FFmpeg
opusenc.c
Go to the documentation of this file.
1 /*
2  * Opus encoder
3  * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "encode.h"
23 #include "opusenc.h"
24 #include "opus_pvq.h"
25 #include "opusenc_psy.h"
26 #include "opustab.h"
27 
29 #include "libavutil/float_dsp.h"
30 #include "libavutil/mem_internal.h"
31 #include "libavutil/opt.h"
32 #include "bytestream.h"
33 #include "audio_frame_queue.h"
34 #include "codec_internal.h"
35 
36 typedef struct OpusEncContext {
47 
48  uint8_t enc_id[64];
50 
52 
53  int channels;
54 
57 
58  /* Actual energy the decoder will have */
60 
61  DECLARE_ALIGNED(32, float, scratch)[2048];
63 
65 {
66  uint8_t *bs = avctx->extradata;
67 
68  bytestream_put_buffer(&bs, "OpusHead", 8);
69  bytestream_put_byte (&bs, 0x1);
70  bytestream_put_byte (&bs, avctx->ch_layout.nb_channels);
71  bytestream_put_le16 (&bs, avctx->initial_padding);
72  bytestream_put_le32 (&bs, avctx->sample_rate);
73  bytestream_put_le16 (&bs, 0x0);
74  bytestream_put_byte (&bs, 0x0); /* Default layout */
75 }
76 
77 static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
78 {
79  int tmp = 0x0, extended_toc = 0;
80  static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = {
81  /* Silk Hybrid Celt Layer */
82  /* NB MB WB SWB FB NB MB WB SWB FB NB MB WB SWB FB Bandwidth */
83  { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 17, 0, 21, 25, 29 } }, /* 2.5 ms */
84  { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 18, 0, 22, 26, 30 } }, /* 5 ms */
85  { { 1, 5, 9, 0, 0 }, { 0, 0, 0, 13, 15 }, { 19, 0, 23, 27, 31 } }, /* 10 ms */
86  { { 2, 6, 10, 0, 0 }, { 0, 0, 0, 14, 16 }, { 20, 0, 24, 28, 32 } }, /* 20 ms */
87  { { 3, 7, 11, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }, /* 40 ms */
88  { { 4, 8, 12, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }, /* 60 ms */
89  };
90  int cfg = toc_cfg[s->packet.framesize][s->packet.mode][s->packet.bandwidth];
91  *fsize_needed = 0;
92  if (!cfg)
93  return 1;
94  if (s->packet.frames == 2) { /* 2 packets */
95  if (s->frame[0].framebits == s->frame[1].framebits) { /* same size */
96  tmp = 0x1;
97  } else { /* different size */
98  tmp = 0x2;
99  *fsize_needed = 1; /* put frame sizes in the packet */
100  }
101  } else if (s->packet.frames > 2) {
102  tmp = 0x3;
103  extended_toc = 1;
104  }
105  tmp |= (s->channels > 1) << 2; /* Stereo or mono */
106  tmp |= (cfg - 1) << 3; /* codec configuration */
107  *toc++ = tmp;
108  if (extended_toc) {
109  for (int i = 0; i < (s->packet.frames - 1); i++)
110  *fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits);
111  tmp = (*fsize_needed) << 7; /* vbr flag */
112  tmp |= (0) << 6; /* padding flag */
113  tmp |= s->packet.frames;
114  *toc++ = tmp;
115  }
116  *size = 1 + extended_toc;
117  return 0;
118 }
119 
121 {
122  AVFrame *cur = NULL;
123  const int subframesize = s->avctx->frame_size;
124  int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;
125 
126  cur = ff_bufqueue_get(&s->bufqueue);
127 
128  for (int ch = 0; ch < f->channels; ch++) {
129  CeltBlock *b = &f->block[ch];
130  const void *input = cur->extended_data[ch];
131  size_t bps = av_get_bytes_per_sample(cur->format);
132  memcpy(b->overlap, input, bps*cur->nb_samples);
133  }
134 
135  av_frame_free(&cur);
136 
137  for (int sf = 0; sf < subframes; sf++) {
138  if (sf != (subframes - 1))
139  cur = ff_bufqueue_get(&s->bufqueue);
140  else
141  cur = ff_bufqueue_peek(&s->bufqueue, 0);
142 
143  for (int ch = 0; ch < f->channels; ch++) {
144  CeltBlock *b = &f->block[ch];
145  const void *input = cur->extended_data[ch];
146  const size_t bps = av_get_bytes_per_sample(cur->format);
147  const size_t left = (subframesize - cur->nb_samples)*bps;
148  const size_t len = FFMIN(subframesize, cur->nb_samples)*bps;
149  memcpy(&b->samples[sf*subframesize], input, len);
150  memset(&b->samples[cur->nb_samples], 0, left);
151  }
152 
153  /* Last frame isn't popped off and freed yet - we need it for overlap */
154  if (sf != (subframes - 1))
155  av_frame_free(&cur);
156  }
157 }
158 
159 /* Apply the pre emphasis filter */
161 {
162  const int subframesize = s->avctx->frame_size;
163  const int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;
164 
165  /* Filter overlap */
166  for (int ch = 0; ch < f->channels; ch++) {
167  CeltBlock *b = &f->block[ch];
168  float m = b->emph_coeff;
169  for (int i = 0; i < CELT_OVERLAP; i++) {
170  float sample = b->overlap[i];
171  b->overlap[i] = sample - m;
172  m = sample * CELT_EMPH_COEFF;
173  }
174  b->emph_coeff = m;
175  }
176 
177  /* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */
178  for (int sf = 0; sf < subframes; sf++) {
179  for (int ch = 0; ch < f->channels; ch++) {
180  CeltBlock *b = &f->block[ch];
181  float m = b->emph_coeff;
182  for (int i = 0; i < subframesize; i++) {
183  float sample = b->samples[sf*subframesize + i];
184  b->samples[sf*subframesize + i] = sample - m;
185  m = sample * CELT_EMPH_COEFF;
186  }
187  if (sf != (subframes - 1))
188  b->emph_coeff = m;
189  }
190  }
191 }
192 
193 /* Create the window and do the mdct */
195 {
196  float *win = s->scratch, *temp = s->scratch + 1920;
197 
198  if (f->transient) {
199  for (int ch = 0; ch < f->channels; ch++) {
200  CeltBlock *b = &f->block[ch];
201  float *src1 = b->overlap;
202  for (int t = 0; t < f->blocks; t++) {
203  float *src2 = &b->samples[CELT_OVERLAP*t];
204  s->dsp->vector_fmul(win, src1, ff_celt_window, 128);
205  s->dsp->vector_fmul_reverse(&win[CELT_OVERLAP], src2,
206  ff_celt_window - 8, 128);
207  src1 = src2;
208  s->tx_fn[0](s->tx[0], b->coeffs + t, win, sizeof(float)*f->blocks);
209  }
210  }
211  } else {
212  int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1);
213  int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1;
214  memset(win, 0, wlen*sizeof(float));
215  for (int ch = 0; ch < f->channels; ch++) {
216  CeltBlock *b = &f->block[ch];
217 
218  /* Overlap */
219  s->dsp->vector_fmul(temp, b->overlap, ff_celt_window, 128);
220  memcpy(win + lap_dst, temp, CELT_OVERLAP*sizeof(float));
221 
222  /* Samples, flat top window */
223  memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float));
224 
225  /* Samples, windowed */
226  s->dsp->vector_fmul_reverse(temp, b->samples + rwin,
227  ff_celt_window - 8, 128);
228  memcpy(win + lap_dst + blk_len, temp, CELT_OVERLAP*sizeof(float));
229 
230  s->tx_fn[f->size](s->tx[f->size], b->coeffs, win, sizeof(float));
231  }
232  }
233 
234  for (int ch = 0; ch < f->channels; ch++) {
235  CeltBlock *block = &f->block[ch];
236  for (int i = 0; i < CELT_MAX_BANDS; i++) {
237  float ener = 0.0f;
238  int band_offset = ff_celt_freq_bands[i] << f->size;
239  int band_size = ff_celt_freq_range[i] << f->size;
240  float *coeffs = &block->coeffs[band_offset];
241 
242  for (int j = 0; j < band_size; j++)
243  ener += coeffs[j]*coeffs[j];
244 
245  block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON;
246  ener = 1.0f/block->lin_energy[i];
247 
248  for (int j = 0; j < band_size; j++)
249  coeffs[j] *= ener;
250 
251  block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i];
252 
253  /* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */
254  block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE);
255  }
256  }
257 }
258 
260 {
261  int tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed;
262  int bits = f->transient ? 2 : 4;
263 
264  tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits));
265 
266  for (int i = f->start_band; i < f->end_band; i++) {
267  if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) {
268  const int tbit = (diff ^ 1) == f->tf_change[i];
269  ff_opus_rc_enc_log(rc, tbit, bits);
270  diff ^= tbit;
271  tf_changed |= diff;
272  }
273  bits = f->transient ? 4 : 5;
274  }
275 
276  if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
277  ff_celt_tf_select[f->size][f->transient][1][tf_changed]) {
278  ff_opus_rc_enc_log(rc, f->tf_select, 1);
279  tf_select = f->tf_select;
280  }
281 
282  for (int i = f->start_band; i < f->end_band; i++)
283  f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
284 }
285 
287 {
288  float gain = f->pf_gain;
289  int txval, octave = f->pf_octave, period = f->pf_period, tapset = f->pf_tapset;
290 
291  ff_opus_rc_enc_log(rc, f->pfilter, 1);
292  if (!f->pfilter)
293  return;
294 
295  /* Octave */
296  txval = FFMIN(octave, 6);
297  ff_opus_rc_enc_uint(rc, txval, 6);
298  octave = txval;
299  /* Period */
300  txval = av_clip(period - (16 << octave) + 1, 0, (1 << (4 + octave)) - 1);
301  ff_opus_rc_put_raw(rc, period, 4 + octave);
302  period = txval + (16 << octave) - 1;
303  /* Gain */
304  txval = FFMIN(((int)(gain / 0.09375f)) - 1, 7);
305  ff_opus_rc_put_raw(rc, txval, 3);
306  gain = 0.09375f * (txval + 1);
307  /* Tapset */
308  if ((opus_rc_tell(rc) + 2) <= f->framebits)
310  else
311  tapset = 0;
312  /* Finally create the coeffs */
313  for (int i = 0; i < 2; i++) {
314  CeltBlock *block = &f->block[i];
315 
316  block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
317  block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
318  block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
319  block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
320  }
321 }
322 
324  float last_energy[][CELT_MAX_BANDS], int intra)
325 {
326  float alpha, beta, prev[2] = { 0, 0 };
327  const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][intra];
328 
329  /* Inter is really just differential coding */
330  if (opus_rc_tell(rc) + 3 <= f->framebits)
331  ff_opus_rc_enc_log(rc, intra, 3);
332  else
333  intra = 0;
334 
335  if (intra) {
336  alpha = 0.0f;
337  beta = 1.0f - (4915.0f/32768.0f);
338  } else {
339  alpha = ff_celt_alpha_coef[f->size];
340  beta = ff_celt_beta_coef[f->size];
341  }
342 
343  for (int i = f->start_band; i < f->end_band; i++) {
344  for (int ch = 0; ch < f->channels; ch++) {
345  CeltBlock *block = &f->block[ch];
346  const int left = f->framebits - opus_rc_tell(rc);
347  const float last = FFMAX(-9.0f, last_energy[ch][i]);
348  float diff = block->energy[i] - prev[ch] - last*alpha;
349  int q_en = lrintf(diff);
350  if (left >= 15) {
351  ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6);
352  } else if (left >= 2) {
353  q_en = av_clip(q_en, -1, 1);
354  ff_opus_rc_enc_cdf(rc, 2*q_en + 3*(q_en < 0), ff_celt_model_energy_small);
355  } else if (left >= 1) {
356  q_en = av_clip(q_en, -1, 0);
357  ff_opus_rc_enc_log(rc, (q_en & 1), 1);
358  } else q_en = -1;
359 
360  block->error_energy[i] = q_en - diff;
361  prev[ch] += beta * q_en;
362  }
363  }
364 }
365 
367  float last_energy[][CELT_MAX_BANDS])
368 {
369  uint32_t inter, intra;
371 
372  exp_quant_coarse(rc, f, last_energy, 1);
373  intra = OPUS_RC_CHECKPOINT_BITS(rc);
374 
376 
377  exp_quant_coarse(rc, f, last_energy, 0);
378  inter = OPUS_RC_CHECKPOINT_BITS(rc);
379 
380  if (inter > intra) { /* Unlikely */
382  exp_quant_coarse(rc, f, last_energy, 1);
383  }
384 }
385 
387 {
388  for (int i = f->start_band; i < f->end_band; i++) {
389  if (!f->fine_bits[i])
390  continue;
391  for (int ch = 0; ch < f->channels; ch++) {
392  CeltBlock *block = &f->block[ch];
393  int quant, lim = (1 << f->fine_bits[i]);
394  float offset, diff = 0.5f - block->error_energy[i];
395  quant = av_clip(floor(diff*lim), 0, lim - 1);
396  ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]);
397  offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f);
398  block->error_energy[i] -= offset;
399  }
400  }
401 }
402 
404 {
405  for (int priority = 0; priority < 2; priority++) {
406  for (int i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) {
407  if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
408  continue;
409  for (int ch = 0; ch < f->channels; ch++) {
410  CeltBlock *block = &f->block[ch];
411  const float err = block->error_energy[i];
412  const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
413  const int sign = FFABS(err + offset) < FFABS(err - offset);
414  ff_opus_rc_put_raw(rc, sign, 1);
415  block->error_energy[i] -= offset*(1 - 2*sign);
416  }
417  }
418  }
419 }
420 
422  CeltFrame *f, int index)
423 {
425 
426  ff_opus_psy_celt_frame_init(&s->psyctx, f, index);
427 
429 
430  if (f->silence) {
431  if (f->framebits >= 16)
432  ff_opus_rc_enc_log(rc, 1, 15); /* Silence (if using explicit singalling) */
433  for (int ch = 0; ch < s->channels; ch++)
434  memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
435  return;
436  }
437 
438  /* Filters */
440  if (f->pfilter) {
441  ff_opus_rc_enc_log(rc, 0, 15);
443  }
444 
445  /* Transform */
446  celt_frame_mdct(s, f);
447 
448  /* Need to handle transient/non-transient switches at any point during analysis */
449  while (ff_opus_psy_celt_frame_process(&s->psyctx, f, index))
450  celt_frame_mdct(s, f);
451 
453 
454  /* Silence */
455  ff_opus_rc_enc_log(rc, 0, 15);
456 
457  /* Pitch filter */
458  if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits)
460 
461  /* Transient flag */
462  if (f->size && opus_rc_tell(rc) + 3 <= f->framebits)
463  ff_opus_rc_enc_log(rc, f->transient, 3);
464 
465  /* Main encoding */
466  celt_quant_coarse (f, rc, s->last_quantized_energy);
467  celt_enc_tf (f, rc);
468  ff_celt_bitalloc (f, rc, 1);
469  celt_quant_fine (f, rc);
470  ff_celt_quant_bands(f, rc);
471 
472  /* Anticollapse bit */
473  if (f->anticollapse_needed)
474  ff_opus_rc_put_raw(rc, f->anticollapse, 1);
475 
476  /* Final per-band energy adjustments from leftover bits */
477  celt_quant_final(s, rc, f);
478 
479  for (int ch = 0; ch < f->channels; ch++) {
480  CeltBlock *block = &f->block[ch];
481  for (int i = 0; i < CELT_MAX_BANDS; i++)
482  s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i];
483  }
484 }
485 
486 static inline int write_opuslacing(uint8_t *dst, int v)
487 {
488  dst[0] = FFMIN(v - FFALIGN(v - 255, 4), v);
489  dst[1] = v - dst[0] >> 2;
490  return 1 + (v >= 252);
491 }
492 
494 {
495  int offset, fsize_needed;
496 
497  /* Write toc */
498  opus_gen_toc(s, avpkt->data, &offset, &fsize_needed);
499 
500  /* Frame sizes if needed */
501  if (fsize_needed) {
502  for (int i = 0; i < s->packet.frames - 1; i++) {
503  offset += write_opuslacing(avpkt->data + offset,
504  s->frame[i].framebits >> 3);
505  }
506  }
507 
508  /* Packets */
509  for (int i = 0; i < s->packet.frames; i++) {
510  ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset,
511  s->frame[i].framebits >> 3);
512  offset += s->frame[i].framebits >> 3;
513  }
514 
515  avpkt->size = offset;
516 }
517 
518 /* Used as overlap for the first frame and padding for the last encoded packet */
520 {
521  AVFrame *f = av_frame_alloc();
522  int ret;
523  if (!f)
524  return NULL;
525  f->format = s->avctx->sample_fmt;
526  f->nb_samples = s->avctx->frame_size;
527  ret = av_channel_layout_copy(&f->ch_layout, &s->avctx->ch_layout);
528  if (ret < 0) {
529  av_frame_free(&f);
530  return NULL;
531  }
532  if (av_frame_get_buffer(f, 4)) {
533  av_frame_free(&f);
534  return NULL;
535  }
536  for (int i = 0; i < s->channels; i++) {
537  size_t bps = av_get_bytes_per_sample(f->format);
538  memset(f->extended_data[i], 0, bps*f->nb_samples);
539  }
540  return f;
541 }
542 
543 static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
544  const AVFrame *frame, int *got_packet_ptr)
545 {
546  OpusEncContext *s = avctx->priv_data;
547  int ret, frame_size, alloc_size = 0;
548 
549  if (frame) { /* Add new frame to queue */
550  if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
551  return ret;
552  ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame));
553  } else {
554  ff_opus_psy_signal_eof(&s->psyctx);
555  if (!s->afq.remaining_samples || !avctx->frame_number)
556  return 0; /* We've been flushed and there's nothing left to encode */
557  }
558 
559  /* Run the psychoacoustic system */
560  if (ff_opus_psy_process(&s->psyctx, &s->packet))
561  return 0;
562 
563  frame_size = OPUS_BLOCK_SIZE(s->packet.framesize);
564 
565  if (!frame) {
566  /* This can go negative, that's not a problem, we only pad if positive */
567  int pad_empty = s->packet.frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1;
568  /* Pad with empty 2.5 ms frames to whatever framesize was decided,
569  * this should only happen at the very last flush frame. The frames
570  * allocated here will be freed (because they have no other references)
571  * after they get used by celt_frame_setup_input() */
572  for (int i = 0; i < pad_empty; i++) {
573  AVFrame *empty = spawn_empty_frame(s);
574  if (!empty)
575  return AVERROR(ENOMEM);
576  ff_bufqueue_add(avctx, &s->bufqueue, empty);
577  }
578  }
579 
580  for (int i = 0; i < s->packet.frames; i++) {
581  celt_encode_frame(s, &s->rc[i], &s->frame[i], i);
582  alloc_size += s->frame[i].framebits >> 3;
583  }
584 
585  /* Worst case toc + the frame lengths if needed */
586  alloc_size += 2 + s->packet.frames*2;
587 
588  if ((ret = ff_alloc_packet(avctx, avpkt, alloc_size)) < 0)
589  return ret;
590 
591  /* Assemble packet */
592  opus_packet_assembler(s, avpkt);
593 
594  /* Update the psychoacoustic system */
595  ff_opus_psy_postencode_update(&s->psyctx, s->frame, s->rc);
596 
597  /* Remove samples from queue and skip if needed */
598  ff_af_queue_remove(&s->afq, s->packet.frames*frame_size, &avpkt->pts, &avpkt->duration);
599  if (s->packet.frames*frame_size > avpkt->duration) {
600  uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
601  if (!side)
602  return AVERROR(ENOMEM);
603  AV_WL32(&side[4], s->packet.frames*frame_size - avpkt->duration + 120);
604  }
605 
606  *got_packet_ptr = 1;
607 
608  return 0;
609 }
610 
612 {
613  OpusEncContext *s = avctx->priv_data;
614 
615  for (int i = 0; i < CELT_BLOCK_NB; i++)
616  av_tx_uninit(&s->tx[i]);
617 
618  ff_celt_pvq_uninit(&s->pvq);
619  av_freep(&s->dsp);
620  av_freep(&s->frame);
621  av_freep(&s->rc);
622  ff_af_queue_close(&s->afq);
623  ff_opus_psy_end(&s->psyctx);
624  ff_bufqueue_discard_all(&s->bufqueue);
625 
626  return 0;
627 }
628 
630 {
631  int ret, max_frames;
632  OpusEncContext *s = avctx->priv_data;
633 
634  s->avctx = avctx;
635  s->channels = avctx->ch_layout.nb_channels;
636 
637  /* Opus allows us to change the framesize on each packet (and each packet may
638  * have multiple frames in it) but we can't change the codec's frame size on
639  * runtime, so fix it to the lowest possible number of samples and use a queue
640  * to accumulate AVFrames until we have enough to encode whatever the encoder
641  * decides is the best */
642  avctx->frame_size = 120;
643  /* Initial padding will change if SILK is ever supported */
644  avctx->initial_padding = 120;
645 
646  if (!avctx->bit_rate) {
647  int coupled = ff_opus_default_coupled_streams[s->channels - 1];
648  avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000);
649  } else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) {
650  int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels);
651  av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %"PRId64" kbps, clipping to %"PRId64" kbps\n",
652  avctx->bit_rate/1000, clipped_rate/1000);
653  avctx->bit_rate = clipped_rate;
654  }
655 
656  /* Extradata */
657  avctx->extradata_size = 19;
659  if (!avctx->extradata)
660  return AVERROR(ENOMEM);
661  opus_write_extradata(avctx);
662 
663  ff_af_queue_init(avctx, &s->afq);
664 
665  if ((ret = ff_celt_pvq_init(&s->pvq, 1)) < 0)
666  return ret;
667 
668  if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
669  return AVERROR(ENOMEM);
670 
671  /* I have no idea why a base scaling factor of 68 works, could be the twiddles */
672  for (int i = 0; i < CELT_BLOCK_NB; i++) {
673  const float scale = 68 << (CELT_BLOCK_NB - 1 - i);
674  if ((ret = av_tx_init(&s->tx[i], &s->tx_fn[i], AV_TX_FLOAT_MDCT, 0, 15 << (i + 3), &scale, 0)))
675  return AVERROR(ENOMEM);
676  }
677 
678  /* Zero out previous energy (matters for inter first frame) */
679  for (int ch = 0; ch < s->channels; ch++)
680  memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
681 
682  /* Allocate an empty frame to use as overlap for the first frame of audio */
683  ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s));
684  if (!ff_bufqueue_peek(&s->bufqueue, 0))
685  return AVERROR(ENOMEM);
686 
687  if ((ret = ff_opus_psy_init(&s->psyctx, s->avctx, &s->bufqueue, &s->options)))
688  return ret;
689 
690  /* Frame structs and range coder buffers */
691  max_frames = ceilf(FFMIN(s->options.max_delay_ms, 120.0f)/2.5f);
692  s->frame = av_malloc(max_frames*sizeof(CeltFrame));
693  if (!s->frame)
694  return AVERROR(ENOMEM);
695  s->rc = av_malloc(max_frames*sizeof(OpusRangeCoder));
696  if (!s->rc)
697  return AVERROR(ENOMEM);
698 
699  for (int i = 0; i < max_frames; i++) {
700  s->frame[i].dsp = s->dsp;
701  s->frame[i].avctx = s->avctx;
702  s->frame[i].seed = 0;
703  s->frame[i].pvq = s->pvq;
704  s->frame[i].apply_phase_inv = s->options.apply_phase_inv;
705  s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f;
706  }
707 
708  return 0;
709 }
710 
711 #define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
712 static const AVOption opusenc_options[] = {
713  { "opus_delay", "Maximum delay in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS, "max_delay_ms" },
714  { "apply_phase_inv", "Apply intensity stereo phase inversion", offsetof(OpusEncContext, options.apply_phase_inv), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, OPUSENC_FLAGS, "apply_phase_inv" },
715  { NULL },
716 };
717 
718 static const AVClass opusenc_class = {
719  .class_name = "Opus encoder",
720  .item_name = av_default_item_name,
721  .option = opusenc_options,
722  .version = LIBAVUTIL_VERSION_INT,
723 };
724 
726  { "b", "0" },
727  { "compression_level", "10" },
728  { NULL },
729 };
730 
732  .p.name = "opus",
733  CODEC_LONG_NAME("Opus"),
734  .p.type = AVMEDIA_TYPE_AUDIO,
735  .p.id = AV_CODEC_ID_OPUS,
736  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
738  .defaults = opusenc_defaults,
739  .p.priv_class = &opusenc_class,
740  .priv_data_size = sizeof(OpusEncContext),
743  .close = opus_encode_end,
744  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
745  .p.supported_samplerates = (const int []){ 48000, 0 },
747  .p.ch_layouts = (const AVChannelLayout []){ AV_CHANNEL_LAYOUT_MONO,
748  AV_CHANNEL_LAYOUT_STEREO, { 0 } },
749  .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
751 };
AVCodecContext::frame_size
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:1035
AV_SAMPLE_FMT_FLTP
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:66
ff_celt_postfilter_taps
const float ff_celt_postfilter_taps[3][3]
Definition: opustab.c:1098
ff_opus_rc_enc_cdf
void ff_opus_rc_enc_cdf(OpusRangeCoder *rc, int val, const uint16_t *cdf)
Definition: opus_rc.c:109
OpusEncContext::av_class
AVClass * av_class
Definition: opusenc.c:37
ff_opus_psy_process
int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p)
Definition: opusenc_psy.c:223
av_clip
#define av_clip
Definition: common.h:95
spawn_empty_frame
static AVFrame * spawn_empty_frame(OpusEncContext *s)
Definition: opusenc.c:519
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
ff_celt_freq_bands
const uint8_t ff_celt_freq_bands[]
Definition: opustab.c:768
AV_WL32
#define AV_WL32(p, v)
Definition: intreadwrite.h:426
mem_internal.h
ff_af_queue_remove
void ff_af_queue_remove(AudioFrameQueue *afq, int nb_samples, int64_t *pts, int64_t *duration)
Remove frame(s) from the queue.
Definition: audio_frame_queue.c:75
av_frame_get_buffer
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
Definition: frame.c:259
AVCodecContext::sample_rate
int sample_rate
samples per second
Definition: avcodec.h:1007
ff_af_queue_close
void ff_af_queue_close(AudioFrameQueue *afq)
Close AudioFrameQueue.
Definition: audio_frame_queue.c:36
log2f
#define log2f(x)
Definition: libm.h:409
ff_opus_psy_celt_frame_init
void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index)
Definition: opusenc_psy.c:254
src1
const pixel * src1
Definition: h264pred_template.c:421
AV_CH_LAYOUT_MONO
#define AV_CH_LAYOUT_MONO
Definition: channel_layout.h:204
AVTXContext
Definition: tx_priv.h:202
ff_opus_rc_enc_uint
void ff_opus_rc_enc_uint(OpusRangeCoder *rc, uint32_t val, uint32_t size)
CELT: write a uniformly distributed integer.
Definition: opus_rc.c:204
ff_af_queue_init
av_cold void ff_af_queue_init(AVCodecContext *avctx, AudioFrameQueue *afq)
Initialize AudioFrameQueue.
Definition: audio_frame_queue.c:28
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:116
ff_celt_model_tapset
const uint16_t ff_celt_model_tapset[]
Definition: opustab.c:758
opusenc_options
static const AVOption opusenc_options[]
Definition: opusenc.c:712
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:325
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:28
AVPacket::data
uint8_t * data
Definition: packet.h:374
AVOption
AVOption.
Definition: opt.h:251
encode.h
b
#define b
Definition: input.c:41
OPUS_RC_CHECKPOINT_SPAWN
#define OPUS_RC_CHECKPOINT_SPAWN(rc)
Definition: opus_rc.h:116
AV_CHANNEL_LAYOUT_MONO
#define AV_CHANNEL_LAYOUT_MONO
Definition: channel_layout.h:356
FFCodec
Definition: codec_internal.h:119
opus_packet_assembler
static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
Definition: opusenc.c:493
AVPacket::duration
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
Definition: packet.h:392
AV_CHANNEL_LAYOUT_STEREO
#define AV_CHANNEL_LAYOUT_STEREO
Definition: channel_layout.h:357
OpusEncContext::options
OpusEncOptions options
Definition: opusenc.c:38
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
opus_encode_end
static av_cold int opus_encode_end(AVCodecContext *avctx)
Definition: opusenc.c:611
AVChannelLayout::nb_channels
int nb_channels
Number of channels in this layout.
Definition: channel_layout.h:303
ff_celt_pvq_init
int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
Definition: opus_pvq.c:899
exp_quant_coarse
static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f, float last_energy[][CELT_MAX_BANDS], int intra)
Definition: opusenc.c:323
ceilf
static __device__ float ceilf(float a)
Definition: cuda_runtime.h:175
av_tx_init
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
Definition: tx.c:651
ff_bufqueue_get
static AVFrame * ff_bufqueue_get(struct FFBufQueue *queue)
Get the first buffer from the queue and remove it.
Definition: bufferqueue.h:98
opus_rc_tell
static av_always_inline uint32_t opus_rc_tell(const OpusRangeCoder *rc)
CELT: estimate bits of entropy that have thus far been consumed for the current CELT frame,...
Definition: opus_rc.h:61
ff_celt_coarse_energy_dist
const uint8_t ff_celt_coarse_energy_dist[4][2][42]
Definition: opustab.c:808
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:30
av_channel_layout_copy
int av_channel_layout_copy(AVChannelLayout *dst, const AVChannelLayout *src)
Make a copy of a channel layout.
Definition: channel_layout.c:637
CeltBlock
Definition: opus_celt.h:66
win
static float win(SuperEqualizerContext *s, float n, int N)
Definition: af_superequalizer.c:119
init
static int init
Definition: av_tx.c:47
CeltPVQ
Definition: opus_pvq.h:37
FFCodecDefault
Definition: codec_internal.h:89
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:123
OPUSENC_FLAGS
#define OPUSENC_FLAGS
Definition: opusenc.c:711
AVCodecContext::ch_layout
AVChannelLayout ch_layout
Audio channel layout.
Definition: avcodec.h:2059
audio_frame_queue.h
AVCodecContext::initial_padding
int initial_padding
Audio only.
Definition: avcodec.h:1726
opus_encode_frame
static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
Definition: opusenc.c:543
AVCodecContext::flags
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:478
OpusEncContext::frame
CeltFrame * frame
Definition: opusenc.c:55
scale
static av_always_inline float scale(float x, float s)
Definition: vf_v360.c:1389
ff_opus_psy_end
av_cold int ff_opus_psy_end(OpusPsyContext *s)
Definition: opusenc_psy.c:596
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:307
ff_af_queue_add
int ff_af_queue_add(AudioFrameQueue *afq, const AVFrame *f)
Add a frame to the queue.
Definition: audio_frame_queue.c:44
AV_CH_LAYOUT_STEREO
#define AV_CH_LAYOUT_STEREO
Definition: channel_layout.h:205
quant
static int quant(float coef, const float Q, const float rounding)
Quantize one coefficient.
Definition: aacenc_utils.h:59
ff_opus_psy_postencode_update
void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f, OpusRangeCoder *rc)
Definition: opusenc_psy.c:479
av_frame_alloc
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:104
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
OPUS_MAX_LOOKAHEAD
#define OPUS_MAX_LOOKAHEAD
Definition: opusenc.h:31
OpusEncContext::afq
AudioFrameQueue afq
Definition: opusenc.c:41
AV_CODEC_CAP_EXPERIMENTAL
#define AV_CODEC_CAP_EXPERIMENTAL
Codec is experimental and is thus avoided in favor of non experimental encoders.
Definition: codec.h:105
av_cold
#define av_cold
Definition: attributes.h:90
OPUS_BLOCK_SIZE
#define OPUS_BLOCK_SIZE(x)
Definition: opusenc.h:38
av_tx_fn
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
Definition: tx.h:111
float
float
Definition: af_crystalizer.c:122
AVCodecContext::extradata_size
int extradata_size
Definition: avcodec.h:500
AV_TX_FLOAT_MDCT
@ AV_TX_FLOAT_MDCT
Standard MDCT with a sample data type of float, double or int32_t, respecively.
Definition: tx.h:68
OpusEncContext::rc
OpusRangeCoder * rc
Definition: opusenc.c:56
OpusEncContext::scratch
float scratch[2048]
Definition: opusenc.c:61
s
#define s(width, name)
Definition: cbs_vp9.c:256
floor
static __device__ float floor(float a)
Definition: cuda_runtime.h:173
frame_size
int frame_size
Definition: mxfenc.c:2202
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
ff_opus_psy_celt_frame_process
int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index)
Definition: opusenc_psy.c:455
CELT_MAX_FINE_BITS
#define CELT_MAX_FINE_BITS
Definition: opus_celt.h:41
bits
uint8_t bits
Definition: vp3data.h:141
CODEC_OLD_CHANNEL_LAYOUTS
#define CODEC_OLD_CHANNEL_LAYOUTS(...)
Definition: codec_internal.h:294
AudioFrameQueue
Definition: audio_frame_queue.h:32
av_frame_clone
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
Definition: frame.c:474
OpusPsyContext
Definition: opusenc_psy.h:57
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:264
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:64
OPUS_MODE_NB
@ OPUS_MODE_NB
Definition: opus.h:68
ff_celt_bitalloc
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
Definition: opus.c:578
OpusPacketInfo
Definition: opusenc.h:47
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
NULL
#define NULL
Definition: coverity.c:32
OPUS_BANDWITH_NB
@ OPUS_BANDWITH_NB
Definition: opus.h:78
opusenc.h
OpusEncContext::packet
OpusPacketInfo packet
Definition: opusenc.c:51
ff_celt_pvq_uninit
void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
Definition: opus_pvq.c:917
period
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without period
Definition: writing_filters.txt:89
AVCodecContext::bit_rate
int64_t bit_rate
the average bitrate
Definition: avcodec.h:448
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:237
ff_bufqueue_discard_all
static void ff_bufqueue_discard_all(struct FFBufQueue *queue)
Unref and remove all buffers from the queue.
Definition: bufferqueue.h:111
celt_frame_mdct
static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
Definition: opusenc.c:194
CELT_MAX_BANDS
#define CELT_MAX_BANDS
Definition: opus.h:46
celt_quant_fine
static void celt_quant_fine(CeltFrame *f, OpusRangeCoder *rc)
Definition: opusenc.c:386
celt_frame_setup_input
static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
Definition: opusenc.c:120
sqrtf
static __device__ float sqrtf(float a)
Definition: cuda_runtime.h:184
opus_gen_toc
static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
Definition: opusenc.c:77
ff_celt_freq_range
const uint8_t ff_celt_freq_range[]
Definition: opustab.c:772
index
int index
Definition: gxfenc.c:89
float_dsp.h
CELT_ENERGY_SILENCE
#define CELT_ENERGY_SILENCE
Definition: opus_celt.h:46
OpusEncContext::channels
int channels
Definition: opusenc.c:53
options
const OptionDef options[]
opustab.h
f
f
Definition: af_crystalizer.c:122
ff_opus_rc_enc_init
void ff_opus_rc_enc_init(OpusRangeCoder *rc)
Definition: opus_rc.c:402
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
AVPacket::size
int size
Definition: packet.h:375
AVChannelLayout
An AVChannelLayout holds information about the channel layout of audio data.
Definition: channel_layout.h:293
codec_internal.h
opus_pvq.h
opusenc_psy.h
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:425
bps
unsigned bps
Definition: movenc.c:1647
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:56
sample
#define sample
Definition: flacdsp_template.c:44
size
int size
Definition: twinvq_data.h:10344
OpusEncContext::enc_id
uint8_t enc_id[64]
Definition: opusenc.c:48
OpusRangeCoder
Definition: opus_rc.h:40
OpusEncContext::psyctx
OpusPsyContext psyctx
Definition: opusenc.c:39
AV_CODEC_ID_OPUS
@ AV_CODEC_ID_OPUS
Definition: codec_id.h:494
AVFloatDSPContext
Definition: float_dsp.h:24
AVFrame::format
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
Definition: frame.h:412
ff_celt_tf_select
const int8_t ff_celt_tf_select[4][2][2][2]
Definition: opustab.c:782
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
ff_bufqueue_add
static void ff_bufqueue_add(void *log, struct FFBufQueue *queue, AVFrame *buf)
Add a buffer to the queue.
Definition: bufferqueue.h:71
write_opuslacing
static int write_opuslacing(uint8_t *dst, int v)
Definition: opusenc.c:486
OpusEncContext
Definition: opusenc.c:36
input
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
Definition: filter_design.txt:172
opus_write_extradata
static void opus_write_extradata(AVCodecContext *avctx)
Definition: opusenc.c:64
ff_celt_beta_coef
const float ff_celt_beta_coef[]
Definition: opustab.c:804
av_tx_uninit
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
Definition: tx.c:248
AV_OPT_TYPE_FLOAT
@ AV_OPT_TYPE_FLOAT
Definition: opt.h:228
DECLARE_ALIGNED
#define DECLARE_ALIGNED(n, t, v)
Definition: mem.h:116
OpusEncContext::last_quantized_energy
float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS]
Definition: opusenc.c:59
bytestream_put_buffer
static av_always_inline void bytestream_put_buffer(uint8_t **b, const uint8_t *src, unsigned int size)
Definition: bytestream.h:372
AVFrame::nb_samples
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:405
lrintf
#define lrintf(x)
Definition: libm_mips.h:72
ff_bufqueue_peek
static AVFrame * ff_bufqueue_peek(struct FFBufQueue *queue, unsigned index)
Get a buffer from the queue without altering it.
Definition: bufferqueue.h:87
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
AVPacket::pts
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
Definition: packet.h:367
ff_opus_rc_enc_laplace
void ff_opus_rc_enc_laplace(OpusRangeCoder *rc, int *value, uint32_t symbol, int decay)
Definition: opus_rc.c:314
av_get_bytes_per_sample
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:108
AVCodecContext::extradata
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:499
FFBufQueue
Structure holding the queue.
Definition: bufferqueue.h:49
AVFrame::extended_data
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:386
src2
const pixel * src2
Definition: h264pred_template.c:422
ff_opus_rc_put_raw
void ff_opus_rc_put_raw(OpusRangeCoder *rc, uint32_t val, uint32_t count)
CELT: write 0 - 31 bits to the rawbits buffer.
Definition: opus_rc.c:161
celt_encode_frame
static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f, int index)
Definition: opusenc.c:421
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:55
OPUS_MAX_CHANNELS
#define OPUS_MAX_CHANNELS
Definition: opusenc.h:33
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
ff_opus_psy_signal_eof
void ff_opus_psy_signal_eof(OpusPsyContext *s)
Definition: opusenc_psy.c:591
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:211
AV_PKT_DATA_SKIP_SAMPLES
@ AV_PKT_DATA_SKIP_SAMPLES
Recommmends skipping the specified number of samples.
Definition: packet.h:157
len
int len
Definition: vorbis_enc_data.h:426
CELT_POSTFILTER_MINPERIOD
#define CELT_POSTFILTER_MINPERIOD
Definition: opus_celt.h:45
ff_opus_default_coupled_streams
const uint8_t ff_opus_default_coupled_streams[]
Definition: opustab.c:27
opusenc_class
static const AVClass opusenc_class
Definition: opusenc.c:718
OpusEncContext::tx
AVTXContext * tx[CELT_BLOCK_NB]
Definition: opusenc.c:43
ret
ret
Definition: filter_design.txt:187
OpusEncContext::avctx
AVCodecContext * avctx
Definition: opusenc.c:40
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:71
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
opusenc_defaults
static const FFCodecDefault opusenc_defaults[]
Definition: opusenc.c:725
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
OpusEncContext::enc_id_bits
int enc_id_bits
Definition: opusenc.c:49
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
CELT_EMPH_COEFF
#define CELT_EMPH_COEFF
Definition: opusdsp.h:22
AVCodecContext
main external API structure.
Definition: avcodec.h:398
ff_celt_model_energy_small
const uint16_t ff_celt_model_energy_small[]
Definition: opustab.c:766
channel_layout.h
ff_celt_window
const float *const ff_celt_window
Definition: opustab.c:1135
av_packet_new_side_data
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Allocate new information of a packet.
Definition: avpacket.c:230
celt_quant_coarse
static void celt_quant_coarse(CeltFrame *f, OpusRangeCoder *rc, float last_energy[][CELT_MAX_BANDS])
Definition: opusenc.c:366
ff_celt_quant_bands
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
Definition: opus.c:469
ff_opus_rc_enc_log
void ff_opus_rc_enc_log(OpusRangeCoder *rc, int val, uint32_t bits)
Definition: opus_rc.c:131
OpusEncContext::tx_fn
av_tx_fn tx_fn[CELT_BLOCK_NB]
Definition: opusenc.c:44
temp
else temp
Definition: vf_mcdeint.c:248
AV_CODEC_CAP_DELAY
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:82
ff_celt_alpha_coef
const float ff_celt_alpha_coef[]
Definition: opustab.c:800
celt_enc_quant_pfilter
static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f)
Definition: opusenc.c:286
celt_quant_final
static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
Definition: opusenc.c:403
ff_opus_encoder
const FFCodec ff_opus_encoder
Definition: opusenc.c:731
AV_CODEC_FLAG_BITEXACT
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:288
AVCodecContext::frame_number
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:1046
ff_opus_psy_init
av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx, struct FFBufQueue *bufqueue, OpusEncOptions *options)
Definition: opusenc_psy.c:516
diff
static av_always_inline int diff(const uint32_t a, const uint32_t b)
Definition: vf_palettegen.c:139
OpusEncOptions
Definition: opusenc.h:42
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:78
alpha
static const int16_t alpha[]
Definition: ilbcdata.h:55
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:425
AVPacket
This structure stores compressed data.
Definition: packet.h:351
AV_OPT_TYPE_BOOL
@ AV_OPT_TYPE_BOOL
Definition: opt.h:244
OpusEncContext::pvq
CeltPVQ * pvq
Definition: opusenc.c:45
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
avpriv_float_dsp_alloc
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
Definition: float_dsp.c:135
CELT_BLOCK_NB
@ CELT_BLOCK_NB
Definition: opus_celt.h:63
bytestream.h
block
The exact code depends on how similar the blocks are and how related they are to the block
Definition: filter_design.txt:207
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
celt_apply_preemph_filter
static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
Definition: opusenc.c:160
ff_celt_mean_energy
const float ff_celt_mean_energy[]
Definition: opustab.c:792
OpusEncContext::bufqueue
struct FFBufQueue bufqueue
Definition: opusenc.c:46
CELT_OVERLAP
#define CELT_OVERLAP
Definition: opus.h:43
OPUS_RC_CHECKPOINT_BITS
#define OPUS_RC_CHECKPOINT_BITS(rc)
Definition: opus_rc.h:120
AV_CODEC_CAP_SMALL_LAST_FRAME
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
Definition: codec.h:87
OPUS_RC_CHECKPOINT_ROLLBACK
#define OPUS_RC_CHECKPOINT_ROLLBACK(rc)
Definition: opus_rc.h:123
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:35
celt_enc_tf
static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc)
Definition: opusenc.c:259
opus_encode_init
static av_cold int opus_encode_init(AVCodecContext *avctx)
Definition: opusenc.c:629
ff_opus_rc_enc_end
void ff_opus_rc_enc_end(OpusRangeCoder *rc, uint8_t *dst, int size)
Definition: opus_rc.c:360
CeltFrame
Definition: opus_celt.h:93
OpusEncContext::dsp
AVFloatDSPContext * dsp
Definition: opusenc.c:42