FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "snow_dwt.h"
27 #include "snow.h"
28 
29 #include "rangecoder.h"
30 #include "mathops.h"
31 
32 #define FF_MPV_OFFSET(x) (offsetof(MpegEncContext, x) + offsetof(SnowContext, m))
33 #include "mpegvideo.h"
34 #include "h263.h"
35 
37 {
38  SnowContext *s = avctx->priv_data;
39  int plane_index, ret;
40  int i;
41 
42  if(avctx->prediction_method == DWT_97
43  && (avctx->flags & CODEC_FLAG_QSCALE)
44  && avctx->global_quality == 0){
45  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
46  return -1;
47  }
48 
49  s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
50 
51  s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
52  s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
53 
54  for(plane_index=0; plane_index<3; plane_index++){
55  s->plane[plane_index].diag_mc= 1;
56  s->plane[plane_index].htaps= 6;
57  s->plane[plane_index].hcoeff[0]= 40;
58  s->plane[plane_index].hcoeff[1]= -10;
59  s->plane[plane_index].hcoeff[2]= 2;
60  s->plane[plane_index].fast_mc= 1;
61  }
62 
63  if ((ret = ff_snow_common_init(avctx)) < 0) {
65  return ret;
66  }
68 
70 
71  s->version=0;
72 
73  s->m.avctx = avctx;
74  s->m.flags = avctx->flags;
75  s->m.bit_rate= avctx->bit_rate;
76 
77  s->m.me.temp =
78  s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
79  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
80  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
81  s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
82  if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.obmc_scratchpad)
83  return AVERROR(ENOMEM);
84 
85  ff_h263_encode_init(&s->m); //mv_penalty
86 
87  s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
88 
89  if(avctx->flags&CODEC_FLAG_PASS1){
90  if(!avctx->stats_out)
91  avctx->stats_out = av_mallocz(256);
92 
93  if (!avctx->stats_out)
94  return AVERROR(ENOMEM);
95  }
96  if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
97  if(ff_rate_control_init(&s->m) < 0)
98  return -1;
99  }
101 
102  switch(avctx->pix_fmt){
103  case AV_PIX_FMT_YUV444P:
104 // case AV_PIX_FMT_YUV422P:
105  case AV_PIX_FMT_YUV420P:
106 // case AV_PIX_FMT_YUV411P:
107  case AV_PIX_FMT_YUV410P:
108  s->nb_planes = 3;
109  s->colorspace_type= 0;
110  break;
111  case AV_PIX_FMT_GRAY8:
112  s->nb_planes = 1;
113  s->colorspace_type = 1;
114  break;
115 /* case AV_PIX_FMT_RGB32:
116  s->colorspace= 1;
117  break;*/
118  default:
119  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
120  return -1;
121  }
123 
124  ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
126 
128  if (!s->input_picture)
129  return AVERROR(ENOMEM);
130 
131  if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
132  return ret;
133 
134  if(s->avctx->me_method == ME_ITER){
135  int size= s->b_width * s->b_height << 2*s->block_max_depth;
136  for(i=0; i<s->max_ref_frames; i++){
137  s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
138  s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
139  if (!s->ref_mvs[i] || !s->ref_scores[i])
140  return AVERROR(ENOMEM);
141  }
142  }
143 
144  return 0;
145 }
146 
147 //near copy & paste from dsputil, FIXME
148 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
149 {
150  int s, i, j;
151 
152  s = 0;
153  for (i = 0; i < h; i++) {
154  for (j = 0; j < w; j++) {
155  s += pix[0];
156  pix ++;
157  }
158  pix += line_size - w;
159  }
160  return s;
161 }
162 
163 //near copy & paste from dsputil, FIXME
164 static int pix_norm1(uint8_t * pix, int line_size, int w)
165 {
166  int s, i, j;
167  uint32_t *sq = ff_square_tab + 256;
168 
169  s = 0;
170  for (i = 0; i < w; i++) {
171  for (j = 0; j < w; j ++) {
172  s += sq[pix[0]];
173  pix ++;
174  }
175  pix += line_size - w;
176  }
177  return s;
178 }
179 
180 static inline int get_penalty_factor(int lambda, int lambda2, int type){
181  switch(type&0xFF){
182  default:
183  case FF_CMP_SAD:
184  return lambda>>FF_LAMBDA_SHIFT;
185  case FF_CMP_DCT:
186  return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
187  case FF_CMP_W53:
188  return (4*lambda)>>(FF_LAMBDA_SHIFT);
189  case FF_CMP_W97:
190  return (2*lambda)>>(FF_LAMBDA_SHIFT);
191  case FF_CMP_SATD:
192  case FF_CMP_DCT264:
193  return (2*lambda)>>FF_LAMBDA_SHIFT;
194  case FF_CMP_RD:
195  case FF_CMP_PSNR:
196  case FF_CMP_SSE:
197  case FF_CMP_NSSE:
198  return lambda2>>FF_LAMBDA_SHIFT;
199  case FF_CMP_BIT:
200  return 1;
201  }
202 }
203 
204 //FIXME copy&paste
205 #define P_LEFT P[1]
206 #define P_TOP P[2]
207 #define P_TOPRIGHT P[3]
208 #define P_MEDIAN P[4]
209 #define P_MV1 P[9]
210 #define FLAG_QPEL 1 //must be 1
211 
212 static int encode_q_branch(SnowContext *s, int level, int x, int y){
213  uint8_t p_buffer[1024];
214  uint8_t i_buffer[1024];
215  uint8_t p_state[sizeof(s->block_state)];
216  uint8_t i_state[sizeof(s->block_state)];
217  RangeCoder pc, ic;
218  uint8_t *pbbak= s->c.bytestream;
219  uint8_t *pbbak_start= s->c.bytestream_start;
220  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
221  const int w= s->b_width << s->block_max_depth;
222  const int h= s->b_height << s->block_max_depth;
223  const int rem_depth= s->block_max_depth - level;
224  const int index= (x + y*w) << rem_depth;
225  const int block_w= 1<<(LOG2_MB_SIZE - level);
226  int trx= (x+1)<<rem_depth;
227  int try= (y+1)<<rem_depth;
228  const BlockNode *left = x ? &s->block[index-1] : &null_block;
229  const BlockNode *top = y ? &s->block[index-w] : &null_block;
230  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
231  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
232  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
233  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
234  int pl = left->color[0];
235  int pcb= left->color[1];
236  int pcr= left->color[2];
237  int pmx, pmy;
238  int mx=0, my=0;
239  int l,cr,cb;
240  const int stride= s->current_picture->linesize[0];
241  const int uvstride= s->current_picture->linesize[1];
242  uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
243  s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
244  s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
245  int P[10][2];
246  int16_t last_mv[3][2];
247  int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
248  const int shift= 1+qpel;
249  MotionEstContext *c= &s->m.me;
250  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
251  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
252  int my_context= av_log2(2*FFABS(left->my - top->my));
253  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
254  int ref, best_ref, ref_score, ref_mx, ref_my;
255 
256  av_assert0(sizeof(s->block_state) >= 256);
257  if(s->keyframe){
258  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
259  return 0;
260  }
261 
262 // clip predictors / edge ?
263 
264  P_LEFT[0]= left->mx;
265  P_LEFT[1]= left->my;
266  P_TOP [0]= top->mx;
267  P_TOP [1]= top->my;
268  P_TOPRIGHT[0]= tr->mx;
269  P_TOPRIGHT[1]= tr->my;
270 
271  last_mv[0][0]= s->block[index].mx;
272  last_mv[0][1]= s->block[index].my;
273  last_mv[1][0]= right->mx;
274  last_mv[1][1]= right->my;
275  last_mv[2][0]= bottom->mx;
276  last_mv[2][1]= bottom->my;
277 
278  s->m.mb_stride=2;
279  s->m.mb_x=
280  s->m.mb_y= 0;
281  c->skip= 0;
282 
283  av_assert1(c-> stride == stride);
284  av_assert1(c->uvstride == uvstride);
285 
290 
291  c->xmin = - x*block_w - 16+3;
292  c->ymin = - y*block_w - 16+3;
293  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
294  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
295 
296  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
297  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
298  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
299  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
300  if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
301  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
302  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
303 
304  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
305  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
306 
307  if (!y) {
308  c->pred_x= P_LEFT[0];
309  c->pred_y= P_LEFT[1];
310  } else {
311  c->pred_x = P_MEDIAN[0];
312  c->pred_y = P_MEDIAN[1];
313  }
314 
315  score= INT_MAX;
316  best_ref= 0;
317  for(ref=0; ref<s->ref_frames; ref++){
318  init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
319 
320  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
321  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
322 
323  av_assert2(ref_mx >= c->xmin);
324  av_assert2(ref_mx <= c->xmax);
325  av_assert2(ref_my >= c->ymin);
326  av_assert2(ref_my <= c->ymax);
327 
328  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
329  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
330  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
331  if(s->ref_mvs[ref]){
332  s->ref_mvs[ref][index][0]= ref_mx;
333  s->ref_mvs[ref][index][1]= ref_my;
334  s->ref_scores[ref][index]= ref_score;
335  }
336  if(score > ref_score){
337  score= ref_score;
338  best_ref= ref;
339  mx= ref_mx;
340  my= ref_my;
341  }
342  }
343  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
344 
345  // subpel search
346  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
347  pc= s->c;
348  pc.bytestream_start=
349  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
350  memcpy(p_state, s->block_state, sizeof(s->block_state));
351 
352  if(level!=s->block_max_depth)
353  put_rac(&pc, &p_state[4 + s_context], 1);
354  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
355  if(s->ref_frames > 1)
356  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
357  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
358  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
359  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
360  p_len= pc.bytestream - pc.bytestream_start;
361  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
362 
363  block_s= block_w*block_w;
364  sum = pix_sum(current_data[0], stride, block_w, block_w);
365  l= (sum + block_s/2)/block_s;
366  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
367 
368  if (s->nb_planes > 2) {
369  block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
370  sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
371  cb= (sum + block_s/2)/block_s;
372  // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
373  sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
374  cr= (sum + block_s/2)/block_s;
375  // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
376  }else
377  cb = cr = 0;
378 
379  ic= s->c;
380  ic.bytestream_start=
381  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
382  memcpy(i_state, s->block_state, sizeof(s->block_state));
383  if(level!=s->block_max_depth)
384  put_rac(&ic, &i_state[4 + s_context], 1);
385  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
386  put_symbol(&ic, &i_state[32], l-pl , 1);
387  if (s->nb_planes > 2) {
388  put_symbol(&ic, &i_state[64], cb-pcb, 1);
389  put_symbol(&ic, &i_state[96], cr-pcr, 1);
390  }
391  i_len= ic.bytestream - ic.bytestream_start;
392  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
393 
394  av_assert1(iscore < 255*255*256 + s->lambda2*10);
395  av_assert1(iscore >= 0);
396  av_assert1(l>=0 && l<=255);
397  av_assert1(pl>=0 && pl<=255);
398 
399  if(level==0){
400  int varc= iscore >> 8;
401  int vard= score >> 8;
402  if (vard <= 64 || vard < varc)
403  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
404  else
405  c->scene_change_score+= s->m.qscale;
406  }
407 
408  if(level!=s->block_max_depth){
409  put_rac(&s->c, &s->block_state[4 + s_context], 0);
410  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
411  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
412  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
413  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
414  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
415 
416  if(score2 < score && score2 < iscore)
417  return score2;
418  }
419 
420  if(iscore < score){
421  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
422  memcpy(pbbak, i_buffer, i_len);
423  s->c= ic;
424  s->c.bytestream_start= pbbak_start;
425  s->c.bytestream= pbbak + i_len;
426  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
427  memcpy(s->block_state, i_state, sizeof(s->block_state));
428  return iscore;
429  }else{
430  memcpy(pbbak, p_buffer, p_len);
431  s->c= pc;
432  s->c.bytestream_start= pbbak_start;
433  s->c.bytestream= pbbak + p_len;
434  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
435  memcpy(s->block_state, p_state, sizeof(s->block_state));
436  return score;
437  }
438 }
439 
440 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
441  const int w= s->b_width << s->block_max_depth;
442  const int rem_depth= s->block_max_depth - level;
443  const int index= (x + y*w) << rem_depth;
444  int trx= (x+1)<<rem_depth;
445  BlockNode *b= &s->block[index];
446  const BlockNode *left = x ? &s->block[index-1] : &null_block;
447  const BlockNode *top = y ? &s->block[index-w] : &null_block;
448  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
449  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
450  int pl = left->color[0];
451  int pcb= left->color[1];
452  int pcr= left->color[2];
453  int pmx, pmy;
454  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
455  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
456  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
457  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
458 
459  if(s->keyframe){
460  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
461  return;
462  }
463 
464  if(level!=s->block_max_depth){
465  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
466  put_rac(&s->c, &s->block_state[4 + s_context], 1);
467  }else{
468  put_rac(&s->c, &s->block_state[4 + s_context], 0);
469  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
470  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
471  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
472  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
473  return;
474  }
475  }
476  if(b->type & BLOCK_INTRA){
477  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
478  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
479  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
480  if (s->nb_planes > 2) {
481  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
482  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
483  }
484  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
485  }else{
486  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
487  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
488  if(s->ref_frames > 1)
489  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
490  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
491  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
492  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
493  }
494 }
495 
496 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
497  int i, x2, y2;
498  Plane *p= &s->plane[plane_index];
499  const int block_size = MB_SIZE >> s->block_max_depth;
500  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
501  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
502  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
503  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
504  const int ref_stride= s->current_picture->linesize[plane_index];
505  uint8_t *src= s-> input_picture->data[plane_index];
506  IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
507  const int b_stride = s->b_width << s->block_max_depth;
508  const int w= p->width;
509  const int h= p->height;
510  int index= mb_x + mb_y*b_stride;
511  BlockNode *b= &s->block[index];
512  BlockNode backup= *b;
513  int ab=0;
514  int aa=0;
515 
516  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
517 
518  b->type|= BLOCK_INTRA;
519  b->color[plane_index]= 0;
520  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
521 
522  for(i=0; i<4; i++){
523  int mb_x2= mb_x + (i &1) - 1;
524  int mb_y2= mb_y + (i>>1) - 1;
525  int x= block_w*mb_x2 + block_w/2;
526  int y= block_h*mb_y2 + block_h/2;
527 
528  add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
529  x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
530 
531  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
532  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
533  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
534  int obmc_v= obmc[index];
535  int d;
536  if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
537  if(x<0) obmc_v += obmc[index + block_w];
538  if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
539  if(x+block_w>w) obmc_v += obmc[index - block_w];
540  //FIXME precalculate this or simplify it somehow else
541 
542  d = -dst[index] + (1<<(FRAC_BITS-1));
543  dst[index] = d;
544  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
545  aa += obmc_v * obmc_v; //FIXME precalculate this
546  }
547  }
548  }
549  *b= backup;
550 
551  return av_clip( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa), 0, 255); //FIXME we should not need clipping
552 }
553 
554 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
555  const int b_stride = s->b_width << s->block_max_depth;
556  const int b_height = s->b_height<< s->block_max_depth;
557  int index= x + y*b_stride;
558  const BlockNode *b = &s->block[index];
559  const BlockNode *left = x ? &s->block[index-1] : &null_block;
560  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
561  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
562  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
563  int dmx, dmy;
564 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
565 // int my_context= av_log2(2*FFABS(left->my - top->my));
566 
567  if(x<0 || x>=b_stride || y>=b_height)
568  return 0;
569 /*
570 1 0 0
571 01X 1-2 1
572 001XX 3-6 2-3
573 0001XXX 7-14 4-7
574 00001XXXX 15-30 8-15
575 */
576 //FIXME try accurate rate
577 //FIXME intra and inter predictors if surrounding blocks are not the same type
578  if(b->type & BLOCK_INTRA){
579  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
580  + av_log2(2*FFABS(left->color[1] - b->color[1]))
581  + av_log2(2*FFABS(left->color[2] - b->color[2])));
582  }else{
583  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
584  dmx-= b->mx;
585  dmy-= b->my;
586  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
587  + av_log2(2*FFABS(dmy))
588  + av_log2(2*b->ref));
589  }
590 }
591 
592 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
593  Plane *p= &s->plane[plane_index];
594  const int block_size = MB_SIZE >> s->block_max_depth;
595  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
596  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
597  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
598  const int ref_stride= s->current_picture->linesize[plane_index];
599  uint8_t *dst= s->current_picture->data[plane_index];
600  uint8_t *src= s-> input_picture->data[plane_index];
601  IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
602  uint8_t *cur = s->scratchbuf;
603  uint8_t *tmp = s->emu_edge_buffer;
604  const int b_stride = s->b_width << s->block_max_depth;
605  const int b_height = s->b_height<< s->block_max_depth;
606  const int w= p->width;
607  const int h= p->height;
608  int distortion;
609  int rate= 0;
610  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
611  int sx= block_w*mb_x - block_w/2;
612  int sy= block_h*mb_y - block_h/2;
613  int x0= FFMAX(0,-sx);
614  int y0= FFMAX(0,-sy);
615  int x1= FFMIN(block_w*2, w-sx);
616  int y1= FFMIN(block_h*2, h-sy);
617  int i,x,y;
618 
619  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
620 
621  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
622 
623  for(y=y0; y<y1; y++){
624  const uint8_t *obmc1= obmc_edged[y];
625  const IDWTELEM *pred1 = pred + y*obmc_stride;
626  uint8_t *cur1 = cur + y*ref_stride;
627  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
628  for(x=x0; x<x1; x++){
629 #if FRAC_BITS >= LOG2_OBMC_MAX
630  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
631 #else
632  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
633 #endif
634  v = (v + pred1[x]) >> FRAC_BITS;
635  if(v&(~255)) v= ~(v>>31);
636  dst1[x] = v;
637  }
638  }
639 
640  /* copy the regions where obmc[] = (uint8_t)256 */
641  if(LOG2_OBMC_MAX == 8
642  && (mb_x == 0 || mb_x == b_stride-1)
643  && (mb_y == 0 || mb_y == b_height-1)){
644  if(mb_x == 0)
645  x1 = block_w;
646  else
647  x0 = block_w;
648  if(mb_y == 0)
649  y1 = block_h;
650  else
651  y0 = block_h;
652  for(y=y0; y<y1; y++)
653  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
654  }
655 
656  if(block_w==16){
657  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
658  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
659  /* FIXME cmps overlap but do not cover the wavelet's whole support.
660  * So improving the score of one block is not strictly guaranteed
661  * to improve the score of the whole frame, thus iterative motion
662  * estimation does not always converge. */
663  if(s->avctx->me_cmp == FF_CMP_W97)
664  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
665  else if(s->avctx->me_cmp == FF_CMP_W53)
666  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
667  else{
668  distortion = 0;
669  for(i=0; i<4; i++){
670  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
671  distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
672  }
673  }
674  }else{
675  av_assert2(block_w==8);
676  distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
677  }
678 
679  if(plane_index==0){
680  for(i=0; i<4; i++){
681 /* ..RRr
682  * .RXx.
683  * rxx..
684  */
685  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
686  }
687  if(mb_x == b_stride-2)
688  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
689  }
690  return distortion + rate*penalty_factor;
691 }
692 
693 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
694  int i, y2;
695  Plane *p= &s->plane[plane_index];
696  const int block_size = MB_SIZE >> s->block_max_depth;
697  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
698  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
699  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
700  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
701  const int ref_stride= s->current_picture->linesize[plane_index];
702  uint8_t *dst= s->current_picture->data[plane_index];
703  uint8_t *src= s-> input_picture->data[plane_index];
704  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
705  // const has only been removed from zero_dst to suppress a warning
706  static IDWTELEM zero_dst[4096]; //FIXME
707  const int b_stride = s->b_width << s->block_max_depth;
708  const int w= p->width;
709  const int h= p->height;
710  int distortion= 0;
711  int rate= 0;
712  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
713 
714  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
715 
716  for(i=0; i<9; i++){
717  int mb_x2= mb_x + (i%3) - 1;
718  int mb_y2= mb_y + (i/3) - 1;
719  int x= block_w*mb_x2 + block_w/2;
720  int y= block_h*mb_y2 + block_h/2;
721 
722  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
723  x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
724 
725  //FIXME find a cleaner/simpler way to skip the outside stuff
726  for(y2= y; y2<0; y2++)
727  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
728  for(y2= h; y2<y+block_h; y2++)
729  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
730  if(x<0){
731  for(y2= y; y2<y+block_h; y2++)
732  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
733  }
734  if(x+block_w > w){
735  for(y2= y; y2<y+block_h; y2++)
736  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
737  }
738 
739  av_assert1(block_w== 8 || block_w==16);
740  distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
741  }
742 
743  if(plane_index==0){
744  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
745  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
746 
747 /* ..RRRr
748  * .RXXx.
749  * .RXXx.
750  * rxxx.
751  */
752  if(merged)
753  rate = get_block_bits(s, mb_x, mb_y, 2);
754  for(i=merged?4:0; i<9; i++){
755  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
756  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
757  }
758  }
759  return distortion + rate*penalty_factor;
760 }
761 
762 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
763  const int w= b->width;
764  const int h= b->height;
765  int x, y;
766 
767  if(1){
768  int run=0;
769  int *runs = s->run_buffer;
770  int run_index=0;
771  int max_index;
772 
773  for(y=0; y<h; y++){
774  for(x=0; x<w; x++){
775  int v, p=0;
776  int /*ll=0, */l=0, lt=0, t=0, rt=0;
777  v= src[x + y*stride];
778 
779  if(y){
780  t= src[x + (y-1)*stride];
781  if(x){
782  lt= src[x - 1 + (y-1)*stride];
783  }
784  if(x + 1 < w){
785  rt= src[x + 1 + (y-1)*stride];
786  }
787  }
788  if(x){
789  l= src[x - 1 + y*stride];
790  /*if(x > 1){
791  if(orientation==1) ll= src[y + (x-2)*stride];
792  else ll= src[x - 2 + y*stride];
793  }*/
794  }
795  if(parent){
796  int px= x>>1;
797  int py= y>>1;
798  if(px<b->parent->width && py<b->parent->height)
799  p= parent[px + py*2*stride];
800  }
801  if(!(/*ll|*/l|lt|t|rt|p)){
802  if(v){
803  runs[run_index++]= run;
804  run=0;
805  }else{
806  run++;
807  }
808  }
809  }
810  }
811  max_index= run_index;
812  runs[run_index++]= run;
813  run_index=0;
814  run= runs[run_index++];
815 
816  put_symbol2(&s->c, b->state[30], max_index, 0);
817  if(run_index <= max_index)
818  put_symbol2(&s->c, b->state[1], run, 3);
819 
820  for(y=0; y<h; y++){
821  if(s->c.bytestream_end - s->c.bytestream < w*40){
822  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
823  return -1;
824  }
825  for(x=0; x<w; x++){
826  int v, p=0;
827  int /*ll=0, */l=0, lt=0, t=0, rt=0;
828  v= src[x + y*stride];
829 
830  if(y){
831  t= src[x + (y-1)*stride];
832  if(x){
833  lt= src[x - 1 + (y-1)*stride];
834  }
835  if(x + 1 < w){
836  rt= src[x + 1 + (y-1)*stride];
837  }
838  }
839  if(x){
840  l= src[x - 1 + y*stride];
841  /*if(x > 1){
842  if(orientation==1) ll= src[y + (x-2)*stride];
843  else ll= src[x - 2 + y*stride];
844  }*/
845  }
846  if(parent){
847  int px= x>>1;
848  int py= y>>1;
849  if(px<b->parent->width && py<b->parent->height)
850  p= parent[px + py*2*stride];
851  }
852  if(/*ll|*/l|lt|t|rt|p){
853  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
854 
855  put_rac(&s->c, &b->state[0][context], !!v);
856  }else{
857  if(!run){
858  run= runs[run_index++];
859 
860  if(run_index <= max_index)
861  put_symbol2(&s->c, b->state[1], run, 3);
862  av_assert2(v);
863  }else{
864  run--;
865  av_assert2(!v);
866  }
867  }
868  if(v){
869  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
870  int l2= 2*FFABS(l) + (l<0);
871  int t2= 2*FFABS(t) + (t<0);
872 
873  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
874  put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
875  }
876  }
877  }
878  }
879  return 0;
880 }
881 
882 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
883 // encode_subband_qtree(s, b, src, parent, stride, orientation);
884 // encode_subband_z0run(s, b, src, parent, stride, orientation);
885  return encode_subband_c0run(s, b, src, parent, stride, orientation);
886 // encode_subband_dzr(s, b, src, parent, stride, orientation);
887 }
888 
889 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
890  const int b_stride= s->b_width << s->block_max_depth;
891  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
892  BlockNode backup= *block;
893  unsigned value;
894  int rd, index;
895 
896  av_assert2(mb_x>=0 && mb_y>=0);
897  av_assert2(mb_x<b_stride);
898 
899  if(intra){
900  block->color[0] = p[0];
901  block->color[1] = p[1];
902  block->color[2] = p[2];
903  block->type |= BLOCK_INTRA;
904  }else{
905  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
906  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
907  if(s->me_cache[index] == value)
908  return 0;
909  s->me_cache[index]= value;
910 
911  block->mx= p[0];
912  block->my= p[1];
913  block->type &= ~BLOCK_INTRA;
914  }
915 
916  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
917 
918 //FIXME chroma
919  if(rd < *best_rd){
920  *best_rd= rd;
921  return 1;
922  }else{
923  *block= backup;
924  return 0;
925  }
926 }
927 
928 /* special case for int[2] args we discard afterwards,
929  * fixes compilation problem with gcc 2.95 */
930 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
931  int p[2] = {p0, p1};
932  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
933 }
934 
935 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
936  const int b_stride= s->b_width << s->block_max_depth;
937  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
938  BlockNode backup[4];
939  unsigned value;
940  int rd, index;
941 
942  /* We don't initialize backup[] during variable declaration, because
943  * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
944  * 'int16_t'". */
945  backup[0] = block[0];
946  backup[1] = block[1];
947  backup[2] = block[b_stride];
948  backup[3] = block[b_stride + 1];
949 
950  av_assert2(mb_x>=0 && mb_y>=0);
951  av_assert2(mb_x<b_stride);
952  av_assert2(((mb_x|mb_y)&1) == 0);
953 
954  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
955  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
956  if(s->me_cache[index] == value)
957  return 0;
958  s->me_cache[index]= value;
959 
960  block->mx= p0;
961  block->my= p1;
962  block->ref= ref;
963  block->type &= ~BLOCK_INTRA;
964  block[1]= block[b_stride]= block[b_stride+1]= *block;
965 
966  rd= get_4block_rd(s, mb_x, mb_y, 0);
967 
968 //FIXME chroma
969  if(rd < *best_rd){
970  *best_rd= rd;
971  return 1;
972  }else{
973  block[0]= backup[0];
974  block[1]= backup[1];
975  block[b_stride]= backup[2];
976  block[b_stride+1]= backup[3];
977  return 0;
978  }
979 }
980 
981 static void iterative_me(SnowContext *s){
982  int pass, mb_x, mb_y;
983  const int b_width = s->b_width << s->block_max_depth;
984  const int b_height= s->b_height << s->block_max_depth;
985  const int b_stride= b_width;
986  int color[3];
987 
988  {
989  RangeCoder r = s->c;
990  uint8_t state[sizeof(s->block_state)];
991  memcpy(state, s->block_state, sizeof(s->block_state));
992  for(mb_y= 0; mb_y<s->b_height; mb_y++)
993  for(mb_x= 0; mb_x<s->b_width; mb_x++)
994  encode_q_branch(s, 0, mb_x, mb_y);
995  s->c = r;
996  memcpy(s->block_state, state, sizeof(s->block_state));
997  }
998 
999  for(pass=0; pass<25; pass++){
1000  int change= 0;
1001 
1002  for(mb_y= 0; mb_y<b_height; mb_y++){
1003  for(mb_x= 0; mb_x<b_width; mb_x++){
1004  int dia_change, i, j, ref;
1005  int best_rd= INT_MAX, ref_rd;
1006  BlockNode backup, ref_b;
1007  const int index= mb_x + mb_y * b_stride;
1008  BlockNode *block= &s->block[index];
1009  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1010  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1011  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1012  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1013  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1014  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1015  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1016  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1017  const int b_w= (MB_SIZE >> s->block_max_depth);
1018  uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1019 
1020  if(pass && (block->type & BLOCK_OPT))
1021  continue;
1022  block->type |= BLOCK_OPT;
1023 
1024  backup= *block;
1025 
1026  if(!s->me_cache_generation)
1027  memset(s->me_cache, 0, sizeof(s->me_cache));
1028  s->me_cache_generation += 1<<22;
1029 
1030  //FIXME precalculate
1031  {
1032  int x, y;
1033  for (y = 0; y < b_w * 2; y++)
1034  memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1035  if(mb_x==0)
1036  for(y=0; y<b_w*2; y++)
1037  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1038  if(mb_x==b_stride-1)
1039  for(y=0; y<b_w*2; y++)
1040  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1041  if(mb_y==0){
1042  for(x=0; x<b_w*2; x++)
1043  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1044  for(y=1; y<b_w; y++)
1045  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1046  }
1047  if(mb_y==b_height-1){
1048  for(x=0; x<b_w*2; x++)
1049  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1050  for(y=b_w; y<b_w*2-1; y++)
1051  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1052  }
1053  }
1054 
1055  //skip stuff outside the picture
1056  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1057  uint8_t *src= s-> input_picture->data[0];
1058  uint8_t *dst= s->current_picture->data[0];
1059  const int stride= s->current_picture->linesize[0];
1060  const int block_w= MB_SIZE >> s->block_max_depth;
1061  const int block_h= MB_SIZE >> s->block_max_depth;
1062  const int sx= block_w*mb_x - block_w/2;
1063  const int sy= block_h*mb_y - block_h/2;
1064  const int w= s->plane[0].width;
1065  const int h= s->plane[0].height;
1066  int y;
1067 
1068  for(y=sy; y<0; y++)
1069  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1070  for(y=h; y<sy+block_h*2; y++)
1071  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1072  if(sx<0){
1073  for(y=sy; y<sy+block_h*2; y++)
1074  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1075  }
1076  if(sx+block_w*2 > w){
1077  for(y=sy; y<sy+block_h*2; y++)
1078  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1079  }
1080  }
1081 
1082  // intra(black) = neighbors' contribution to the current block
1083  for(i=0; i < s->nb_planes; i++)
1084  color[i]= get_dc(s, mb_x, mb_y, i);
1085 
1086  // get previous score (cannot be cached due to OBMC)
1087  if(pass > 0 && (block->type&BLOCK_INTRA)){
1088  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1089  check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1090  }else
1091  check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1092 
1093  ref_b= *block;
1094  ref_rd= best_rd;
1095  for(ref=0; ref < s->ref_frames; ref++){
1096  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1097  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1098  continue;
1099  block->ref= ref;
1100  best_rd= INT_MAX;
1101 
1102  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1103  check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1104  if(tb)
1105  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1106  if(lb)
1107  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1108  if(rb)
1109  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1110  if(bb)
1111  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1112 
1113  /* fullpel ME */
1114  //FIXME avoid subpel interpolation / round to nearest integer
1115  do{
1116  dia_change=0;
1117  for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1118  for(j=0; j<i; j++){
1119  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1120  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1121  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1122  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1123  }
1124  }
1125  }while(dia_change);
1126  /* subpel ME */
1127  do{
1128  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1129  dia_change=0;
1130  for(i=0; i<8; i++)
1131  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1132  }while(dia_change);
1133  //FIXME or try the standard 2 pass qpel or similar
1134 
1135  mvr[0][0]= block->mx;
1136  mvr[0][1]= block->my;
1137  if(ref_rd > best_rd){
1138  ref_rd= best_rd;
1139  ref_b= *block;
1140  }
1141  }
1142  best_rd= ref_rd;
1143  *block= ref_b;
1144  check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1145  //FIXME RD style color selection
1146  if(!same_block(block, &backup)){
1147  if(tb ) tb ->type &= ~BLOCK_OPT;
1148  if(lb ) lb ->type &= ~BLOCK_OPT;
1149  if(rb ) rb ->type &= ~BLOCK_OPT;
1150  if(bb ) bb ->type &= ~BLOCK_OPT;
1151  if(tlb) tlb->type &= ~BLOCK_OPT;
1152  if(trb) trb->type &= ~BLOCK_OPT;
1153  if(blb) blb->type &= ~BLOCK_OPT;
1154  if(brb) brb->type &= ~BLOCK_OPT;
1155  change ++;
1156  }
1157  }
1158  }
1159  av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1160  if(!change)
1161  break;
1162  }
1163 
1164  if(s->block_max_depth == 1){
1165  int change= 0;
1166  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1167  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1168  int i;
1169  int best_rd, init_rd;
1170  const int index= mb_x + mb_y * b_stride;
1171  BlockNode *b[4];
1172 
1173  b[0]= &s->block[index];
1174  b[1]= b[0]+1;
1175  b[2]= b[0]+b_stride;
1176  b[3]= b[2]+1;
1177  if(same_block(b[0], b[1]) &&
1178  same_block(b[0], b[2]) &&
1179  same_block(b[0], b[3]))
1180  continue;
1181 
1182  if(!s->me_cache_generation)
1183  memset(s->me_cache, 0, sizeof(s->me_cache));
1184  s->me_cache_generation += 1<<22;
1185 
1186  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1187 
1188  //FIXME more multiref search?
1189  check_4block_inter(s, mb_x, mb_y,
1190  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1191  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1192 
1193  for(i=0; i<4; i++)
1194  if(!(b[i]->type&BLOCK_INTRA))
1195  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1196 
1197  if(init_rd != best_rd)
1198  change++;
1199  }
1200  }
1201  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1202  }
1203 }
1204 
1205 static void encode_blocks(SnowContext *s, int search){
1206  int x, y;
1207  int w= s->b_width;
1208  int h= s->b_height;
1209 
1210  if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1211  iterative_me(s);
1212 
1213  for(y=0; y<h; y++){
1214  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1215  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1216  return;
1217  }
1218  for(x=0; x<w; x++){
1219  if(s->avctx->me_method == ME_ITER || !search)
1220  encode_q_branch2(s, 0, x, y);
1221  else
1222  encode_q_branch (s, 0, x, y);
1223  }
1224  }
1225 }
1226 
1227 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1228  const int w= b->width;
1229  const int h= b->height;
1230  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1231  const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1232  int x,y, thres1, thres2;
1233 
1234  if(s->qlog == LOSSLESS_QLOG){
1235  for(y=0; y<h; y++)
1236  for(x=0; x<w; x++)
1237  dst[x + y*stride]= src[x + y*stride];
1238  return;
1239  }
1240 
1241  bias= bias ? 0 : (3*qmul)>>3;
1242  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1243  thres2= 2*thres1;
1244 
1245  if(!bias){
1246  for(y=0; y<h; y++){
1247  for(x=0; x<w; x++){
1248  int i= src[x + y*stride];
1249 
1250  if((unsigned)(i+thres1) > thres2){
1251  if(i>=0){
1252  i<<= QEXPSHIFT;
1253  i/= qmul; //FIXME optimize
1254  dst[x + y*stride]= i;
1255  }else{
1256  i= -i;
1257  i<<= QEXPSHIFT;
1258  i/= qmul; //FIXME optimize
1259  dst[x + y*stride]= -i;
1260  }
1261  }else
1262  dst[x + y*stride]= 0;
1263  }
1264  }
1265  }else{
1266  for(y=0; y<h; y++){
1267  for(x=0; x<w; x++){
1268  int i= src[x + y*stride];
1269 
1270  if((unsigned)(i+thres1) > thres2){
1271  if(i>=0){
1272  i<<= QEXPSHIFT;
1273  i= (i + bias) / qmul; //FIXME optimize
1274  dst[x + y*stride]= i;
1275  }else{
1276  i= -i;
1277  i<<= QEXPSHIFT;
1278  i= (i + bias) / qmul; //FIXME optimize
1279  dst[x + y*stride]= -i;
1280  }
1281  }else
1282  dst[x + y*stride]= 0;
1283  }
1284  }
1285  }
1286 }
1287 
1288 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1289  const int w= b->width;
1290  const int h= b->height;
1291  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1292  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1293  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1294  int x,y;
1295 
1296  if(s->qlog == LOSSLESS_QLOG) return;
1297 
1298  for(y=0; y<h; y++){
1299  for(x=0; x<w; x++){
1300  int i= src[x + y*stride];
1301  if(i<0){
1302  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1303  }else if(i>0){
1304  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1305  }
1306  }
1307  }
1308 }
1309 
1310 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1311  const int w= b->width;
1312  const int h= b->height;
1313  int x,y;
1314 
1315  for(y=h-1; y>=0; y--){
1316  for(x=w-1; x>=0; x--){
1317  int i= x + y*stride;
1318 
1319  if(x){
1320  if(use_median){
1321  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1322  else src[i] -= src[i - 1];
1323  }else{
1324  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1325  else src[i] -= src[i - 1];
1326  }
1327  }else{
1328  if(y) src[i] -= src[i - stride];
1329  }
1330  }
1331  }
1332 }
1333 
1334 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1335  const int w= b->width;
1336  const int h= b->height;
1337  int x,y;
1338 
1339  for(y=0; y<h; y++){
1340  for(x=0; x<w; x++){
1341  int i= x + y*stride;
1342 
1343  if(x){
1344  if(use_median){
1345  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1346  else src[i] += src[i - 1];
1347  }else{
1348  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1349  else src[i] += src[i - 1];
1350  }
1351  }else{
1352  if(y) src[i] += src[i - stride];
1353  }
1354  }
1355  }
1356 }
1357 
1358 static void encode_qlogs(SnowContext *s){
1359  int plane_index, level, orientation;
1360 
1361  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1362  for(level=0; level<s->spatial_decomposition_count; level++){
1363  for(orientation=level ? 1:0; orientation<4; orientation++){
1364  if(orientation==2) continue;
1365  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1366  }
1367  }
1368  }
1369 }
1370 
1371 static void encode_header(SnowContext *s){
1372  int plane_index, i;
1373  uint8_t kstate[32];
1374 
1375  memset(kstate, MID_STATE, sizeof(kstate));
1376 
1377  put_rac(&s->c, kstate, s->keyframe);
1378  if(s->keyframe || s->always_reset){
1381  s->last_qlog=
1382  s->last_qbias=
1383  s->last_mv_scale=
1384  s->last_block_max_depth= 0;
1385  for(plane_index=0; plane_index<2; plane_index++){
1386  Plane *p= &s->plane[plane_index];
1387  p->last_htaps=0;
1388  p->last_diag_mc=0;
1389  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1390  }
1391  }
1392  if(s->keyframe){
1393  put_symbol(&s->c, s->header_state, s->version, 0);
1394  put_rac(&s->c, s->header_state, s->always_reset);
1398  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1399  if (s->nb_planes > 2) {
1400  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1401  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1402  }
1404 // put_rac(&s->c, s->header_state, s->rate_scalability);
1405  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1406 
1407  encode_qlogs(s);
1408  }
1409 
1410  if(!s->keyframe){
1411  int update_mc=0;
1412  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1413  Plane *p= &s->plane[plane_index];
1414  update_mc |= p->last_htaps != p->htaps;
1415  update_mc |= p->last_diag_mc != p->diag_mc;
1416  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1417  }
1418  put_rac(&s->c, s->header_state, update_mc);
1419  if(update_mc){
1420  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1421  Plane *p= &s->plane[plane_index];
1422  put_rac(&s->c, s->header_state, p->diag_mc);
1423  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1424  for(i= p->htaps/2; i; i--)
1425  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1426  }
1427  }
1429  put_rac(&s->c, s->header_state, 1);
1431  encode_qlogs(s);
1432  }else
1433  put_rac(&s->c, s->header_state, 0);
1434  }
1435 
1437  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1438  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1439  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1441 
1442 }
1443 
1445  int plane_index;
1446 
1447  if(!s->keyframe){
1448  for(plane_index=0; plane_index<2; plane_index++){
1449  Plane *p= &s->plane[plane_index];
1450  p->last_diag_mc= p->diag_mc;
1451  p->last_htaps = p->htaps;
1452  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1453  }
1454  }
1455 
1457  s->last_qlog = s->qlog;
1458  s->last_qbias = s->qbias;
1459  s->last_mv_scale = s->mv_scale;
1462 }
1463 
1464 static int qscale2qlog(int qscale){
1465  return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1466  + 61*QROOT/8; ///< 64 > 60
1467 }
1468 
1470 {
1471  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1472  * FIXME we know exact mv bits at this point,
1473  * but ratecontrol isn't set up to include them. */
1474  uint32_t coef_sum= 0;
1475  int level, orientation, delta_qlog;
1476 
1477  for(level=0; level<s->spatial_decomposition_count; level++){
1478  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1479  SubBand *b= &s->plane[0].band[level][orientation];
1480  IDWTELEM *buf= b->ibuf;
1481  const int w= b->width;
1482  const int h= b->height;
1483  const int stride= b->stride;
1484  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1485  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1486  const int qdiv= (1<<16)/qmul;
1487  int x, y;
1488  //FIXME this is ugly
1489  for(y=0; y<h; y++)
1490  for(x=0; x<w; x++)
1491  buf[x+y*stride]= b->buf[x+y*stride];
1492  if(orientation==0)
1493  decorrelate(s, b, buf, stride, 1, 0);
1494  for(y=0; y<h; y++)
1495  for(x=0; x<w; x++)
1496  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1497  }
1498  }
1499 
1500  /* ugly, ratecontrol just takes a sqrt again */
1501  av_assert0(coef_sum < INT_MAX);
1502  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1503 
1504  if(pict->pict_type == AV_PICTURE_TYPE_I){
1505  s->m.current_picture.mb_var_sum= coef_sum;
1507  }else{
1508  s->m.current_picture.mc_mb_var_sum= coef_sum;
1510  }
1511 
1512  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1513  if (pict->quality < 0)
1514  return INT_MIN;
1515  s->lambda= pict->quality * 3/2;
1516  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1517  s->qlog+= delta_qlog;
1518  return delta_qlog;
1519 }
1520 
1522  int width = p->width;
1523  int height= p->height;
1524  int level, orientation, x, y;
1525 
1526  for(level=0; level<s->spatial_decomposition_count; level++){
1527  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1528  SubBand *b= &p->band[level][orientation];
1529  IDWTELEM *ibuf= b->ibuf;
1530  int64_t error=0;
1531 
1532  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1533  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1535  for(y=0; y<height; y++){
1536  for(x=0; x<width; x++){
1537  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1538  error += d*d;
1539  }
1540  }
1541 
1542  b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1543  }
1544  }
1545 }
1546 
1548  const AVFrame *pict, int *got_packet)
1549 {
1550  SnowContext *s = avctx->priv_data;
1551  RangeCoder * const c= &s->c;
1552  AVFrame *pic = pict;
1553  const int width= s->avctx->width;
1554  const int height= s->avctx->height;
1555  int level, orientation, plane_index, i, y, ret;
1556  uint8_t rc_header_bak[sizeof(s->header_state)];
1557  uint8_t rc_block_bak[sizeof(s->block_state)];
1558 
1559  if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1560  return ret;
1561 
1562  ff_init_range_encoder(c, pkt->data, pkt->size);
1563  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1564 
1565  for(i=0; i < s->nb_planes; i++){
1566  int hshift= i ? s->chroma_h_shift : 0;
1567  int vshift= i ? s->chroma_v_shift : 0;
1568  for(y=0; y<(height>>vshift); y++)
1569  memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1570  &pict->data[i][y * pict->linesize[i]],
1571  width>>hshift);
1573  width >> hshift, height >> vshift,
1574  EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1575  EDGE_TOP | EDGE_BOTTOM);
1576 
1577  }
1578  emms_c();
1579  s->new_picture = pict;
1580 
1581  s->m.picture_number= avctx->frame_number;
1582  if(avctx->flags&CODEC_FLAG_PASS2){
1584  s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1585  if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1586  pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1587  if (pic->quality < 0)
1588  return -1;
1589  }
1590  }else{
1591  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1593  }
1594 
1595  if(s->pass1_rc && avctx->frame_number == 0)
1596  pic->quality = 2*FF_QP2LAMBDA;
1597  if (pic->quality) {
1598  s->qlog = qscale2qlog(pic->quality);
1599  s->lambda = pic->quality * 3/2;
1600  }
1601  if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1602  s->qlog= LOSSLESS_QLOG;
1603  s->lambda = 0;
1604  }//else keep previous frame's qlog until after motion estimation
1605 
1606  if (s->current_picture->data[0] && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE)) {
1607  int w = s->avctx->width;
1608  int h = s->avctx->height;
1609 
1611  s->current_picture->linesize[0], w , h ,
1613  if (s->current_picture->data[2]) {
1620  }
1621  }
1622 
1624  avctx->coded_frame= s->current_picture;
1625 
1628  s->m.current_picture.f->pts = pict->pts;
1629  if(pic->pict_type == AV_PICTURE_TYPE_P){
1630  int block_width = (width +15)>>4;
1631  int block_height= (height+15)>>4;
1632  int stride= s->current_picture->linesize[0];
1633 
1635  av_assert0(s->last_picture[0]->data[0]);
1636 
1637  s->m.avctx= s->avctx;
1638  s->m. last_picture.f = s->last_picture[0];
1639  s->m. new_picture.f = s->input_picture;
1640  s->m. last_picture_ptr= &s->m. last_picture;
1641  s->m.linesize = stride;
1642  s->m.uvlinesize= s->current_picture->linesize[1];
1643  s->m.width = width;
1644  s->m.height= height;
1645  s->m.mb_width = block_width;
1646  s->m.mb_height= block_height;
1647  s->m.mb_stride= s->m.mb_width+1;
1648  s->m.b8_stride= 2*s->m.mb_width+1;
1649  s->m.f_code=1;
1650  s->m.pict_type = pic->pict_type;
1651  s->m.me_method= s->avctx->me_method;
1652  s->m.me.scene_change_score=0;
1653  s->m.flags= s->avctx->flags;
1654  s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1655  s->m.out_format= FMT_H263;
1656  s->m.unrestricted_mv= 1;
1657 
1658  s->m.lambda = s->lambda;
1659  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1660  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1661 
1662  s->m.mecc= s->mecc; //move
1663  s->m.qdsp= s->qdsp; //move
1664  s->m.hdsp = s->hdsp;
1665  ff_init_me(&s->m);
1666  s->hdsp = s->m.hdsp;
1667  s->mecc= s->m.mecc;
1668  }
1669 
1670  if(s->pass1_rc){
1671  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1672  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1673  }
1674 
1675 redo_frame:
1676 
1678 
1679  while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1680  || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1682 
1683  if (s->spatial_decomposition_count <= 0) {
1684  av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1685  return AVERROR(EINVAL);
1686  }
1687 
1688  s->m.pict_type = pic->pict_type;
1689  s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1690 
1692 
1694  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1695  calculate_visual_weight(s, &s->plane[plane_index]);
1696  }
1697  }
1698 
1699  encode_header(s);
1700  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1701  encode_blocks(s, 1);
1702  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1703 
1704  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1705  Plane *p= &s->plane[plane_index];
1706  int w= p->width;
1707  int h= p->height;
1708  int x, y;
1709 // int bits= put_bits_count(&s->c.pb);
1710 
1711  if (!s->memc_only) {
1712  //FIXME optimize
1713  if(pict->data[plane_index]) //FIXME gray hack
1714  for(y=0; y<h; y++){
1715  for(x=0; x<w; x++){
1716  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1717  }
1718  }
1719  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1720 
1721  if( plane_index==0
1722  && pic->pict_type == AV_PICTURE_TYPE_P
1723  && !(avctx->flags&CODEC_FLAG_PASS2)
1725  ff_init_range_encoder(c, pkt->data, pkt->size);
1726  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1728  s->keyframe=1;
1729  s->current_picture->key_frame=1;
1730  goto redo_frame;
1731  }
1732 
1733  if(s->qlog == LOSSLESS_QLOG){
1734  for(y=0; y<h; y++){
1735  for(x=0; x<w; x++){
1736  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1737  }
1738  }
1739  }else{
1740  for(y=0; y<h; y++){
1741  for(x=0; x<w; x++){
1743  }
1744  }
1745  }
1746 
1748 
1749  if(s->pass1_rc && plane_index==0){
1750  int delta_qlog = ratecontrol_1pass(s, pic);
1751  if (delta_qlog <= INT_MIN)
1752  return -1;
1753  if(delta_qlog){
1754  //reordering qlog in the bitstream would eliminate this reset
1755  ff_init_range_encoder(c, pkt->data, pkt->size);
1756  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1757  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1758  encode_header(s);
1759  encode_blocks(s, 0);
1760  }
1761  }
1762 
1763  for(level=0; level<s->spatial_decomposition_count; level++){
1764  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1765  SubBand *b= &p->band[level][orientation];
1766 
1767  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1768  if(orientation==0)
1769  decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1770  if (!s->no_bitstream)
1771  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1772  av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1773  if(orientation==0)
1774  correlate(s, b, b->ibuf, b->stride, 1, 0);
1775  }
1776  }
1777 
1778  for(level=0; level<s->spatial_decomposition_count; level++){
1779  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1780  SubBand *b= &p->band[level][orientation];
1781 
1782  dequantize(s, b, b->ibuf, b->stride);
1783  }
1784  }
1785 
1787  if(s->qlog == LOSSLESS_QLOG){
1788  for(y=0; y<h; y++){
1789  for(x=0; x<w; x++){
1790  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1791  }
1792  }
1793  }
1794  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1795  }else{
1796  //ME/MC only
1797  if(pic->pict_type == AV_PICTURE_TYPE_I){
1798  for(y=0; y<h; y++){
1799  for(x=0; x<w; x++){
1800  s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1801  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1802  }
1803  }
1804  }else{
1805  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1806  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1807  }
1808  }
1809  if(s->avctx->flags&CODEC_FLAG_PSNR){
1810  int64_t error= 0;
1811 
1812  if(pict->data[plane_index]) //FIXME gray hack
1813  for(y=0; y<h; y++){
1814  for(x=0; x<w; x++){
1815  int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1816  error += d*d;
1817  }
1818  }
1819  s->avctx->error[plane_index] += error;
1820  s->current_picture->error[plane_index] = error;
1821  }
1822 
1823  }
1824 
1826 
1827  ff_snow_release_buffer(avctx);
1828 
1830  s->current_picture->pict_type = pict->pict_type;
1831  s->current_picture->quality = pict->quality;
1832  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1833  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1836  s->m.current_picture.f->quality = pic->quality;
1837  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1838  if(s->pass1_rc)
1839  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1840  return -1;
1841  if(avctx->flags&CODEC_FLAG_PASS1)
1842  ff_write_pass1_stats(&s->m);
1843  s->m.last_pict_type = s->m.pict_type;
1844  avctx->frame_bits = s->m.frame_bits;
1845  avctx->mv_bits = s->m.mv_bits;
1846  avctx->misc_bits = s->m.misc_bits;
1847  avctx->p_tex_bits = s->m.p_tex_bits;
1848 
1849  emms_c();
1850 
1851  pkt->size = ff_rac_terminate(c);
1852  if (avctx->coded_frame->key_frame)
1853  pkt->flags |= AV_PKT_FLAG_KEY;
1854  *got_packet = 1;
1855 
1856  return 0;
1857 }
1858 
1860 {
1861  SnowContext *s = avctx->priv_data;
1862 
1863  ff_snow_common_end(s);
1866  av_free(avctx->stats_out);
1867 
1868  return 0;
1869 }
1870 
1871 #define OFFSET(x) offsetof(SnowContext, x)
1872 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1873 static const AVOption options[] = {
1875  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1876  { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1877  { NULL },
1878 };
1879 
1880 static const AVClass snowenc_class = {
1881  .class_name = "snow encoder",
1882  .item_name = av_default_item_name,
1883  .option = options,
1884  .version = LIBAVUTIL_VERSION_INT,
1885 };
1886 
1888  .name = "snow",
1889  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1890  .type = AVMEDIA_TYPE_VIDEO,
1891  .id = AV_CODEC_ID_SNOW,
1892  .priv_data_size = sizeof(SnowContext),
1893  .init = encode_init,
1894  .encode2 = encode_frame,
1895  .close = encode_end,
1896  .pix_fmts = (const enum AVPixelFormat[]){
1900  },
1901  .priv_class = &snowenc_class,
1902 };
1903 
1904 
1905 #ifdef TEST
1906 #undef malloc
1907 #undef free
1908 #undef printf
1909 
1910 #include "libavutil/lfg.h"
1911 #include "libavutil/mathematics.h"
1912 
1913 int main(void){
1914 #define width 256
1915 #define height 256
1916  int buffer[2][width*height];
1917  SnowContext s;
1918  int i;
1919  AVLFG prng;
1922 
1923  s.temp_dwt_buffer = av_mallocz(width * sizeof(DWTELEM));
1924  s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
1925 
1926  av_lfg_init(&prng, 1);
1927 
1928  printf("testing 5/3 DWT\n");
1929  for(i=0; i<width*height; i++)
1930  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1931 
1934 
1935  for(i=0; i<width*height; i++)
1936  if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1937 
1938  printf("testing 9/7 DWT\n");
1940  for(i=0; i<width*height; i++)
1941  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1942 
1945 
1946  for(i=0; i<width*height; i++)
1947  if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1948 
1949  {
1950  int level, orientation, x, y;
1951  int64_t errors[8][4];
1952  int64_t g=0;
1953 
1954  memset(errors, 0, sizeof(errors));
1957  for(level=0; level<s.spatial_decomposition_count; level++){
1958  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1959  int w= width >> (s.spatial_decomposition_count-level);
1960  int h= height >> (s.spatial_decomposition_count-level);
1961  int stride= width << (s.spatial_decomposition_count-level);
1962  DWTELEM *buf= buffer[0];
1963  int64_t error=0;
1964 
1965  if(orientation&1) buf+=w;
1966  if(orientation>1) buf+=stride>>1;
1967 
1968  memset(buffer[0], 0, sizeof(int)*width*height);
1969  buf[w/2 + h/2*stride]= 256*256;
1971  for(y=0; y<height; y++){
1972  for(x=0; x<width; x++){
1973  int64_t d= buffer[0][x + y*width];
1974  error += d*d;
1975  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
1976  }
1977  if(FFABS(height/2-y)<9 && level==2) printf("\n");
1978  }
1979  error= (int)(sqrt(error)+0.5);
1980  errors[level][orientation]= error;
1981  if(g) g=av_gcd(g, error);
1982  else g= error;
1983  }
1984  }
1985  printf("static int const visual_weight[][4]={\n");
1986  for(level=0; level<s.spatial_decomposition_count; level++){
1987  printf(" {");
1988  for(orientation=0; orientation<4; orientation++){
1989  printf("%8"PRId64",", errors[level][orientation]/g);
1990  }
1991  printf("},\n");
1992  }
1993  printf("};\n");
1994  {
1995  int level=2;
1996  int w= width >> (s.spatial_decomposition_count-level);
1997  //int h= height >> (s.spatial_decomposition_count-level);
1998  int stride= width << (s.spatial_decomposition_count-level);
1999  DWTELEM *buf= buffer[0];
2000  int64_t error=0;
2001 
2002  buf+=w;
2003  buf+=stride>>1;
2004 
2005  memset(buffer[0], 0, sizeof(int)*width*height);
2006  for(y=0; y<height; y++){
2007  for(x=0; x<width; x++){
2008  int tab[4]={0,2,3,1};
2009  buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2010  }
2011  }
2013  for(y=0; y<height; y++){
2014  for(x=0; x<width; x++){
2015  int64_t d= buffer[0][x + y*width];
2016  error += d*d;
2017  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2018  }
2019  if(FFABS(height/2-y)<9) printf("\n");
2020  }
2021  }
2022 
2023  }
2024  return 0;
2025 }
2026 #endif /* TEST */