, "High" },
1987  { FF_PROFILE_H264_HIGH_10, "High 10" },
1988  { FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
1989  { FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
1990  { FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
1991  { FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
1992  { FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
1993  { FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
1994  { FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
1995  { FF_PROFILE_UNKNOWN },
1996 };
1997 
1998 static const AVOption h264_options[] = {
1999  {"is_avc", "is avc", offsetof(H264Context, is_avc), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 1, 0},
2000  {"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 4, 0},
2001  {NULL}
2002 };
2003 
2004 static const AVClass h264_class = {
2005  .class_name = "H264 Decoder",
2006  .item_name = av_default_item_name,
2007  .option = h264_options,
2008  .version = LIBAVUTIL_VERSION_INT,
2009 };
2010 
2011 static const AVClass h264_vdpau_class = {
2012  .class_name = "H264 VDPAU Decoder",
2013  .item_name = av_default_item_name,
2014  .option = h264_options,
2015  .version = LIBAVUTIL_VERSION_INT,
2016 };
2017 
2019  .name = "h264",
2020  .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
2021  .type = AVMEDIA_TYPE_VIDEO,
2022  .id = AV_CODEC_ID_H264,
2023  .priv_data_size = sizeof(H264Context),
2027  .capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 |
2030  .flush = flush_dpb,
2032  .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context),
2033  .profiles = NULL_IF_CONFIG_SMALL(profiles),
2034  .priv_class = &h264_class,
2035 };
2036 
2037 #if CONFIG_H264_VDPAU_DECODER
2038 AVCodec ff_h264_vdpau_decoder = {
2039  .name = "h264_vdpau",
2040  .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
2041  .type = AVMEDIA_TYPE_VIDEO,
2042  .id = AV_CODEC_ID_H264,
2043  .priv_data_size = sizeof(H264Context),
2048  .flush = flush_dpb,
2049  .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_VDPAU_H264,
2050  AV_PIX_FMT_NONE},
2051  .profiles = NULL_IF_CONFIG_SMALL(profiles),
2052  .priv_class = &h264_vdpau_class,
2053 };
2054 #endif