FFmpeg
magicyuv.c
Go to the documentation of this file.
1 /*
2  * MagicYUV decoder
3  * Copyright (c) 2016 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdlib.h>
23 #include <string.h>
24 
25 #define CACHED_BITSTREAM_READER !ARCH_X86_32
26 
27 #include "libavutil/pixdesc.h"
28 
29 #include "avcodec.h"
30 #include "bytestream.h"
31 #include "get_bits.h"
32 #include "huffyuvdsp.h"
33 #include "internal.h"
34 #include "lossless_videodsp.h"
35 #include "thread.h"
36 
37 typedef struct Slice {
38  uint32_t start;
39  uint32_t size;
40 } Slice;
41 
42 typedef enum Prediction {
43  LEFT = 1,
46 } Prediction;
47 
48 typedef struct HuffEntry {
49  uint8_t len;
50  uint16_t sym;
51 } HuffEntry;
52 
53 typedef struct MagicYUVContext {
55  int max;
56  int bps;
58  int nb_slices;
59  int planes; // number of encoded planes in bitstream
60  int decorrelate; // postprocessing work
61  int color_matrix; // video color matrix
62  int flags;
63  int interlaced; // video is interlaced
64  const uint8_t *buf; // pointer to AVPacket->data
65  int hshift[4];
66  int vshift[4];
67  Slice *slices[4]; // slice bitstream positions for each plane
68  unsigned int slices_size[4]; // slice sizes for each plane
69  VLC vlc[4]; // VLC for each plane
70  int (*magy_decode_slice)(AVCodecContext *avctx, void *tdata,
71  int j, int threadnr);
74 
75 static int huff_build(const uint8_t len[], uint16_t codes_pos[33],
76  VLC *vlc, int nb_elems, void *logctx)
77 {
78  HuffEntry he[4096];
79 
80  for (int i = 31; i > 0; i--)
81  codes_pos[i] += codes_pos[i + 1];
82 
83  for (unsigned i = nb_elems; i-- > 0;)
84  he[--codes_pos[len[i]]] = (HuffEntry){ len[i], i };
85 
86  ff_free_vlc(vlc);
87  return ff_init_vlc_from_lengths(vlc, FFMIN(he[0].len, 12), nb_elems,
88  &he[0].len, sizeof(he[0]),
89  &he[0].sym, sizeof(he[0]), sizeof(he[0].sym),
90  0, 0, logctx);
91 }
92 
93 static void magicyuv_median_pred16(uint16_t *dst, const uint16_t *src1,
94  const uint16_t *diff, intptr_t w,
95  int *left, int *left_top, int max)
96 {
97  int i;
98  uint16_t l, lt;
99 
100  l = *left;
101  lt = *left_top;
102 
103  for (i = 0; i < w; i++) {
104  l = mid_pred(l, src1[i], (l + src1[i] - lt)) + diff[i];
105  l &= max;
106  lt = src1[i];
107  dst[i] = l;
108  }
109 
110  *left = l;
111  *left_top = lt;
112 }
113 
114 static int magy_decode_slice10(AVCodecContext *avctx, void *tdata,
115  int j, int threadnr)
116 {
117  MagicYUVContext *s = avctx->priv_data;
118  int interlaced = s->interlaced;
119  const int bps = s->bps;
120  const int max = s->max - 1;
121  AVFrame *p = s->p;
122  int i, k, x;
123  GetBitContext gb;
124  uint16_t *dst;
125 
126  for (i = 0; i < s->planes; i++) {
127  int left, lefttop, top;
128  int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
129  int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
130  int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
131  ptrdiff_t fake_stride = (p->linesize[i] / 2) * (1 + interlaced);
132  ptrdiff_t stride = p->linesize[i] / 2;
133  int flags, pred;
134  int ret = init_get_bits8(&gb, s->buf + s->slices[i][j].start,
135  s->slices[i][j].size);
136 
137  if (ret < 0)
138  return ret;
139 
140  flags = get_bits(&gb, 8);
141  pred = get_bits(&gb, 8);
142 
143  dst = (uint16_t *)p->data[i] + j * sheight * stride;
144  if (flags & 1) {
145  if (get_bits_left(&gb) < bps * width * height)
146  return AVERROR_INVALIDDATA;
147  for (k = 0; k < height; k++) {
148  for (x = 0; x < width; x++)
149  dst[x] = get_bits(&gb, bps);
150 
151  dst += stride;
152  }
153  } else {
154  for (k = 0; k < height; k++) {
155  for (x = 0; x < width; x++) {
156  int pix;
157  if (get_bits_left(&gb) <= 0)
158  return AVERROR_INVALIDDATA;
159 
160  pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
161  if (pix < 0)
162  return AVERROR_INVALIDDATA;
163 
164  dst[x] = pix;
165  }
166  dst += stride;
167  }
168  }
169 
170  switch (pred) {
171  case LEFT:
172  dst = (uint16_t *)p->data[i] + j * sheight * stride;
173  s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
174  dst += stride;
175  if (interlaced) {
176  s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
177  dst += stride;
178  }
179  for (k = 1 + interlaced; k < height; k++) {
180  s->llviddsp.add_left_pred_int16(dst, dst, max, width, dst[-fake_stride]);
181  dst += stride;
182  }
183  break;
184  case GRADIENT:
185  dst = (uint16_t *)p->data[i] + j * sheight * stride;
186  s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
187  dst += stride;
188  if (interlaced) {
189  s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
190  dst += stride;
191  }
192  for (k = 1 + interlaced; k < height; k++) {
193  top = dst[-fake_stride];
194  left = top + dst[0];
195  dst[0] = left & max;
196  for (x = 1; x < width; x++) {
197  top = dst[x - fake_stride];
198  lefttop = dst[x - (fake_stride + 1)];
199  left += top - lefttop + dst[x];
200  dst[x] = left & max;
201  }
202  dst += stride;
203  }
204  break;
205  case MEDIAN:
206  dst = (uint16_t *)p->data[i] + j * sheight * stride;
207  s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
208  dst += stride;
209  if (interlaced) {
210  s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
211  dst += stride;
212  }
213  lefttop = left = dst[0];
214  for (k = 1 + interlaced; k < height; k++) {
215  magicyuv_median_pred16(dst, dst - fake_stride, dst, width, &left, &lefttop, max);
216  lefttop = left = dst[0];
217  dst += stride;
218  }
219  break;
220  default:
221  avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
222  }
223  }
224 
225  if (s->decorrelate) {
226  int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
227  int width = avctx->coded_width;
228  uint16_t *r = (uint16_t *)p->data[0] + j * s->slice_height * p->linesize[0] / 2;
229  uint16_t *g = (uint16_t *)p->data[1] + j * s->slice_height * p->linesize[1] / 2;
230  uint16_t *b = (uint16_t *)p->data[2] + j * s->slice_height * p->linesize[2] / 2;
231 
232  for (i = 0; i < height; i++) {
233  for (k = 0; k < width; k++) {
234  b[k] = (b[k] + g[k]) & max;
235  r[k] = (r[k] + g[k]) & max;
236  }
237  b += p->linesize[0] / 2;
238  g += p->linesize[1] / 2;
239  r += p->linesize[2] / 2;
240  }
241  }
242 
243  return 0;
244 }
245 
246 static int magy_decode_slice(AVCodecContext *avctx, void *tdata,
247  int j, int threadnr)
248 {
249  MagicYUVContext *s = avctx->priv_data;
250  int interlaced = s->interlaced;
251  AVFrame *p = s->p;
252  int i, k, x, min_width;
253  GetBitContext gb;
254  uint8_t *dst;
255 
256  for (i = 0; i < s->planes; i++) {
257  int left, lefttop, top;
258  int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
259  int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
260  int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
261  ptrdiff_t fake_stride = p->linesize[i] * (1 + interlaced);
262  ptrdiff_t stride = p->linesize[i];
263  const uint8_t *slice = s->buf + s->slices[i][j].start;
264  int flags, pred;
265 
266  flags = bytestream_get_byte(&slice);
267  pred = bytestream_get_byte(&slice);
268 
269  dst = p->data[i] + j * sheight * stride;
270  if (flags & 1) {
271  if (s->slices[i][j].size - 2 < width * height)
272  return AVERROR_INVALIDDATA;
273  for (k = 0; k < height; k++) {
274  bytestream_get_buffer(&slice, dst, width);
275  dst += stride;
276  }
277  } else {
278  int ret = init_get_bits8(&gb, slice, s->slices[i][j].size - 2);
279 
280  if (ret < 0)
281  return ret;
282 
283  for (k = 0; k < height; k++) {
284  for (x = 0; x < width; x++) {
285  int pix;
286  if (get_bits_left(&gb) <= 0)
287  return AVERROR_INVALIDDATA;
288 
289  pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
290  if (pix < 0)
291  return AVERROR_INVALIDDATA;
292 
293  dst[x] = pix;
294  }
295  dst += stride;
296  }
297  }
298 
299  switch (pred) {
300  case LEFT:
301  dst = p->data[i] + j * sheight * stride;
302  s->llviddsp.add_left_pred(dst, dst, width, 0);
303  dst += stride;
304  if (interlaced) {
305  s->llviddsp.add_left_pred(dst, dst, width, 0);
306  dst += stride;
307  }
308  for (k = 1 + interlaced; k < height; k++) {
309  s->llviddsp.add_left_pred(dst, dst, width, dst[-fake_stride]);
310  dst += stride;
311  }
312  break;
313  case GRADIENT:
314  dst = p->data[i] + j * sheight * stride;
315  s->llviddsp.add_left_pred(dst, dst, width, 0);
316  dst += stride;
317  if (interlaced) {
318  s->llviddsp.add_left_pred(dst, dst, width, 0);
319  dst += stride;
320  }
321  min_width = FFMIN(width, 32);
322  for (k = 1 + interlaced; k < height; k++) {
323  top = dst[-fake_stride];
324  left = top + dst[0];
325  dst[0] = left;
326  for (x = 1; x < min_width; x++) { /* dsp need aligned 32 */
327  top = dst[x - fake_stride];
328  lefttop = dst[x - (fake_stride + 1)];
329  left += top - lefttop + dst[x];
330  dst[x] = left;
331  }
332  if (width > 32)
333  s->llviddsp.add_gradient_pred(dst + 32, fake_stride, width - 32);
334  dst += stride;
335  }
336  break;
337  case MEDIAN:
338  dst = p->data[i] + j * sheight * stride;
339  s->llviddsp.add_left_pred(dst, dst, width, 0);
340  dst += stride;
341  if (interlaced) {
342  s->llviddsp.add_left_pred(dst, dst, width, 0);
343  dst += stride;
344  }
345  lefttop = left = dst[0];
346  for (k = 1 + interlaced; k < height; k++) {
347  s->llviddsp.add_median_pred(dst, dst - fake_stride,
348  dst, width, &left, &lefttop);
349  lefttop = left = dst[0];
350  dst += stride;
351  }
352  break;
353  default:
354  avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
355  }
356  }
357 
358  if (s->decorrelate) {
359  int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
360  int width = avctx->coded_width;
361  uint8_t *b = p->data[0] + j * s->slice_height * p->linesize[0];
362  uint8_t *g = p->data[1] + j * s->slice_height * p->linesize[1];
363  uint8_t *r = p->data[2] + j * s->slice_height * p->linesize[2];
364 
365  for (i = 0; i < height; i++) {
366  s->llviddsp.add_bytes(b, g, width);
367  s->llviddsp.add_bytes(r, g, width);
368  b += p->linesize[0];
369  g += p->linesize[1];
370  r += p->linesize[2];
371  }
372  }
373 
374  return 0;
375 }
376 
377 static int build_huffman(AVCodecContext *avctx, const uint8_t *table,
378  int table_size, int max)
379 {
380  MagicYUVContext *s = avctx->priv_data;
381  GetByteContext gb;
382  uint8_t len[4096];
383  uint16_t length_count[33] = { 0 };
384  int i = 0, j = 0, k;
385 
386  bytestream2_init(&gb, table, table_size);
387 
388  while (bytestream2_get_bytes_left(&gb) > 0) {
389  int b = bytestream2_peek_byteu(&gb) & 0x80;
390  int x = bytestream2_get_byteu(&gb) & ~0x80;
391  int l = 1;
392 
393  if (b) {
394  if (bytestream2_get_bytes_left(&gb) <= 0)
395  break;
396  l += bytestream2_get_byteu(&gb);
397  }
398  k = j + l;
399  if (k > max || x == 0 || x > 32) {
400  av_log(avctx, AV_LOG_ERROR, "Invalid Huffman codes\n");
401  return AVERROR_INVALIDDATA;
402  }
403 
404  length_count[x] += l;
405  for (; j < k; j++)
406  len[j] = x;
407 
408  if (j == max) {
409  j = 0;
410  if (huff_build(len, length_count, &s->vlc[i], max, avctx)) {
411  av_log(avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
412  return AVERROR_INVALIDDATA;
413  }
414  i++;
415  if (i == s->planes) {
416  break;
417  }
418  memset(length_count, 0, sizeof(length_count));
419  }
420  }
421 
422  if (i != s->planes) {
423  av_log(avctx, AV_LOG_ERROR, "Huffman tables too short\n");
424  return AVERROR_INVALIDDATA;
425  }
426 
427  return 0;
428 }
429 
430 static int magy_decode_frame(AVCodecContext *avctx, void *data,
431  int *got_frame, AVPacket *avpkt)
432 {
433  MagicYUVContext *s = avctx->priv_data;
434  ThreadFrame frame = { .f = data };
435  AVFrame *p = data;
436  GetByteContext gb;
437  uint32_t first_offset, offset, next_offset, header_size, slice_width;
438  int width, height, format, version, table_size;
439  int ret, i, j;
440 
441  if (avpkt->size < 36)
442  return AVERROR_INVALIDDATA;
443 
444  bytestream2_init(&gb, avpkt->data, avpkt->size);
445  if (bytestream2_get_le32u(&gb) != MKTAG('M', 'A', 'G', 'Y'))
446  return AVERROR_INVALIDDATA;
447 
448  header_size = bytestream2_get_le32u(&gb);
449  if (header_size < 32 || header_size >= avpkt->size) {
450  av_log(avctx, AV_LOG_ERROR,
451  "header or packet too small %"PRIu32"\n", header_size);
452  return AVERROR_INVALIDDATA;
453  }
454 
455  version = bytestream2_get_byteu(&gb);
456  if (version != 7) {
457  avpriv_request_sample(avctx, "Version %d", version);
458  return AVERROR_PATCHWELCOME;
459  }
460 
461  s->hshift[1] =
462  s->vshift[1] =
463  s->hshift[2] =
464  s->vshift[2] = 0;
465  s->decorrelate = 0;
466  s->bps = 8;
467 
468  format = bytestream2_get_byteu(&gb);
469  switch (format) {
470  case 0x65:
471  avctx->pix_fmt = AV_PIX_FMT_GBRP;
472  s->decorrelate = 1;
473  break;
474  case 0x66:
475  avctx->pix_fmt = AV_PIX_FMT_GBRAP;
476  s->decorrelate = 1;
477  break;
478  case 0x67:
479  avctx->pix_fmt = AV_PIX_FMT_YUV444P;
480  break;
481  case 0x68:
482  avctx->pix_fmt = AV_PIX_FMT_YUV422P;
483  s->hshift[1] =
484  s->hshift[2] = 1;
485  break;
486  case 0x69:
487  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
488  s->hshift[1] =
489  s->vshift[1] =
490  s->hshift[2] =
491  s->vshift[2] = 1;
492  break;
493  case 0x6a:
494  avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
495  break;
496  case 0x6b:
497  avctx->pix_fmt = AV_PIX_FMT_GRAY8;
498  break;
499  case 0x6c:
500  avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
501  s->hshift[1] =
502  s->hshift[2] = 1;
503  s->bps = 10;
504  break;
505  case 0x76:
506  avctx->pix_fmt = AV_PIX_FMT_YUV444P10;
507  s->bps = 10;
508  break;
509  case 0x6d:
510  avctx->pix_fmt = AV_PIX_FMT_GBRP10;
511  s->decorrelate = 1;
512  s->bps = 10;
513  break;
514  case 0x6e:
515  avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
516  s->decorrelate = 1;
517  s->bps = 10;
518  break;
519  case 0x6f:
520  avctx->pix_fmt = AV_PIX_FMT_GBRP12;
521  s->decorrelate = 1;
522  s->bps = 12;
523  break;
524  case 0x70:
525  avctx->pix_fmt = AV_PIX_FMT_GBRAP12;
526  s->decorrelate = 1;
527  s->bps = 12;
528  break;
529  case 0x73:
530  avctx->pix_fmt = AV_PIX_FMT_GRAY10;
531  s->bps = 10;
532  break;
533  case 0x7b:
534  avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
535  s->hshift[1] =
536  s->vshift[1] =
537  s->hshift[2] =
538  s->vshift[2] = 1;
539  s->bps = 10;
540  break;
541  default:
542  avpriv_request_sample(avctx, "Format 0x%X", format);
543  return AVERROR_PATCHWELCOME;
544  }
545  s->max = 1 << s->bps;
548 
549  bytestream2_skipu(&gb, 1);
550  s->color_matrix = bytestream2_get_byteu(&gb);
551  s->flags = bytestream2_get_byteu(&gb);
552  s->interlaced = !!(s->flags & 2);
553  bytestream2_skipu(&gb, 3);
554 
555  width = bytestream2_get_le32u(&gb);
556  height = bytestream2_get_le32u(&gb);
557  ret = ff_set_dimensions(avctx, width, height);
558  if (ret < 0)
559  return ret;
560 
561  slice_width = bytestream2_get_le32u(&gb);
562  if (slice_width != avctx->coded_width) {
563  avpriv_request_sample(avctx, "Slice width %"PRIu32, slice_width);
564  return AVERROR_PATCHWELCOME;
565  }
566  s->slice_height = bytestream2_get_le32u(&gb);
567  if (s->slice_height <= 0 || s->slice_height > INT_MAX - avctx->coded_height) {
568  av_log(avctx, AV_LOG_ERROR,
569  "invalid slice height: %d\n", s->slice_height);
570  return AVERROR_INVALIDDATA;
571  }
572 
573  bytestream2_skipu(&gb, 4);
574 
575  s->nb_slices = (avctx->coded_height + s->slice_height - 1) / s->slice_height;
576  if (s->nb_slices > INT_MAX / FFMAX(sizeof(Slice), 4 * 5)) {
577  av_log(avctx, AV_LOG_ERROR,
578  "invalid number of slices: %d\n", s->nb_slices);
579  return AVERROR_INVALIDDATA;
580  }
581 
582  if (s->interlaced) {
583  if ((s->slice_height >> s->vshift[1]) < 2) {
584  av_log(avctx, AV_LOG_ERROR, "impossible slice height\n");
585  return AVERROR_INVALIDDATA;
586  }
587  if ((avctx->coded_height % s->slice_height) && ((avctx->coded_height % s->slice_height) >> s->vshift[1]) < 2) {
588  av_log(avctx, AV_LOG_ERROR, "impossible height\n");
589  return AVERROR_INVALIDDATA;
590  }
591  }
592 
593  if (bytestream2_get_bytes_left(&gb) <= s->nb_slices * s->planes * 5)
594  return AVERROR_INVALIDDATA;
595  for (i = 0; i < s->planes; i++) {
596  av_fast_malloc(&s->slices[i], &s->slices_size[i], s->nb_slices * sizeof(Slice));
597  if (!s->slices[i])
598  return AVERROR(ENOMEM);
599 
600  offset = bytestream2_get_le32u(&gb);
601  if (offset >= avpkt->size - header_size)
602  return AVERROR_INVALIDDATA;
603 
604  if (i == 0)
605  first_offset = offset;
606 
607  for (j = 0; j < s->nb_slices - 1; j++) {
608  s->slices[i][j].start = offset + header_size;
609 
610  next_offset = bytestream2_get_le32u(&gb);
611  if (next_offset <= offset || next_offset >= avpkt->size - header_size)
612  return AVERROR_INVALIDDATA;
613 
614  s->slices[i][j].size = next_offset - offset;
615  if (s->slices[i][j].size < 2)
616  return AVERROR_INVALIDDATA;
617  offset = next_offset;
618  }
619 
620  s->slices[i][j].start = offset + header_size;
621  s->slices[i][j].size = avpkt->size - s->slices[i][j].start;
622 
623  if (s->slices[i][j].size < 2)
624  return AVERROR_INVALIDDATA;
625  }
626 
627  if (bytestream2_get_byteu(&gb) != s->planes)
628  return AVERROR_INVALIDDATA;
629 
630  bytestream2_skipu(&gb, s->nb_slices * s->planes);
631 
632  table_size = header_size + first_offset - bytestream2_tell(&gb);
633  if (table_size < 2)
634  return AVERROR_INVALIDDATA;
635 
636  ret = build_huffman(avctx, avpkt->data + bytestream2_tell(&gb),
637  table_size, s->max);
638  if (ret < 0)
639  return ret;
640 
642  p->key_frame = 1;
643 
644  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
645  return ret;
646 
647  s->buf = avpkt->data;
648  s->p = p;
649  avctx->execute2(avctx, s->magy_decode_slice, NULL, NULL, s->nb_slices);
650 
651  if (avctx->pix_fmt == AV_PIX_FMT_GBRP ||
652  avctx->pix_fmt == AV_PIX_FMT_GBRAP ||
653  avctx->pix_fmt == AV_PIX_FMT_GBRP10 ||
654  avctx->pix_fmt == AV_PIX_FMT_GBRAP10||
655  avctx->pix_fmt == AV_PIX_FMT_GBRAP12||
656  avctx->pix_fmt == AV_PIX_FMT_GBRP12) {
657  FFSWAP(uint8_t*, p->data[0], p->data[1]);
658  FFSWAP(int, p->linesize[0], p->linesize[1]);
659  } else {
660  switch (s->color_matrix) {
661  case 1:
663  break;
664  case 2:
666  break;
667  }
669  }
670 
671  *got_frame = 1;
672 
673  return avpkt->size;
674 }
675 
677 {
678  MagicYUVContext *s = avctx->priv_data;
680  return 0;
681 }
682 
684 {
685  MagicYUVContext * const s = avctx->priv_data;
686  int i;
687 
688  for (i = 0; i < FF_ARRAY_ELEMS(s->slices); i++) {
689  av_freep(&s->slices[i]);
690  s->slices_size[i] = 0;
691  ff_free_vlc(&s->vlc[i]);
692  }
693 
694  return 0;
695 }
696 
698  .name = "magicyuv",
699  .long_name = NULL_IF_CONFIG_SMALL("MagicYUV video"),
700  .type = AVMEDIA_TYPE_VIDEO,
701  .id = AV_CODEC_ID_MAGICYUV,
702  .priv_data_size = sizeof(MagicYUVContext),
704  .close = magy_decode_end,
706  .capabilities = AV_CODEC_CAP_DR1 |
709  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
710 };
also ITU-R BT1361 / IEC 61966-2-4 xvYCC709 / SMPTE RP177 Annex B
Definition: pixfmt.h:514
fg outputs[0] format
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int(* add_left_pred)(uint8_t *dst, const uint8_t *src, ptrdiff_t w, int left)
version
Definition: libkvazaar.c:320
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:100
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:724
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:419
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2613
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:84
const char * g
Definition: vf_curves.c:117
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601 ...
Definition: pixfmt.h:518
#define avpriv_request_sample(...)
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
int size
Definition: packet.h:370
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:137
#define FF_ARRAY_ELEMS(a)
unsigned int slices_size[4]
Definition: magicyuv.c:68
static int build_huffman(AVCodecContext *avctx, const uint8_t *table, int table_size, int max)
Definition: magicyuv.c:377
AVCodec.
Definition: codec.h:197
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
LLVidDSPContext llviddsp
Definition: magicyuv.c:72
#define AV_PIX_FMT_GRAY10
Definition: pixfmt.h:380
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:41
uint8_t
#define av_cold
Definition: attributes.h:88
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Multithreading support functions.
Prediction
Definition: magicyuv.c:42
#define height
uint8_t * data
Definition: packet.h:369
void(* add_median_pred)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, ptrdiff_t w, int *left, int *left_top)
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
Definition: bytestream.h:174
bitstream reader API header.
int hshift[4]
Definition: magicyuv.c:65
#define max(a, b)
Definition: cuda_runtime.h:33
#define av_log(a,...)
static const uint16_t table[]
Definition: prosumer.c:206
void(* add_gradient_pred)(uint8_t *src, const ptrdiff_t stride, const ptrdiff_t width)
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:158
static int magy_decode_slice(AVCodecContext *avctx, void *tdata, int j, int threadnr)
Definition: magicyuv.c:246
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
int slice_height
Definition: magicyuv.c:57
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:117
const char * r
Definition: vf_curves.c:116
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: frame.h:562
enum AVColorSpace colorspace
YUV colorspace type.
Definition: frame.h:573
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:420
const char * name
Name of the codec implementation.
Definition: codec.h:204
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:402
#define FFMAX(a, b)
Definition: common.h:103
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:108
Definition: vlc.h:26
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
Slice * slices[4]
Definition: magicyuv.c:67
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames.The frames must then be freed with ff_thread_release_buffer().Otherwise decode directly into the user-supplied frames.Call ff_thread_report_progress() after some part of the current picture has decoded.A good place to put this is where draw_horiz_band() is called-add this if it isn't called anywhere
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:502
#define b
Definition: input.c:41
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:401
int vshift[4]
Definition: magicyuv.c:66
#define FFMIN(a, b)
Definition: common.h:105
uint8_t interlaced
Definition: mxfenc.c:2208
#define width
uint8_t w
Definition: llviddspenc.c:39
Definition: magicyuv.c:37
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define s(width, name)
Definition: cbs_vp9.c:257
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static av_always_inline unsigned int bytestream_get_buffer(const uint8_t **b, uint8_t *dst, unsigned int size)
Definition: bytestream.h:363
Full range content.
Definition: pixfmt.h:586
int bits
Definition: vlc.h:27
if(ret)
static const float pred[4]
Definition: siprdata.h:259
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:112
static av_cold int magy_decode_init(AVCodecContext *avctx)
Definition: magicyuv.c:676
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:192
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:1844
static int huff_build(const uint8_t len[], uint16_t codes_pos[33], VLC *vlc, int nb_elems, void *logctx)
Definition: magicyuv.c:75
int(* add_left_pred_int16)(uint16_t *dst, const uint16_t *src, unsigned mask, ptrdiff_t w, unsigned left)
#define src1
Definition: h264pred.c:140
Libavcodec external API header.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
main external API structure.
Definition: avcodec.h:536
static int magy_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: magicyuv.c:430
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:206
uint32_t size
Definition: magicyuv.c:39
void ff_llviddsp_init(LLVidDSPContext *c)
uint32_t start
Definition: magicyuv.c:38
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:399
int coded_height
Definition: avcodec.h:724
AVCodec ff_magicyuv_decoder
Definition: magicyuv.c:697
int ff_init_vlc_from_lengths(VLC *vlc_arg, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
Definition: bitstream.c:381
Definition: magicyuv.c:43
#define mid_pred
Definition: mathops.h:97
VLC vlc[4]
Definition: magicyuv.c:69
AVFrame * p
Definition: magicyuv.c:54
static int magy_decode_slice10(AVCodecContext *avctx, void *tdata, int j, int threadnr)
Definition: magicyuv.c:114
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:416
int(* magy_decode_slice)(AVCodecContext *avctx, void *tdata, int j, int threadnr)
Definition: magicyuv.c:70
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:400
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
Narrow or limited range content.
Definition: pixfmt.h:569
static av_cold int magy_decode_end(AVCodecContext *avctx)
Definition: magicyuv.c:683
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:104
int
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
Y , 8bpp.
Definition: pixfmt.h:74
common internal api header.
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
const uint8_t * buf
Definition: magicyuv.c:64
unsigned bps
Definition: movenc.c:1601
void * priv_data
Definition: avcodec.h:563
static av_always_inline int diff(const uint32_t a, const uint32_t b)
int len
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:396
Definition: exr.c:93
static void magicyuv_median_pred16(uint16_t *dst, const uint16_t *src1, const uint16_t *diff, intptr_t w, int *left, int *left_top, int max)
Definition: magicyuv.c:93
#define av_freep(p)
#define FFSWAP(type, a, b)
Definition: common.h:108
#define stride
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
void(* add_bytes)(uint8_t *dst, uint8_t *src, ptrdiff_t w)
#define MKTAG(a, b, c, d)
Definition: common.h:478
This structure stores compressed data.
Definition: packet.h:346
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:431
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators...
Definition: codec.h:52
for(j=16;j >0;--j)
int i
Definition: input.c:407
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
int color_matrix
Definition: magicyuv.c:61