FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sbrdsp_fixed.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  *
22  * Note: Rounding-to-nearest used unless otherwise stated
23  *
24  */
25 
26 #define USE_FIXED 1
27 
28 #include "aac.h"
29 #include "config.h"
30 #include "libavutil/attributes.h"
31 #include "libavutil/intfloat.h"
32 #include "sbrdsp.h"
33 
34 static SoftFloat sbr_sum_square_c(int (*x)[2], int n)
35 {
36  SoftFloat ret;
37  uint64_t accu, round;
38  uint64_t accu0 = 0, accu1 = 0, accu2 = 0, accu3 = 0;
39  int i, nz, nz0;
40  unsigned u;
41 
42  for (i = 0; i < n; i += 2) {
43  // Larger values are inavlid and could cause overflows of accu.
44  av_assert2(FFABS(x[i + 0][0]) >> 30 == 0);
45  accu0 += (int64_t)x[i + 0][0] * x[i + 0][0];
46  av_assert2(FFABS(x[i + 0][1]) >> 30 == 0);
47  accu1 += (int64_t)x[i + 0][1] * x[i + 0][1];
48  av_assert2(FFABS(x[i + 1][0]) >> 30 == 0);
49  accu2 += (int64_t)x[i + 1][0] * x[i + 1][0];
50  av_assert2(FFABS(x[i + 1][1]) >> 30 == 0);
51  accu3 += (int64_t)x[i + 1][1] * x[i + 1][1];
52  }
53 
54  nz0 = 15;
55  while ((accu0|accu1|accu2|accu3) >> 62) {
56  accu0 >>= 1;
57  accu1 >>= 1;
58  accu2 >>= 1;
59  accu3 >>= 1;
60  nz0 --;
61  }
62  accu = accu0 + accu1 + accu2 + accu3;
63 
64  u = accu >> 32;
65  if (u) {
66  nz = 33;
67  while (u < 0x80000000U) {
68  u <<= 1;
69  nz--;
70  }
71  } else
72  nz = 1;
73 
74  round = 1ULL << (nz-1);
75  u = ((accu + round) >> nz);
76  u >>= 1;
77  ret = av_int2sf(u, nz0 - nz);
78 
79  return ret;
80 }
81 
82 static void sbr_neg_odd_64_c(int *x)
83 {
84  int i;
85  for (i = 1; i < 64; i += 2)
86  x[i] = -x[i];
87 }
88 
89 static void sbr_qmf_pre_shuffle_c(int *z)
90 {
91  int k;
92  z[64] = z[0];
93  z[65] = z[1];
94  for (k = 1; k < 32; k++) {
95  z[64+2*k ] = -z[64 - k];
96  z[64+2*k+1] = z[ k + 1];
97  }
98 }
99 
100 static void sbr_qmf_post_shuffle_c(int W[32][2], const int *z)
101 {
102  int k;
103  for (k = 0; k < 32; k++) {
104  W[k][0] = -z[63-k];
105  W[k][1] = z[k];
106  }
107 }
108 
109 static void sbr_qmf_deint_neg_c(int *v, const int *src)
110 {
111  int i;
112  for (i = 0; i < 32; i++) {
113  v[ i] = ( src[63 - 2*i ] + 0x10) >> 5;
114  v[63 - i] = (-src[63 - 2*i - 1] + 0x10) >> 5;
115  }
116 }
117 
119 {
120  int nz, mant, expo;
121  unsigned round;
122  int i = (int)(accu >> 32);
123  if (i == 0) {
124  nz = 1;
125  } else {
126  nz = 0;
127  while (FFABS(i) < 0x40000000) {
128  i *= 2;
129  nz++;
130  }
131  nz = 32-nz;
132  }
133 
134  round = 1U << (nz-1);
135  mant = (int)((accu + round) >> nz);
136  mant = (mant + 0x40LL)>>7;
137  mant *= 64;
138  expo = nz + 15;
139  return av_int2sf(mant, 30 - expo);
140 }
141 
142 static av_always_inline void autocorrelate(const int x[40][2], SoftFloat phi[3][2][2], int lag)
143 {
144  int i;
145  int64_t real_sum, imag_sum;
146  int64_t accu_re = 0, accu_im = 0;
147 
148  if (lag) {
149  for (i = 1; i < 38; i++) {
150  accu_re += (uint64_t)x[i][0] * x[i+lag][0];
151  accu_re += (uint64_t)x[i][1] * x[i+lag][1];
152  accu_im += (uint64_t)x[i][0] * x[i+lag][1];
153  accu_im -= (uint64_t)x[i][1] * x[i+lag][0];
154  }
155 
156  real_sum = accu_re;
157  imag_sum = accu_im;
158 
159  accu_re += (uint64_t)x[ 0][0] * x[lag][0];
160  accu_re += (uint64_t)x[ 0][1] * x[lag][1];
161  accu_im += (uint64_t)x[ 0][0] * x[lag][1];
162  accu_im -= (uint64_t)x[ 0][1] * x[lag][0];
163 
164  phi[2-lag][1][0] = autocorr_calc(accu_re);
165  phi[2-lag][1][1] = autocorr_calc(accu_im);
166 
167  if (lag == 1) {
168  accu_re = real_sum;
169  accu_im = imag_sum;
170  accu_re += (uint64_t)x[38][0] * x[39][0];
171  accu_re += (uint64_t)x[38][1] * x[39][1];
172  accu_im += (uint64_t)x[38][0] * x[39][1];
173  accu_im -= (uint64_t)x[38][1] * x[39][0];
174 
175  phi[0][0][0] = autocorr_calc(accu_re);
176  phi[0][0][1] = autocorr_calc(accu_im);
177  }
178  } else {
179  for (i = 1; i < 38; i++) {
180  accu_re += (uint64_t)x[i][0] * x[i][0];
181  accu_re += (uint64_t)x[i][1] * x[i][1];
182  }
183  real_sum = accu_re;
184  accu_re += (uint64_t)x[ 0][0] * x[ 0][0];
185  accu_re += (uint64_t)x[ 0][1] * x[ 0][1];
186 
187  phi[2][1][0] = autocorr_calc(accu_re);
188 
189  accu_re = real_sum;
190  accu_re += (uint64_t)x[38][0] * x[38][0];
191  accu_re += (uint64_t)x[38][1] * x[38][1];
192 
193  phi[1][0][0] = autocorr_calc(accu_re);
194  }
195 }
196 
197 static void sbr_autocorrelate_c(const int x[40][2], SoftFloat phi[3][2][2])
198 {
199  autocorrelate(x, phi, 0);
200  autocorrelate(x, phi, 1);
201  autocorrelate(x, phi, 2);
202 }
203 
204 static void sbr_hf_gen_c(int (*X_high)[2], const int (*X_low)[2],
205  const int alpha0[2], const int alpha1[2],
206  int bw, int start, int end)
207 {
208  int alpha[4];
209  int i;
210  int64_t accu;
211 
212  accu = (int64_t)alpha0[0] * bw;
213  alpha[2] = (int)((accu + 0x40000000) >> 31);
214  accu = (int64_t)alpha0[1] * bw;
215  alpha[3] = (int)((accu + 0x40000000) >> 31);
216  accu = (int64_t)bw * bw;
217  bw = (int)((accu + 0x40000000) >> 31);
218  accu = (int64_t)alpha1[0] * bw;
219  alpha[0] = (int)((accu + 0x40000000) >> 31);
220  accu = (int64_t)alpha1[1] * bw;
221  alpha[1] = (int)((accu + 0x40000000) >> 31);
222 
223  for (i = start; i < end; i++) {
224  accu = (int64_t)X_low[i][0] * 0x20000000;
225  accu += (int64_t)X_low[i - 2][0] * alpha[0];
226  accu -= (int64_t)X_low[i - 2][1] * alpha[1];
227  accu += (int64_t)X_low[i - 1][0] * alpha[2];
228  accu -= (int64_t)X_low[i - 1][1] * alpha[3];
229  X_high[i][0] = (int)((accu + 0x10000000) >> 29);
230 
231  accu = (int64_t)X_low[i][1] * 0x20000000;
232  accu += (int64_t)X_low[i - 2][1] * alpha[0];
233  accu += (int64_t)X_low[i - 2][0] * alpha[1];
234  accu += (int64_t)X_low[i - 1][1] * alpha[2];
235  accu += (int64_t)X_low[i - 1][0] * alpha[3];
236  X_high[i][1] = (int)((accu + 0x10000000) >> 29);
237  }
238 }
239 
240 static void sbr_hf_g_filt_c(int (*Y)[2], const int (*X_high)[40][2],
241  const SoftFloat *g_filt, int m_max, intptr_t ixh)
242 {
243  int m;
244  int64_t accu;
245 
246  for (m = 0; m < m_max; m++) {
247  if (22 - g_filt[m].exp < 61) {
248  int64_t r = 1LL << (22-g_filt[m].exp);
249  accu = (int64_t)X_high[m][ixh][0] * ((g_filt[m].mant + 0x40)>>7);
250  Y[m][0] = (int)((accu + r) >> (23-g_filt[m].exp));
251 
252  accu = (int64_t)X_high[m][ixh][1] * ((g_filt[m].mant + 0x40)>>7);
253  Y[m][1] = (int)((accu + r) >> (23-g_filt[m].exp));
254  }
255  }
256 }
257 
258 static av_always_inline int sbr_hf_apply_noise(int (*Y)[2],
259  const SoftFloat *s_m,
260  const SoftFloat *q_filt,
261  int noise,
262  int phi_sign0,
263  int phi_sign1,
264  int m_max)
265 {
266  int m;
267 
268  for (m = 0; m < m_max; m++) {
269  unsigned y0 = Y[m][0];
270  unsigned y1 = Y[m][1];
271  noise = (noise + 1) & 0x1ff;
272  if (s_m[m].mant) {
273  int shift, round;
274 
275  shift = 22 - s_m[m].exp;
276  if (shift < 1) {
277  av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_apply_noise, shift=%d\n", shift);
278  return AVERROR(ERANGE);
279  } else if (shift < 30) {
280  round = 1 << (shift-1);
281  y0 += (s_m[m].mant * phi_sign0 + round) >> shift;
282  y1 += (s_m[m].mant * phi_sign1 + round) >> shift;
283  }
284  } else {
285  int shift, round, tmp;
286  int64_t accu;
287 
288  shift = 22 - q_filt[m].exp;
289  if (shift < 1) {
290  av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_apply_noise, shift=%d\n", shift);
291  return AVERROR(ERANGE);
292  } else if (shift < 30) {
293  round = 1 << (shift-1);
294 
295  accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][0];
296  tmp = (int)((accu + 0x40000000) >> 31);
297  y0 += (tmp + round) >> shift;
298 
299  accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][1];
300  tmp = (int)((accu + 0x40000000) >> 31);
301  y1 += (tmp + round) >> shift;
302  }
303  }
304  Y[m][0] = y0;
305  Y[m][1] = y1;
306  phi_sign1 = -phi_sign1;
307  }
308  return 0;
309 }
310 
311 #include "sbrdsp_template.c"
#define NULL
Definition: coverity.c:32
static int shift(int a, int b)
Definition: sonic.c:82
static float alpha(float a)
static int noise(AVBSFContext *ctx, AVPacket *out)
Definition: noise_bsf.c:38
static av_always_inline SoftFloat autocorr_calc(int64_t accu)
Definition: sbrdsp_fixed.c:118
static void sbr_autocorrelate_c(const int x[40][2], SoftFloat phi[3][2][2])
Definition: sbrdsp_fixed.c:197
#define src
Definition: vp8dsp.c:254
Macro definitions for various function/variable attributes.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
static void sbr_hf_g_filt_c(int(*Y)[2], const int(*X_high)[40][2], const SoftFloat *g_filt, int m_max, intptr_t ixh)
Definition: sbrdsp_fixed.c:240
#define Y
Definition: vf_boxblur.c:76
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:343
int32_t mant
Definition: softfloat.h:35
#define av_log(a,...)
static SoftFloat sbr_sum_square_c(int(*x)[2], int n)
Definition: sbrdsp_fixed.c:34
#define U(x)
Definition: vp56_arith.h:37
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define AVERROR(e)
Definition: error.h:43
static av_always_inline void autocorrelate(const int x[40][2], SoftFloat phi[3][2][2], int lag)
Definition: sbrdsp_fixed.c:142
const char * r
Definition: vf_curves.c:111
static av_always_inline av_const double round(double x)
Definition: libm.h:444
static av_always_inline int sbr_hf_apply_noise(int(*Y)[2], const SoftFloat *s_m, const SoftFloat *q_filt, int noise, int phi_sign0, int phi_sign1, int m_max)
Definition: sbrdsp_fixed.c:258
int8_t exp
Definition: eval.c:72
static void sbr_qmf_post_shuffle_c(int W[32][2], const int *z)
Definition: sbrdsp_fixed.c:100
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
AAC definitions and structures.
int n
Definition: avisynth_c.h:684
static void sbr_neg_odd_64_c(int *x)
Definition: sbrdsp_fixed.c:82
#define W(a, i, v)
Definition: jpegls.h:124
static void sbr_qmf_pre_shuffle_c(int *z)
Definition: sbrdsp_fixed.c:89
int
int32_t exp
Definition: softfloat.h:36
static void sbr_qmf_deint_neg_c(int *v, const int *src)
Definition: sbrdsp_fixed.c:109
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:185
void INT64 start
Definition: avisynth_c.h:690
#define av_always_inline
Definition: attributes.h:39
static void sbr_hf_gen_c(int(*X_high)[2], const int(*X_low)[2], const int alpha0[2], const int alpha1[2], int bw, int start, int end)
Definition: sbrdsp_fixed.c:204
static uint8_t tmp[11]
Definition: aes_ctr.c:26