83 {{19595, 38470, 7471, 0, 0, 0},
85 { 0, 0, 0, 19595, 38470, 7471}},
87 {{19595, 38470, 7471, 0, 0, 0},
88 { 0, 0, 0, 19595, 38470, 7471},
91 {{19595, 38470, 7471, 0, 0, 0},
92 { 0, 0, 0, 19595, 38470, 7471},
93 { 0, 0, 0, 19595, 38470, 7471}},
95 {{19595, 38470, 7471, 0, 0, 0},
96 { 0, 0, 0, 0, 65536, 0},
97 { 0, 0, 0, 0, 0, 65536}},
99 {{65536, 0, 0, 0, 0, 0},
100 { 0, 0, 0, 0, 65536, 0},
101 { 0, 0, 0, 0, 0, 65536}},
103 {{29884, 32768, 11534, -2818, -5767, -131},
104 {-2621, -2490, -1049, 24773, 48103, -1180},
105 { -983, -1376, -328, -4719, -7406, 80347}},
107 {{ 0, 0, 0, 19595, 38470, 7471},
108 {19595, 38470, 7471, 0, 0, 0},
109 { 0, 0, 0, 19595, 38470, 7471}},
111 {{ 0, 0, 0, 65536, 0, 0},
112 {19595, 38470, 7471, 0, 0, 0},
113 { 0, 0, 0, 0, 0, 65536}},
115 {{ 0, 0, 0, 65536, 0, 0},
116 { 0, 65536, 0, 0, 0, 0},
117 { 0, 0, 0, 0, 0, 65536}},
119 {{-4063,-10354, -2556, 34669, 46203, 1573},
120 {18612, 43778, 9372, -1049, -983, -4260},
121 { -983, -1769, 1376, 590, 4915, 61407}},
123 {{ 0, 0, 0, 19595, 38470, 7471},
124 { 0, 0, 0, 19595, 38470, 7471},
125 {19595, 38470, 7471, 0, 0, 0}},
127 {{ 0, 0, 0, 65536, 0, 0},
128 { 0, 0, 0, 0, 65536, 0},
129 {19595, 38470, 7471, 0, 0, 0}},
131 {{ 0, 0, 0, 65536, 0, 0},
132 { 0, 0, 0, 0, 65536, 0},
133 { 0, 0, 65536, 0, 0, 0}},
135 {{69599,-13435,19595, -1048, -8061, -1114},
136 {-1704, 59507, 4456, 393, 4063, -1114},
137 {-2490,-11338, 1442, 6160, 12124, 59703}},
144 const int *ana_matrix[3];
152 int in_off_left[4], in_off_right[4];
157 #define OFFSET(x) offsetof(Stereo3DContext, x) 158 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM 319 sum = coeff[0] * left[0] + coeff[3] * right[0];
320 sum += coeff[1] * left[1] + coeff[4] * right[1];
321 sum += coeff[2] * left[2] + coeff[5] * right[2];
323 return av_clip_uint8(sum >> 16);
327 ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize,
329 const int *ana_matrix_r,
const int *ana_matrix_g,
const int *ana_matrix_b)
333 for (y = 0; y <
height; y++) {
334 for (o = 0, x = 0; x <
width; x++, o+= 3) {
335 dst[o ] =
ana_convert(ana_matrix_r, lsrc + o * 2, rsrc + o * 2);
336 dst[o + 1] =
ana_convert(ana_matrix_g, lsrc + o * 2, rsrc + o * 2);
337 dst[o + 2] =
ana_convert(ana_matrix_b, lsrc + o * 2, rsrc + o * 2);
347 ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize,
349 const int *ana_matrix_r,
const int *ana_matrix_g,
const int *ana_matrix_b)
353 for (y = 0; y <
height; y++) {
354 for (o = 0, x = 0; x <
width; x++, o+= 3) {
355 dst[o ] =
ana_convert(ana_matrix_r, lsrc + o, rsrc + o);
356 dst[o + 1] =
ana_convert(ana_matrix_g, lsrc + o, rsrc + o);
357 dst[o + 2] =
ana_convert(ana_matrix_b, lsrc + o, rsrc + o);
617 int start = (height * jobnr ) / nb_jobs;
618 int end = (height * (jobnr+1)) / nb_jobs;
628 ana_matrix[0], ana_matrix[1], ana_matrix[2]);
637 for (y = 0; y < s->
pheight[p]; y++) {
643 for (x = 0; x < s->
linesize[p]; x++)
647 for (x = 0; x < s->
linesize[p]; x+=2)
651 for (x = 0; x < s->
linesize[p]; x+=3)
655 for (x = 0; x < s->
linesize[p]; x+=4)
659 for (x = 0; x < s->
linesize[p]; x+=6)
663 for (x = 0; x < s->
linesize[p]; x+=8)
676 int out_off_left[4], out_off_right[4];
705 ileft = iright = inpicref;
722 if (!oright || !oleft) {
788 for (i = 0; i < 4; i++) {
789 int hsub = i == 1 || i == 2 ? s->
hsub : 0;
790 int vsub = i == 1 || i == 2 ? s->
vsub : 0;
804 oleft->linesize[
i] *= 2;
805 oright->linesize[
i] *= 2;
815 oleft->width = outlink->
w;
816 oright->width = outlink->
w;
817 oleft->height = outlink->
h;
818 oright->height = outlink->
h;
832 int j,
h = s->
height >> ((i == 1 || i == 2) ? s->
vsub : 0);
833 int b = (s->
blanks) >> ((i == 1 || i == 2) ? s->
vsub : 0);
835 for (j = h; j < h +
b; j++)
954 for (y = 0; y < s->
pheight[
i]; y++) {
967 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=2, p++, b+=2) {
968 dst[x ] = (b&1) == (y&1) ? left[p*m] : right[p*m];
969 dst[x+1] = (b&1) != (y&1) ? left[p*m] : right[p*m];
973 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=4, p+=2, b+=2) {
979 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=6, p+=3, b+=2) {
985 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=8, p+=4, b+=2) {
991 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=12, p+=6, b+=2) {
997 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=16, p+=8, b+=2) {
1010 const int m = 1 + d;
1013 for (y = 0; y < s->
pheight[
i]; y++) {
1024 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=2, p++, b+=2) {
1025 dst[x ] = b&1 ? left[p*m] : right[p*m];
1026 dst[x+1] = !(b&1) ? left[p*m] : right[p*m];
1030 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=4, p+=2, b+=2) {
1036 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=6, p+=3, b+=2) {
1042 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=8, p+=4, b+=2) {
1048 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=12, p+=6, b+=2) {
1054 for (x = 0, b = 0, p = 0; x < s->
linesize[
i] * 2; x+=16, p+=8, b+=2) {
1067 if (oright != oleft) {
1070 oright->pts = s->
prev->
pts * 2;
1121 .
inputs = stereo3d_inputs,
1123 .priv_class = &stereo3d_class,
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
static void copy(const float *p1, float *p2, const int length)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
static void anaglyph(uint8_t *dst, uint8_t *lsrc, uint8_t *rsrc, ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize, int width, int height, const int *ana_matrix_r, const int *ana_matrix_g, const int *ana_matrix_b)
static void interleave_cols_to_any(Stereo3DContext *s, int *out_off, int p, AVFrame *in, AVFrame *out, int d)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
void(* anaglyph)(uint8_t *dst, uint8_t *lsrc, uint8_t *rsrc, ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize, int width, int height, const int *ana_matrix_r, const int *ana_matrix_g, const int *ana_matrix_b)
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
int h
agreed upon image height
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
planar GBR 4:4:4 36bpp, little-endian
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
AVFILTER_DEFINE_CLASS(stereo3d)
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
planar GBR 4:4:4 36bpp, big-endian
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
static uint8_t ana_convert(const int *coeff, const uint8_t *left, const uint8_t *right)
void av_image_fill_max_pixsteps(int max_pixsteps[4], int max_pixstep_comps[4], const AVPixFmtDescriptor *pixdesc)
Compute the max pixel step for each plane of an image with a format described by pixdesc.
const char * name
Pad name.
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
AVFilterLink ** inputs
array of pointers to input links
#define av_assert0(cond)
assert() equivalent, that is always enabled.
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
static av_cold int end(AVCodecContext *avctx)
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
static void anaglyph_ic(uint8_t *dst, uint8_t *lsrc, uint8_t *rsrc, ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize, int width, int height, const int *ana_matrix_r, const int *ana_matrix_g, const int *ana_matrix_b)
static const AVFilterPad stereo3d_outputs[]
planar GBR 4:4:4 48bpp, big-endian
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
A filter pad used for either input or output.
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
A link between two filters.
planar GBR 4:4:4 27bpp, big-endian
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
static av_cold void uninit(AVFilterContext *ctx)
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0, will be automatically copied from the first input of the source filter if it exists.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link...
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
int w
agreed upon image width
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static const AVFilterPad stereo3d_inputs[]
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
packed RGB 8:8:8, 24bpp, BGRBGR...
AVFilterContext * src
source filter
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
static const AVFilterPad outputs[]
int format
agreed upon media format
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
static enum AVPixelFormat other_pix_fmts[]
void ff_stereo3d_init_x86(Stereo3DDSPContext *dsp)
static const AVOption stereo3d_options[]
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
Used for passing data between threads.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
planar GBR 4:4:4 30bpp, big-endian
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
AVRational sample_aspect_ratio
Sample aspect ratio for the video frame, 0/1 if unknown/unspecified.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static enum AVPixelFormat anaglyph_pix_fmts[]
planar GBR 4:4:4 42bpp, little-endian
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31))))#define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac){}void ff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map){AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);return NULL;}return ac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;}int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){int use_generic=1;int len=in->nb_samples;int p;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Describe the class of an AVClass context structure.
int av_image_fill_linesizes(int linesizes[4], enum AVPixelFormat pix_fmt, int width)
Fill plane linesizes for an image with pixel format pix_fmt and width width.
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Rational number (pair of numerator and denominator).
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
static int config_output(AVFilterLink *outlink)
const int * ana_matrix[3]
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
const char * name
Filter name.
planar GBR 4:4:4 42bpp, big-endian
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
AVFilterLink ** outputs
array of pointers to output links
static enum AVPixelFormat pix_fmts[]
static int query_formats(AVFilterContext *ctx)
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
planar GBR 4:4:4 27bpp, little-endian
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
avfilter_execute_func * execute
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
static const int ana_coeff[][3][6]
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
AVFilterContext * dst
dest filter
static const double coeff[2][5]
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
planar GBR 4:4:4 48bpp, little-endian
#define FFSWAP(type, a, b)
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
AVPixelFormat
Pixel format.
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
planar GBR 4:4:4 30bpp, little-endian
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
#define AV_CEIL_RSHIFT(a, b)
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian