FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264.h
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30 
31 #include "libavutil/intreadwrite.h"
32 #include "cabac.h"
33 #include "error_resilience.h"
34 #include "get_bits.h"
35 #include "h264chroma.h"
36 #include "h264dsp.h"
37 #include "h264pred.h"
38 #include "h264qpel.h"
39 #include "internal.h" // for avpriv_find_start_code()
40 #include "me_cmp.h"
41 #include "mpegutils.h"
42 #include "parser.h"
43 #include "qpeldsp.h"
44 #include "rectangle.h"
45 #include "videodsp.h"
46 
47 #define H264_MAX_PICTURE_COUNT 36
48 #define H264_MAX_THREADS 32
49 
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
52 
53 #define MAX_MMCO_COUNT 66
54 
55 #define MAX_DELAYED_PIC_COUNT 16
56 
57 #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
58 
59 /* Compiling in interlaced support reduces the speed
60  * of progressive decoding by about 2%. */
61 #define ALLOW_INTERLACE
62 
63 #define FMO 0
64 
65 /**
66  * The maximum number of slices supported by the decoder.
67  * must be a power of 2
68  */
69 #define MAX_SLICES 32
70 
71 #ifdef ALLOW_INTERLACE
72 #define MB_MBAFF(h) (h)->mb_mbaff
73 #define MB_FIELD(h) (h)->mb_field_decoding_flag
74 #define FRAME_MBAFF(h) (h)->mb_aff_frame
75 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
76 #define LEFT_MBS 2
77 #define LTOP 0
78 #define LBOT 1
79 #define LEFT(i) (i)
80 #else
81 #define MB_MBAFF(h) 0
82 #define MB_FIELD(h) 0
83 #define FRAME_MBAFF(h) 0
84 #define FIELD_PICTURE(h) 0
85 #undef IS_INTERLACED
86 #define IS_INTERLACED(mb_type) 0
87 #define LEFT_MBS 1
88 #define LTOP 0
89 #define LBOT 0
90 #define LEFT(i) 0
91 #endif
92 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
93 
94 #ifndef CABAC
95 #define CABAC(h) (h)->pps.cabac
96 #endif
97 
98 #define CHROMA(h) ((h)->sps.chroma_format_idc)
99 #define CHROMA422(h) ((h)->sps.chroma_format_idc == 2)
100 #define CHROMA444(h) ((h)->sps.chroma_format_idc == 3)
101 
102 #define EXTENDED_SAR 255
103 
104 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
105 #define MB_TYPE_8x8DCT 0x01000000
106 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
107 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
108 
109 #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
110 
111 /* NAL unit types */
112 enum {
114  NAL_DPA = 2,
115  NAL_DPB = 3,
116  NAL_DPC = 4,
118  NAL_SEI = 6,
119  NAL_SPS = 7,
120  NAL_PPS = 8,
121  NAL_AUD = 9,
127  NAL_FF_IGNORE = 0xff0f001,
128 };
129 
130 /**
131  * SEI message types
132  */
133 typedef enum {
134  SEI_TYPE_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
135  SEI_TYPE_PIC_TIMING = 1, ///< picture timing
136  SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35
137  SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
138  SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
139  SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
140  SEI_TYPE_DISPLAY_ORIENTATION = 47, ///< display orientation
141 } SEI_Type;
142 
143 /**
144  * pic_struct in picture timing SEI message
145  */
146 typedef enum {
147  SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
148  SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
149  SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
150  SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
151  SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
152  SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
153  SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
154  SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
155  SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
157 
158 /**
159  * frame_packing_arrangement types
160  */
161 typedef enum {
169 } SEI_FpaType;
170 
171 /**
172  * Sequence parameter set
173  */
174 typedef struct SPS {
175  unsigned int sps_id;
179  int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
180  int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
181  int poc_type; ///< pic_order_cnt_type
182  int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
186  int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
187  int ref_frame_count; ///< num_ref_frames
189  int mb_width; ///< pic_width_in_mbs_minus1 + 1
190  int mb_height; ///< pic_height_in_map_units_minus1 + 1
192  int mb_aff; ///< mb_adaptive_frame_field_flag
194  int crop; ///< frame_cropping_flag
195 
196  /* those 4 are already in luma samples */
197  unsigned int crop_left; ///< frame_cropping_rect_left_offset
198  unsigned int crop_right; ///< frame_cropping_rect_right_offset
199  unsigned int crop_top; ///< frame_cropping_rect_top_offset
200  unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
211  uint32_t time_scale;
213  short offset_for_ref_frame[256]; // FIXME dyn aloc?
223  int cpb_cnt; ///< See H.264 E.1.2
224  int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
225  int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
226  int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
227  int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
228  int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
229  int residual_color_transform_flag; ///< residual_colour_transform_flag
230  int constraint_set_flags; ///< constraint_set[0-3]_flag
231  int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
232 } SPS;
233 
234 /**
235  * Picture parameter set
236  */
237 typedef struct PPS {
238  unsigned int sps_id;
239  int cabac; ///< entropy_coding_mode_flag
240  int pic_order_present; ///< pic_order_present_flag
241  int slice_group_count; ///< num_slice_groups_minus1 + 1
243  unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
244  int weighted_pred; ///< weighted_pred_flag
246  int init_qp; ///< pic_init_qp_minus26 + 26
247  int init_qs; ///< pic_init_qs_minus26 + 26
249  int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
250  int constrained_intra_pred; ///< constrained_intra_pred_flag
251  int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
252  int transform_8x8_mode; ///< transform_8x8_mode_flag
255  uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
257 } PPS;
258 
259 /**
260  * Frame Packing Arrangement Type
261  */
262 typedef struct FPA {
264  int frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received
269 } FPA;
270 
271 /**
272  * Memory management control operation opcode.
273  */
274 typedef enum MMCOOpcode {
275  MMCO_END = 0,
282 } MMCOOpcode;
283 
284 /**
285  * Memory management control operation.
286  */
287 typedef struct MMCO {
289  int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
290  int long_arg; ///< index, pic_num, or num long refs depending on opcode
291 } MMCO;
292 
293 typedef struct H264Picture {
294  struct AVFrame f;
295  uint8_t avframe_padding[1024]; // hack to allow linking to a avutil with larger AVFrame
297 
299  int8_t *qscale_table;
300 
302  int16_t (*motion_val[2])[2];
303 
305  uint32_t *mb_type;
306 
308  void *hwaccel_picture_private; ///< hardware accelerator private data
309 
311  int8_t *ref_index[2];
312 
313  int field_poc[2]; ///< top/bottom POC
314  int poc; ///< frame POC
315  int frame_num; ///< frame_num (raw frame_num from slice header)
316  int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
317  not mix pictures before and after MMCO_RESET. */
318  int pic_id; /**< pic_num (short -> no wrap version of pic_num,
319  pic_num & max_pic_num; long -> long_pic_num) */
320  int long_ref; ///< 1->long term reference 0->short term reference
321  int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
322  int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
323  int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
324  int field_picture; ///< whether or not picture was encoded in separate fields
325 
326  int needs_realloc; ///< picture needs to be reallocated (eg due to a frame size change)
328  int recovered; ///< picture at IDR or recovery point + recovery count
331 
332  int crop;
334  int crop_top;
335 } H264Picture;
336 
337 /**
338  * H264Context
339  */
340 typedef struct H264Context {
351 
355 
356  int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
357  int chroma_qp[2]; // QPc
358 
359  int qp_thresh; ///< QP threshold to skip loopfilter
360 
361  /* coded dimensions -- 16 * mb w/h */
362  int width, height;
363  ptrdiff_t linesize, uvlinesize;
365 
366  int qscale;
371 
373  int flags;
375 
378 
379  // prediction stuff
382 
387 
389  int top_type;
392 
395 
400  unsigned int top_samples_available;
403  uint8_t (*top_borders[2])[(16 * 3) * 2];
404 
405  /**
406  * non zero coeff count cache.
407  * is 64 if not available.
408  */
410 
412 
413  /**
414  * Motion vector cache.
415  */
416  DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
417  DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
418 #define LIST_NOT_USED -1 // FIXME rename?
419 #define PART_NOT_AVAILABLE -2
420 
421  /**
422  * number of neighbors (top and/or left) that used 8x8 dct
423  */
425 
426  /**
427  * block_offset[ 0..23] for frame macroblocks
428  * block_offset[24..47] for field macroblocks
429  */
430  int block_offset[2 * (16 * 3)];
431 
432  uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
433  uint32_t *mb2br_xy;
434  int b_stride; // FIXME use s->b4_stride
435 
436  ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
437  ptrdiff_t mb_uvlinesize;
438 
439  unsigned current_sps_id; ///< id of the current SPS
440  SPS sps; ///< current sps
441  PPS pps; ///< current pps
442 
443  int au_pps_id; ///< pps_id of current access unit
444 
445  uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
446  uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
447  uint32_t(*dequant4_coeff[6])[16];
448  uint32_t(*dequant8_coeff[6])[64];
449 
451  uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
453  int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
455 
456  // interlacing specific flags
459  int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
462 
463  DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
464 
465  // Weighted pred stuff
470  // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
471  int luma_weight[48][2][2];
472  int chroma_weight[48][2][2][2];
473  int implicit_weight[48][48][2];
474 
480  int map_col_to_list0[2][16 + 32];
481  int map_col_to_list0_field[2][2][16 + 32];
482 
483  /**
484  * num_ref_idx_l0/1_active_minus1 + 1
485  */
486  unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
487  unsigned int list_count;
488  uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
489  H264Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
490  * Reordered version of default_ref_list
491  * according to picture reordering in slice header */
492  int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
493 
494  // data partitioning
499 
501  DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coefficient is int32_t in high depth, we need to reserve twice the space.
502  DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
503  int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
504 
505  /**
506  * Cabac
507  */
510 
511  /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
512  uint16_t *cbp_table;
513  int cbp;
514  int top_cbp;
515  int left_cbp;
516  /* chroma_pred_mode for i4x4 or i16x16, else 0 */
519  uint8_t (*mvd_table[2])[2];
520  DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
523 
536 
538 
539  int mb_x, mb_y;
545  int mb_num;
546  int mb_xy;
547 
549 
550  // deblock
551  int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
554 
555  // =============================================================
556  // Things below are not used in the MB or more inner code
557 
561  unsigned int rbsp_buffer_size[2];
562 
563  /**
564  * Used to parse AVC variant of h264
565  */
566  int is_avc; ///< this flag is != 0 if codec is avc1
567  int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
568  int got_first; ///< this flag is != 0 if we've parsed a frame
569 
570  int bit_depth_luma; ///< luma bit depth from sps to detect changes
571  int chroma_format_idc; ///< chroma format from sps to detect changes
572 
575 
576  int dequant_coeff_pps; ///< reinit tables when pps changes
577 
578  uint16_t *slice_table_base;
579 
580  // POC stuff
581  int poc_lsb;
582  int poc_msb;
584  int delta_poc[2];
586  int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
587  int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
588  int frame_num_offset; ///< for POC type 2
589  int prev_frame_num_offset; ///< for POC type 2
590  int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
591 
592  /**
593  * frame_num for frames or 2 * frame_num + 1 for field pics.
594  */
596 
597  /**
598  * max_frame_num or 2 * max_frame_num for field pics.
599  */
601 
603 
604  H264Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
612 
613  /**
614  * memory management control operations buffer.
615  */
619 
620  int long_ref_count; ///< number of actual long term references
621  int short_ref_count; ///< number of actual short term references
622 
624 
625  /**
626  * @name Members for slice based multithreading
627  * @{
628  */
630 
631  /**
632  * current slice number, used to initialize slice_num of each thread/context
633  */
635 
636  /**
637  * Max number of threads / contexts.
638  * This is equal to AVCodecContext.thread_count unless
639  * multithreaded decoding is impossible, in which case it is
640  * reduced to 1.
641  */
643 
645 
646  /**
647  * 1 if the single thread fallback warning has already been
648  * displayed, 0 otherwise.
649  */
651 
653 
655  unsigned int last_ref_count[2];
656  /** @} */
657 
658  /**
659  * pic_struct in picture timing SEI message
660  */
662 
663  /**
664  * Complement sei_pic_struct
665  * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
666  * However, soft telecined frames may have these values.
667  * This is used in an attempt to flag soft telecine progressive.
668  */
670 
671  /**
672  * frame_packing_arrangment SEI message
673  */
678 
679  /**
680  * display orientation SEI message
681  */
685 
686  /**
687  * Bit set of clock types for fields/frames in picture timing SEI message.
688  * For each found ct_type, appropriate bit is set (e.g., bit 1 for
689  * interlaced).
690  */
692 
693  /**
694  * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
695  */
697 
698  /**
699  * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
700  */
702 
703  /**
704  * recovery_frame_cnt from SEI message
705  *
706  * Set to -1 if no recovery point SEI message found or to number of frames
707  * before playback synchronizes. Frames having recovery point are key
708  * frames.
709  */
711 
712  /**
713  * Are the SEI recovery points looking valid.
714  */
716 
718 
719  /**
720  * recovery_frame is the frame_num at which the next frame should
721  * be fully constructed.
722  *
723  * Set to -1 when not expecting a recovery point.
724  */
726 
727 /**
728  * We have seen an IDR, so all the following frames in coded order are correctly
729  * decodable.
730  */
731 #define FRAME_RECOVERED_IDR (1 << 0)
732 /**
733  * Sufficient number of frames have been decoded since a SEI recovery point,
734  * so all the following frames in presentation order are correct.
735  */
736 #define FRAME_RECOVERED_SEI (1 << 1)
737 
738  int frame_recovered; ///< Initial frame has been completely recovered
739 
741 
742  int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
743  int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
744 
745  // Timestamp stuff
746  int sei_buffering_period_present; ///< Buffering period SEI flag
747  int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
748 
751 
752  int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
753 
758  int16_t *dc_val_base;
759 
764 
765  /* Motion Estimation */
768 } H264Context;
769 
770 extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
771 extern const uint16_t ff_h264_mb_sizes[4];
772 
773 /**
774  * Decode SEI
775  */
777 
778 /**
779  * Decode SPS
780  */
782 
783 /**
784  * compute profile from sps
785  */
787 
788 /**
789  * Decode PPS
790  */
791 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
792 
793 /**
794  * Decode a network abstraction layer unit.
795  * @param consumed is the number of bytes used as input
796  * @param length is the length of the array
797  * @param dst_length is the number of decoded bytes FIXME here
798  * or a decode rbsp tailing?
799  * @return decoded bytes, might be src+1 if no escapes
800  */
802  int *dst_length, int *consumed, int length);
803 
804 /**
805  * Free any data that may have been allocated in the H264 context
806  * like SPS, PPS etc.
807  */
809 
810 /**
811  * Reconstruct bitstream slice_type.
812  */
813 int ff_h264_get_slice_type(const H264Context *h);
814 
815 /**
816  * Allocate tables.
817  * needs width/height
818  */
820 
821 /**
822  * Fill the default_ref_list.
823  */
825 
829 
830 /**
831  * Execute the reference picture marking (memory management control operations).
832  */
833 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
834 
836  int first_slice);
837 
838 int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
839 
840 /**
841  * Check if the top & left blocks are available if needed & change the
842  * dc mode so it only uses the available blocks.
843  */
845 
846 /**
847  * Check if the top & left blocks are available if needed & change the
848  * dc mode so it only uses the available blocks.
849  */
850 int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
851 
855 void ff_h264_decode_init_vlc(void);
856 
857 /**
858  * Decode a macroblock
859  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
860  */
862 
863 /**
864  * Decode a CABAC coded macroblock
865  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
866  */
868 
870 
872 
875 void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
876 
877 void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
878  uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
879  unsigned int linesize, unsigned int uvlinesize);
880 void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
881  uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
882  unsigned int linesize, unsigned int uvlinesize);
883 
884 /**
885  * Reset SEI values at the beginning of the frame.
886  *
887  * @param h H.264 context.
888  */
890 
891 /**
892  * Get stereo_mode string from the h264 frame_packing_arrangement
893  * @param h H.264 context.
894  */
895 const char* ff_h264_sei_stereo_mode(H264Context *h);
896 
897 /*
898  * o-o o-o
899  * / / /
900  * o-o o-o
901  * ,---'
902  * o-o o-o
903  * / / /
904  * o-o o-o
905  */
906 
907 /* Scan8 organization:
908  * 0 1 2 3 4 5 6 7
909  * 0 DY y y y y y
910  * 1 y Y Y Y Y
911  * 2 y Y Y Y Y
912  * 3 y Y Y Y Y
913  * 4 y Y Y Y Y
914  * 5 DU u u u u u
915  * 6 u U U U U
916  * 7 u U U U U
917  * 8 u U U U U
918  * 9 u U U U U
919  * 10 DV v v v v v
920  * 11 v V V V V
921  * 12 v V V V V
922  * 13 v V V V V
923  * 14 v V V V V
924  * DY/DU/DV are for luma/chroma DC.
925  */
926 
927 #define LUMA_DC_BLOCK_INDEX 48
928 #define CHROMA_DC_BLOCK_INDEX 49
929 
930 // This table must be here because scan8[constant] must be known at compiletime
931 static const uint8_t scan8[16 * 3 + 3] = {
932  4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
933  6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
934  4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
935  6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
936  4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
937  6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
938  4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
939  6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
940  4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
941  6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
942  4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
943  6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
944  0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
945 };
946 
947 static av_always_inline uint32_t pack16to32(int a, int b)
948 {
949 #if HAVE_BIGENDIAN
950  return (b & 0xFFFF) + (a << 16);
951 #else
952  return (a & 0xFFFF) + (b << 16);
953 #endif
954 }
955 
956 static av_always_inline uint16_t pack8to16(int a, int b)
957 {
958 #if HAVE_BIGENDIAN
959  return (b & 0xFF) + (a << 8);
960 #else
961  return (a & 0xFF) + (b << 8);
962 #endif
963 }
964 
965 /**
966  * Get the chroma qp.
967  */
969 {
970  return h->pps.chroma_qp_table[t][qscale];
971 }
972 
973 /**
974  * Get the predicted intra4x4 prediction mode.
975  */
977 {
978  const int index8 = scan8[n];
979  const int left = h->intra4x4_pred_mode_cache[index8 - 1];
980  const int top = h->intra4x4_pred_mode_cache[index8 - 8];
981  const int min = FFMIN(left, top);
982 
983  tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
984 
985  if (min < 0)
986  return DC_PRED;
987  else
988  return min;
989 }
990 
992 {
993  int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
994  int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
995 
996  AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
997  i4x4[4] = i4x4_cache[7 + 8 * 3];
998  i4x4[5] = i4x4_cache[7 + 8 * 2];
999  i4x4[6] = i4x4_cache[7 + 8 * 1];
1000 }
1001 
1003 {
1004  const int mb_xy = h->mb_xy;
1005  uint8_t *nnz = h->non_zero_count[mb_xy];
1006  uint8_t *nnz_cache = h->non_zero_count_cache;
1007 
1008  AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
1009  AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
1010  AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
1011  AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
1012  AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
1013  AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
1014  AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
1015  AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
1016 
1017  if (!h->chroma_y_shift) {
1018  AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
1019  AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
1020  AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
1021  AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
1022  }
1023 }
1024 
1026  int b_stride,
1027  int b_xy, int b8_xy,
1028  int mb_type, int list)
1029 {
1030  int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
1031  int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
1032  AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
1033  AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
1034  AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
1035  AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
1036  if (CABAC(h)) {
1037  uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
1038  : h->mb2br_xy[h->mb_xy]];
1039  uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1040  if (IS_SKIP(mb_type)) {
1041  AV_ZERO128(mvd_dst);
1042  } else {
1043  AV_COPY64(mvd_dst, mvd_src + 8 * 3);
1044  AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
1045  AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
1046  AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
1047  }
1048  }
1049 
1050  {
1051  int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
1052  int8_t *ref_cache = h->ref_cache[list];
1053  ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
1054  ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
1055  ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
1056  ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
1057  }
1058 }
1059 
1060 static av_always_inline void write_back_motion(H264Context *h, int mb_type)
1061 {
1062  const int b_stride = h->b_stride;
1063  const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
1064  const int b8_xy = 4 * h->mb_xy;
1065 
1066  if (USES_LIST(mb_type, 0)) {
1067  write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
1068  } else {
1069  fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
1070  2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1071  }
1072  if (USES_LIST(mb_type, 1))
1073  write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
1074 
1075  if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
1076  if (IS_8X8(mb_type)) {
1077  uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
1078  direct_table[1] = h->sub_mb_type[1] >> 1;
1079  direct_table[2] = h->sub_mb_type[2] >> 1;
1080  direct_table[3] = h->sub_mb_type[3] >> 1;
1081  }
1082  }
1083 }
1084 
1086 {
1088  return !(AV_RN64A(h->sub_mb_type) &
1090  0x0001000100010001ULL));
1091  else
1092  return !(AV_RN64A(h->sub_mb_type) &
1094  0x0001000100010001ULL));
1095 }
1096 
1097 static inline int find_start_code(const uint8_t *buf, int buf_size,
1098  int buf_index, int next_avc)
1099 {
1100  uint32_t state = -1;
1101 
1102  buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
1103 
1104  return FFMIN(buf_index, buf_size);
1105 }
1106 
1107 static inline int get_avc_nalsize(H264Context *h, const uint8_t *buf,
1108  int buf_size, int *buf_index)
1109 {
1110  int i, nalsize = 0;
1111 
1112  if (*buf_index >= buf_size - h->nal_length_size)
1113  return -1;
1114 
1115  for (i = 0; i < h->nal_length_size; i++)
1116  nalsize = ((unsigned)nalsize << 8) | buf[(*buf_index)++];
1117  if (nalsize <= 0 || nalsize > buf_size - *buf_index) {
1119  "AVC: nal size %d\n", nalsize);
1120  return -1;
1121  }
1122  return nalsize;
1123 }
1124 
1125 int ff_h264_field_end(H264Context *h, int in_setup);
1126 
1129 
1132 
1133 void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
1134 int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
1137 
1139 #define SLICE_SINGLETHREAD 1
1140 #define SLICE_SKIPED 2
1141 
1142 int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
1144  const AVCodecContext *src);
1145 
1147 
1148 void ff_h264_free_tables(H264Context *h, int free_rbsp);
1149 
1151 
1152 #endif /* AVCODEC_H264_H */