FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2003-2004 The FFmpeg Project
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * On2 VP3 Video Decoder
24  *
25  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26  * For more information about the VP3 coding process, visit:
27  * http://wiki.multimedia.cx/index.php?title=On2_VP3
28  *
29  * Theora decoder by Alex Beregszaszi
30  */
31 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 
36 #include "libavutil/imgutils.h"
37 
38 #include "avcodec.h"
39 #include "get_bits.h"
40 #include "hpeldsp.h"
41 #include "internal.h"
42 #include "mathops.h"
43 #include "thread.h"
44 #include "videodsp.h"
45 #include "vp3data.h"
46 #include "vp3dsp.h"
47 #include "xiph.h"
48 
49 #define FRAGMENT_PIXELS 8
50 
51 // FIXME split things out into their own arrays
52 typedef struct Vp3Fragment {
53  int16_t dc;
56 } Vp3Fragment;
57 
58 #define SB_NOT_CODED 0
59 #define SB_PARTIALLY_CODED 1
60 #define SB_FULLY_CODED 2
61 
62 // This is the maximum length of a single long bit run that can be encoded
63 // for superblock coding or block qps. Theora special-cases this to read a
64 // bit instead of flipping the current bit to allow for runs longer than 4129.
65 #define MAXIMUM_LONG_BIT_RUN 4129
66 
67 #define MODE_INTER_NO_MV 0
68 #define MODE_INTRA 1
69 #define MODE_INTER_PLUS_MV 2
70 #define MODE_INTER_LAST_MV 3
71 #define MODE_INTER_PRIOR_LAST 4
72 #define MODE_USING_GOLDEN 5
73 #define MODE_GOLDEN_MV 6
74 #define MODE_INTER_FOURMV 7
75 #define CODING_MODE_COUNT 8
76 
77 /* special internal mode */
78 #define MODE_COPY 8
79 
80 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
81 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
82 
83 
84 /* There are 6 preset schemes, plus a free-form scheme */
85 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
86  /* scheme 1: Last motion vector dominates */
91 
92  /* scheme 2 */
97 
98  /* scheme 3 */
103 
104  /* scheme 4 */
109 
110  /* scheme 5: No motion vector dominates */
115 
116  /* scheme 6 */
121 };
122 
123 static const uint8_t hilbert_offset[16][2] = {
124  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
125  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
126  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
127  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
128 };
129 
130 #define MIN_DEQUANT_VAL 2
131 
132 typedef struct Vp3DecodeContext {
135  int version;
136  int width, height;
141  int keyframe;
147  DECLARE_ALIGNED(16, int16_t, block)[64];
151 
152  int qps[3];
153  int nqps;
154  int last_qps[3];
155 
165  unsigned char *superblock_coding;
166 
170 
174 
177  int data_offset[3];
181 
182  int8_t (*motion_val[2])[2];
183 
184  /* tables */
185  uint16_t coded_dc_scale_factor[64];
186  uint32_t coded_ac_scale_factor[64];
189  uint8_t qr_size[2][3][64];
190  uint16_t qr_base[2][3][64];
191 
192  /**
193  * This is a list of all tokens in bitstream order. Reordering takes place
194  * by pulling from each level during IDCT. As a consequence, IDCT must be
195  * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
196  * otherwise. The 32 different tokens with up to 12 bits of extradata are
197  * collapsed into 3 types, packed as follows:
198  * (from the low to high bits)
199  *
200  * 2 bits: type (0,1,2)
201  * 0: EOB run, 14 bits for run length (12 needed)
202  * 1: zero run, 7 bits for run length
203  * 7 bits for the next coefficient (3 needed)
204  * 2: coefficient, 14 bits (11 needed)
205  *
206  * Coefficients are signed, so are packed in the highest bits for automatic
207  * sign extension.
208  */
209  int16_t *dct_tokens[3][64];
210  int16_t *dct_tokens_base;
211 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
212 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
213 #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
214 
215  /**
216  * number of blocks that contain DCT coefficients at
217  * the given level or higher
218  */
219  int num_coded_frags[3][64];
221 
222  /* this is a list of indexes into the all_fragments array indicating
223  * which of the fragments are coded */
225 
226  VLC dc_vlc[16];
231 
236 
237  /* these arrays need to be on 16-byte boundaries since SSE2 operations
238  * index into them */
239  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
240 
241  /* This table contains superblock_count * 16 entries. Each set of 16
242  * numbers corresponds to the fragment indexes 0..15 of the superblock.
243  * An entry will be -1 to indicate that no entry corresponds to that
244  * index. */
246 
247  /* This is an array that indicates how a particular macroblock
248  * is coded. */
249  unsigned char *macroblock_coding;
250 
252 
253  /* Huffman decode */
254  int hti;
255  unsigned int hbits;
256  int entries;
258  uint32_t huffman_table[80][32][2];
259 
263 
264 /************************************************************************
265  * VP3 specific functions
266  ************************************************************************/
267 
268 static av_cold void free_tables(AVCodecContext *avctx)
269 {
270  Vp3DecodeContext *s = avctx->priv_data;
271 
273  av_freep(&s->all_fragments);
278  av_freep(&s->motion_val[0]);
279  av_freep(&s->motion_val[1]);
280 }
281 
282 static void vp3_decode_flush(AVCodecContext *avctx)
283 {
284  Vp3DecodeContext *s = avctx->priv_data;
285 
286  if (s->golden_frame.f)
288  if (s->last_frame.f)
290  if (s->current_frame.f)
292 }
293 
295 {
296  Vp3DecodeContext *s = avctx->priv_data;
297  int i;
298 
299  free_tables(avctx);
301 
302  s->theora_tables = 0;
303 
304  /* release all frames */
305  vp3_decode_flush(avctx);
309 
310  if (avctx->internal->is_copy)
311  return 0;
312 
313  for (i = 0; i < 16; i++) {
314  ff_free_vlc(&s->dc_vlc[i]);
315  ff_free_vlc(&s->ac_vlc_1[i]);
316  ff_free_vlc(&s->ac_vlc_2[i]);
317  ff_free_vlc(&s->ac_vlc_3[i]);
318  ff_free_vlc(&s->ac_vlc_4[i]);
319  }
320 
325 
326  return 0;
327 }
328 
329 /**
330  * This function sets up all of the various blocks mappings:
331  * superblocks <-> fragments, macroblocks <-> fragments,
332  * superblocks <-> macroblocks
333  *
334  * @return 0 is successful; returns 1 if *anything* went wrong.
335  */
337 {
338  int sb_x, sb_y, plane;
339  int x, y, i, j = 0;
340 
341  for (plane = 0; plane < 3; plane++) {
342  int sb_width = plane ? s->c_superblock_width
343  : s->y_superblock_width;
344  int sb_height = plane ? s->c_superblock_height
345  : s->y_superblock_height;
346  int frag_width = s->fragment_width[!!plane];
347  int frag_height = s->fragment_height[!!plane];
348 
349  for (sb_y = 0; sb_y < sb_height; sb_y++)
350  for (sb_x = 0; sb_x < sb_width; sb_x++)
351  for (i = 0; i < 16; i++) {
352  x = 4 * sb_x + hilbert_offset[i][0];
353  y = 4 * sb_y + hilbert_offset[i][1];
354 
355  if (x < frag_width && y < frag_height)
356  s->superblock_fragments[j++] = s->fragment_start[plane] +
357  y * frag_width + x;
358  else
359  s->superblock_fragments[j++] = -1;
360  }
361  }
362 
363  return 0; /* successful path out */
364 }
365 
366 /*
367  * This function sets up the dequantization tables used for a particular
368  * frame.
369  */
370 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
371 {
372  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
373  int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
374  int i, plane, inter, qri, bmi, bmj, qistart;
375 
376  for (inter = 0; inter < 2; inter++) {
377  for (plane = 0; plane < 3; plane++) {
378  int sum = 0;
379  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
380  sum += s->qr_size[inter][plane][qri];
381  if (s->qps[qpi] <= sum)
382  break;
383  }
384  qistart = sum - s->qr_size[inter][plane][qri];
385  bmi = s->qr_base[inter][plane][qri];
386  bmj = s->qr_base[inter][plane][qri + 1];
387  for (i = 0; i < 64; i++) {
388  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
389  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
390  s->qr_size[inter][plane][qri]) /
391  (2 * s->qr_size[inter][plane][qri]);
392 
393  int qmin = 8 << (inter + !i);
394  int qscale = i ? ac_scale_factor : dc_scale_factor;
395 
396  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
397  av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
398  }
399  /* all DC coefficients use the same quant so as not to interfere
400  * with DC prediction */
401  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
402  }
403  }
404 }
405 
406 /*
407  * This function initializes the loop filter boundary limits if the frame's
408  * quality index is different from the previous frame's.
409  *
410  * The filter_limit_values may not be larger than 127.
411  */
413 {
414  int *bounding_values = s->bounding_values_array + 127;
415  int filter_limit;
416  int x;
417  int value;
418 
419  filter_limit = s->filter_limit_values[s->qps[0]];
420  av_assert0(filter_limit < 128U);
421 
422  /* set up the bounding values */
423  memset(s->bounding_values_array, 0, 256 * sizeof(int));
424  for (x = 0; x < filter_limit; x++) {
425  bounding_values[-x] = -x;
426  bounding_values[x] = x;
427  }
428  for (x = value = filter_limit; x < 128 && value; x++, value--) {
429  bounding_values[ x] = value;
430  bounding_values[-x] = -value;
431  }
432  if (value)
433  bounding_values[128] = value;
434  bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
435 }
436 
437 /*
438  * This function unpacks all of the superblock/macroblock/fragment coding
439  * information from the bitstream.
440  */
442 {
443  int superblock_starts[3] = {
445  };
446  int bit = 0;
447  int current_superblock = 0;
448  int current_run = 0;
449  int num_partial_superblocks = 0;
450 
451  int i, j;
452  int current_fragment;
453  int plane;
454 
455  if (s->keyframe) {
457  } else {
458  /* unpack the list of partially-coded superblocks */
459  bit = get_bits1(gb) ^ 1;
460  current_run = 0;
461 
462  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
463  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
464  bit = get_bits1(gb);
465  else
466  bit ^= 1;
467 
468  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
469  6, 2) + 1;
470  if (current_run == 34)
471  current_run += get_bits(gb, 12);
472 
473  if (current_superblock + current_run > s->superblock_count) {
475  "Invalid partially coded superblock run length\n");
476  return -1;
477  }
478 
479  memset(s->superblock_coding + current_superblock, bit, current_run);
480 
481  current_superblock += current_run;
482  if (bit)
483  num_partial_superblocks += current_run;
484  }
485 
486  /* unpack the list of fully coded superblocks if any of the blocks were
487  * not marked as partially coded in the previous step */
488  if (num_partial_superblocks < s->superblock_count) {
489  int superblocks_decoded = 0;
490 
491  current_superblock = 0;
492  bit = get_bits1(gb) ^ 1;
493  current_run = 0;
494 
495  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
496  get_bits_left(gb) > 0) {
497  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
498  bit = get_bits1(gb);
499  else
500  bit ^= 1;
501 
502  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
503  6, 2) + 1;
504  if (current_run == 34)
505  current_run += get_bits(gb, 12);
506 
507  for (j = 0; j < current_run; current_superblock++) {
508  if (current_superblock >= s->superblock_count) {
510  "Invalid fully coded superblock run length\n");
511  return -1;
512  }
513 
514  /* skip any superblocks already marked as partially coded */
515  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
516  s->superblock_coding[current_superblock] = 2 * bit;
517  j++;
518  }
519  }
520  superblocks_decoded += current_run;
521  }
522  }
523 
524  /* if there were partial blocks, initialize bitstream for
525  * unpacking fragment codings */
526  if (num_partial_superblocks) {
527  current_run = 0;
528  bit = get_bits1(gb);
529  /* toggle the bit because as soon as the first run length is
530  * fetched the bit will be toggled again */
531  bit ^= 1;
532  }
533  }
534 
535  /* figure out which fragments are coded; iterate through each
536  * superblock (all planes) */
537  s->total_num_coded_frags = 0;
539 
540  for (plane = 0; plane < 3; plane++) {
541  int sb_start = superblock_starts[plane];
542  int sb_end = sb_start + (plane ? s->c_superblock_count
543  : s->y_superblock_count);
544  int num_coded_frags = 0;
545 
546  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
547  /* iterate through all 16 fragments in a superblock */
548  for (j = 0; j < 16; j++) {
549  /* if the fragment is in bounds, check its coding status */
550  current_fragment = s->superblock_fragments[i * 16 + j];
551  if (current_fragment != -1) {
552  int coded = s->superblock_coding[i];
553 
554  if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
555  /* fragment may or may not be coded; this is the case
556  * that cares about the fragment coding runs */
557  if (current_run-- == 0) {
558  bit ^= 1;
559  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
560  }
561  coded = bit;
562  }
563 
564  if (coded) {
565  /* default mode; actual mode will be decoded in
566  * the next phase */
567  s->all_fragments[current_fragment].coding_method =
569  s->coded_fragment_list[plane][num_coded_frags++] =
570  current_fragment;
571  } else {
572  /* not coded; copy this fragment from the prior frame */
573  s->all_fragments[current_fragment].coding_method =
574  MODE_COPY;
575  }
576  }
577  }
578  }
579  s->total_num_coded_frags += num_coded_frags;
580  for (i = 0; i < 64; i++)
581  s->num_coded_frags[plane][i] = num_coded_frags;
582  if (plane < 2)
583  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
584  num_coded_frags;
585  }
586  return 0;
587 }
588 
589 /*
590  * This function unpacks all the coding mode data for individual macroblocks
591  * from the bitstream.
592  */
594 {
595  int i, j, k, sb_x, sb_y;
596  int scheme;
597  int current_macroblock;
598  int current_fragment;
599  int coding_mode;
600  int custom_mode_alphabet[CODING_MODE_COUNT];
601  const int *alphabet;
602  Vp3Fragment *frag;
603 
604  if (s->keyframe) {
605  for (i = 0; i < s->fragment_count; i++)
607  } else {
608  /* fetch the mode coding scheme for this frame */
609  scheme = get_bits(gb, 3);
610 
611  /* is it a custom coding scheme? */
612  if (scheme == 0) {
613  for (i = 0; i < 8; i++)
614  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
615  for (i = 0; i < 8; i++)
616  custom_mode_alphabet[get_bits(gb, 3)] = i;
617  alphabet = custom_mode_alphabet;
618  } else
619  alphabet = ModeAlphabet[scheme - 1];
620 
621  /* iterate through all of the macroblocks that contain 1 or more
622  * coded fragments */
623  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
624  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
625  if (get_bits_left(gb) <= 0)
626  return -1;
627 
628  for (j = 0; j < 4; j++) {
629  int mb_x = 2 * sb_x + (j >> 1);
630  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
631  current_macroblock = mb_y * s->macroblock_width + mb_x;
632 
633  if (mb_x >= s->macroblock_width ||
634  mb_y >= s->macroblock_height)
635  continue;
636 
637 #define BLOCK_X (2 * mb_x + (k & 1))
638 #define BLOCK_Y (2 * mb_y + (k >> 1))
639  /* coding modes are only stored if the macroblock has
640  * at least one luma block coded, otherwise it must be
641  * INTER_NO_MV */
642  for (k = 0; k < 4; k++) {
643  current_fragment = BLOCK_Y *
644  s->fragment_width[0] + BLOCK_X;
645  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
646  break;
647  }
648  if (k == 4) {
649  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
650  continue;
651  }
652 
653  /* mode 7 means get 3 bits for each coding mode */
654  if (scheme == 7)
655  coding_mode = get_bits(gb, 3);
656  else
657  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
658 
659  s->macroblock_coding[current_macroblock] = coding_mode;
660  for (k = 0; k < 4; k++) {
661  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
662  if (frag->coding_method != MODE_COPY)
663  frag->coding_method = coding_mode;
664  }
665 
666 #define SET_CHROMA_MODES \
667  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
668  frag[s->fragment_start[1]].coding_method = coding_mode; \
669  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
670  frag[s->fragment_start[2]].coding_method = coding_mode;
671 
672  if (s->chroma_y_shift) {
673  frag = s->all_fragments + mb_y *
674  s->fragment_width[1] + mb_x;
676  } else if (s->chroma_x_shift) {
677  frag = s->all_fragments +
678  2 * mb_y * s->fragment_width[1] + mb_x;
679  for (k = 0; k < 2; k++) {
681  frag += s->fragment_width[1];
682  }
683  } else {
684  for (k = 0; k < 4; k++) {
685  frag = s->all_fragments +
686  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
688  }
689  }
690  }
691  }
692  }
693  }
694 
695  return 0;
696 }
697 
698 /*
699  * This function unpacks all the motion vectors for the individual
700  * macroblocks from the bitstream.
701  */
703 {
704  int j, k, sb_x, sb_y;
705  int coding_mode;
706  int motion_x[4];
707  int motion_y[4];
708  int last_motion_x = 0;
709  int last_motion_y = 0;
710  int prior_last_motion_x = 0;
711  int prior_last_motion_y = 0;
712  int current_macroblock;
713  int current_fragment;
714  int frag;
715 
716  if (s->keyframe)
717  return 0;
718 
719  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
720  coding_mode = get_bits1(gb);
721 
722  /* iterate through all of the macroblocks that contain 1 or more
723  * coded fragments */
724  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
725  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
726  if (get_bits_left(gb) <= 0)
727  return -1;
728 
729  for (j = 0; j < 4; j++) {
730  int mb_x = 2 * sb_x + (j >> 1);
731  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
732  current_macroblock = mb_y * s->macroblock_width + mb_x;
733 
734  if (mb_x >= s->macroblock_width ||
735  mb_y >= s->macroblock_height ||
736  s->macroblock_coding[current_macroblock] == MODE_COPY)
737  continue;
738 
739  switch (s->macroblock_coding[current_macroblock]) {
740  case MODE_INTER_PLUS_MV:
741  case MODE_GOLDEN_MV:
742  /* all 6 fragments use the same motion vector */
743  if (coding_mode == 0) {
744  motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
745  motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
746  } else {
747  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
748  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
749  }
750 
751  /* vector maintenance, only on MODE_INTER_PLUS_MV */
752  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
753  prior_last_motion_x = last_motion_x;
754  prior_last_motion_y = last_motion_y;
755  last_motion_x = motion_x[0];
756  last_motion_y = motion_y[0];
757  }
758  break;
759 
760  case MODE_INTER_FOURMV:
761  /* vector maintenance */
762  prior_last_motion_x = last_motion_x;
763  prior_last_motion_y = last_motion_y;
764 
765  /* fetch 4 vectors from the bitstream, one for each
766  * Y fragment, then average for the C fragment vectors */
767  for (k = 0; k < 4; k++) {
768  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
769  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
770  if (coding_mode == 0) {
771  motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
772  motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
773  } else {
774  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
775  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
776  }
777  last_motion_x = motion_x[k];
778  last_motion_y = motion_y[k];
779  } else {
780  motion_x[k] = 0;
781  motion_y[k] = 0;
782  }
783  }
784  break;
785 
786  case MODE_INTER_LAST_MV:
787  /* all 6 fragments use the last motion vector */
788  motion_x[0] = last_motion_x;
789  motion_y[0] = last_motion_y;
790 
791  /* no vector maintenance (last vector remains the
792  * last vector) */
793  break;
794 
796  /* all 6 fragments use the motion vector prior to the
797  * last motion vector */
798  motion_x[0] = prior_last_motion_x;
799  motion_y[0] = prior_last_motion_y;
800 
801  /* vector maintenance */
802  prior_last_motion_x = last_motion_x;
803  prior_last_motion_y = last_motion_y;
804  last_motion_x = motion_x[0];
805  last_motion_y = motion_y[0];
806  break;
807 
808  default:
809  /* covers intra, inter without MV, golden without MV */
810  motion_x[0] = 0;
811  motion_y[0] = 0;
812 
813  /* no vector maintenance */
814  break;
815  }
816 
817  /* assign the motion vectors to the correct fragments */
818  for (k = 0; k < 4; k++) {
819  current_fragment =
820  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
821  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
822  s->motion_val[0][current_fragment][0] = motion_x[k];
823  s->motion_val[0][current_fragment][1] = motion_y[k];
824  } else {
825  s->motion_val[0][current_fragment][0] = motion_x[0];
826  s->motion_val[0][current_fragment][1] = motion_y[0];
827  }
828  }
829 
830  if (s->chroma_y_shift) {
831  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
832  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
833  motion_x[2] + motion_x[3], 2);
834  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
835  motion_y[2] + motion_y[3], 2);
836  }
837  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
838  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
839  frag = mb_y * s->fragment_width[1] + mb_x;
840  s->motion_val[1][frag][0] = motion_x[0];
841  s->motion_val[1][frag][1] = motion_y[0];
842  } else if (s->chroma_x_shift) {
843  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
844  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
845  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
846  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
847  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
848  } else {
849  motion_x[1] = motion_x[0];
850  motion_y[1] = motion_y[0];
851  }
852  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
853  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
854 
855  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
856  for (k = 0; k < 2; k++) {
857  s->motion_val[1][frag][0] = motion_x[k];
858  s->motion_val[1][frag][1] = motion_y[k];
859  frag += s->fragment_width[1];
860  }
861  } else {
862  for (k = 0; k < 4; k++) {
863  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
864  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
865  s->motion_val[1][frag][0] = motion_x[k];
866  s->motion_val[1][frag][1] = motion_y[k];
867  } else {
868  s->motion_val[1][frag][0] = motion_x[0];
869  s->motion_val[1][frag][1] = motion_y[0];
870  }
871  }
872  }
873  }
874  }
875  }
876 
877  return 0;
878 }
879 
881 {
882  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
883  int num_blocks = s->total_num_coded_frags;
884 
885  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
886  i = blocks_decoded = num_blocks_at_qpi = 0;
887 
888  bit = get_bits1(gb) ^ 1;
889  run_length = 0;
890 
891  do {
892  if (run_length == MAXIMUM_LONG_BIT_RUN)
893  bit = get_bits1(gb);
894  else
895  bit ^= 1;
896 
897  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
898  if (run_length == 34)
899  run_length += get_bits(gb, 12);
900  blocks_decoded += run_length;
901 
902  if (!bit)
903  num_blocks_at_qpi += run_length;
904 
905  for (j = 0; j < run_length; i++) {
906  if (i >= s->total_num_coded_frags)
907  return -1;
908 
909  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
910  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
911  j++;
912  }
913  }
914  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
915 
916  num_blocks -= num_blocks_at_qpi;
917  }
918 
919  return 0;
920 }
921 
922 /*
923  * This function is called by unpack_dct_coeffs() to extract the VLCs from
924  * the bitstream. The VLCs encode tokens which are used to unpack DCT
925  * data. This function unpacks all the VLCs for either the Y plane or both
926  * C planes, and is called for DC coefficients or different AC coefficient
927  * levels (since different coefficient types require different VLC tables.
928  *
929  * This function returns a residual eob run. E.g, if a particular token gave
930  * instructions to EOB the next 5 fragments and there were only 2 fragments
931  * left in the current fragment range, 3 would be returned so that it could
932  * be passed into the next call to this same function.
933  */
935  VLC *table, int coeff_index,
936  int plane,
937  int eob_run)
938 {
939  int i, j = 0;
940  int token;
941  int zero_run = 0;
942  int16_t coeff = 0;
943  int bits_to_get;
944  int blocks_ended;
945  int coeff_i = 0;
946  int num_coeffs = s->num_coded_frags[plane][coeff_index];
947  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
948 
949  /* local references to structure members to avoid repeated deferences */
950  int *coded_fragment_list = s->coded_fragment_list[plane];
951  Vp3Fragment *all_fragments = s->all_fragments;
952  VLC_TYPE(*vlc_table)[2] = table->table;
953 
954  if (num_coeffs < 0)
956  "Invalid number of coefficents at level %d\n", coeff_index);
957 
958  if (eob_run > num_coeffs) {
959  coeff_i =
960  blocks_ended = num_coeffs;
961  eob_run -= num_coeffs;
962  } else {
963  coeff_i =
964  blocks_ended = eob_run;
965  eob_run = 0;
966  }
967 
968  // insert fake EOB token to cover the split between planes or zzi
969  if (blocks_ended)
970  dct_tokens[j++] = blocks_ended << 2;
971 
972  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
973  /* decode a VLC into a token */
974  token = get_vlc2(gb, vlc_table, 11, 3);
975  /* use the token to get a zero run, a coefficient, and an eob run */
976  if ((unsigned) token <= 6U) {
977  eob_run = eob_run_base[token];
978  if (eob_run_get_bits[token])
979  eob_run += get_bits(gb, eob_run_get_bits[token]);
980 
981  // record only the number of blocks ended in this plane,
982  // any spill will be recorded in the next plane.
983  if (eob_run > num_coeffs - coeff_i) {
984  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
985  blocks_ended += num_coeffs - coeff_i;
986  eob_run -= num_coeffs - coeff_i;
987  coeff_i = num_coeffs;
988  } else {
989  dct_tokens[j++] = TOKEN_EOB(eob_run);
990  blocks_ended += eob_run;
991  coeff_i += eob_run;
992  eob_run = 0;
993  }
994  } else if (token >= 0) {
995  bits_to_get = coeff_get_bits[token];
996  if (bits_to_get)
997  bits_to_get = get_bits(gb, bits_to_get);
998  coeff = coeff_tables[token][bits_to_get];
999 
1000  zero_run = zero_run_base[token];
1001  if (zero_run_get_bits[token])
1002  zero_run += get_bits(gb, zero_run_get_bits[token]);
1003 
1004  if (zero_run) {
1005  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1006  } else {
1007  // Save DC into the fragment structure. DC prediction is
1008  // done in raster order, so the actual DC can't be in with
1009  // other tokens. We still need the token in dct_tokens[]
1010  // however, or else the structure collapses on itself.
1011  if (!coeff_index)
1012  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1013 
1014  dct_tokens[j++] = TOKEN_COEFF(coeff);
1015  }
1016 
1017  if (coeff_index + zero_run > 64) {
1019  "Invalid zero run of %d with %d coeffs left\n",
1020  zero_run, 64 - coeff_index);
1021  zero_run = 64 - coeff_index;
1022  }
1023 
1024  // zero runs code multiple coefficients,
1025  // so don't try to decode coeffs for those higher levels
1026  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1027  s->num_coded_frags[plane][i]--;
1028  coeff_i++;
1029  } else {
1030  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1031  return -1;
1032  }
1033  }
1034 
1035  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1036  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1037 
1038  // decrement the number of blocks that have higher coefficients for each
1039  // EOB run at this level
1040  if (blocks_ended)
1041  for (i = coeff_index + 1; i < 64; i++)
1042  s->num_coded_frags[plane][i] -= blocks_ended;
1043 
1044  // setup the next buffer
1045  if (plane < 2)
1046  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1047  else if (coeff_index < 63)
1048  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1049 
1050  return eob_run;
1051 }
1052 
1054  int first_fragment,
1055  int fragment_width,
1056  int fragment_height);
1057 /*
1058  * This function unpacks all of the DCT coefficient data from the
1059  * bitstream.
1060  */
1062 {
1063  int i;
1064  int dc_y_table;
1065  int dc_c_table;
1066  int ac_y_table;
1067  int ac_c_table;
1068  int residual_eob_run = 0;
1069  VLC *y_tables[64];
1070  VLC *c_tables[64];
1071 
1072  s->dct_tokens[0][0] = s->dct_tokens_base;
1073 
1074  /* fetch the DC table indexes */
1075  dc_y_table = get_bits(gb, 4);
1076  dc_c_table = get_bits(gb, 4);
1077 
1078  /* unpack the Y plane DC coefficients */
1079  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1080  0, residual_eob_run);
1081  if (residual_eob_run < 0)
1082  return residual_eob_run;
1083 
1084  /* reverse prediction of the Y-plane DC coefficients */
1086 
1087  /* unpack the C plane DC coefficients */
1088  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1089  1, residual_eob_run);
1090  if (residual_eob_run < 0)
1091  return residual_eob_run;
1092  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1093  2, residual_eob_run);
1094  if (residual_eob_run < 0)
1095  return residual_eob_run;
1096 
1097  /* reverse prediction of the C-plane DC coefficients */
1098  if (!(s->avctx->flags & CODEC_FLAG_GRAY)) {
1100  s->fragment_width[1], s->fragment_height[1]);
1102  s->fragment_width[1], s->fragment_height[1]);
1103  }
1104 
1105  /* fetch the AC table indexes */
1106  ac_y_table = get_bits(gb, 4);
1107  ac_c_table = get_bits(gb, 4);
1108 
1109  /* build tables of AC VLC tables */
1110  for (i = 1; i <= 5; i++) {
1111  y_tables[i] = &s->ac_vlc_1[ac_y_table];
1112  c_tables[i] = &s->ac_vlc_1[ac_c_table];
1113  }
1114  for (i = 6; i <= 14; i++) {
1115  y_tables[i] = &s->ac_vlc_2[ac_y_table];
1116  c_tables[i] = &s->ac_vlc_2[ac_c_table];
1117  }
1118  for (i = 15; i <= 27; i++) {
1119  y_tables[i] = &s->ac_vlc_3[ac_y_table];
1120  c_tables[i] = &s->ac_vlc_3[ac_c_table];
1121  }
1122  for (i = 28; i <= 63; i++) {
1123  y_tables[i] = &s->ac_vlc_4[ac_y_table];
1124  c_tables[i] = &s->ac_vlc_4[ac_c_table];
1125  }
1126 
1127  /* decode all AC coefficents */
1128  for (i = 1; i <= 63; i++) {
1129  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1130  0, residual_eob_run);
1131  if (residual_eob_run < 0)
1132  return residual_eob_run;
1133 
1134  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1135  1, residual_eob_run);
1136  if (residual_eob_run < 0)
1137  return residual_eob_run;
1138  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1139  2, residual_eob_run);
1140  if (residual_eob_run < 0)
1141  return residual_eob_run;
1142  }
1143 
1144  return 0;
1145 }
1146 
1147 /*
1148  * This function reverses the DC prediction for each coded fragment in
1149  * the frame. Much of this function is adapted directly from the original
1150  * VP3 source code.
1151  */
1152 #define COMPATIBLE_FRAME(x) \
1153  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1154 #define DC_COEFF(u) s->all_fragments[u].dc
1155 
1157  int first_fragment,
1158  int fragment_width,
1159  int fragment_height)
1160 {
1161 #define PUL 8
1162 #define PU 4
1163 #define PUR 2
1164 #define PL 1
1165 
1166  int x, y;
1167  int i = first_fragment;
1168 
1169  int predicted_dc;
1170 
1171  /* DC values for the left, up-left, up, and up-right fragments */
1172  int vl, vul, vu, vur;
1173 
1174  /* indexes for the left, up-left, up, and up-right fragments */
1175  int l, ul, u, ur;
1176 
1177  /*
1178  * The 6 fields mean:
1179  * 0: up-left multiplier
1180  * 1: up multiplier
1181  * 2: up-right multiplier
1182  * 3: left multiplier
1183  */
1184  static const int predictor_transform[16][4] = {
1185  { 0, 0, 0, 0 },
1186  { 0, 0, 0, 128 }, // PL
1187  { 0, 0, 128, 0 }, // PUR
1188  { 0, 0, 53, 75 }, // PUR|PL
1189  { 0, 128, 0, 0 }, // PU
1190  { 0, 64, 0, 64 }, // PU |PL
1191  { 0, 128, 0, 0 }, // PU |PUR
1192  { 0, 0, 53, 75 }, // PU |PUR|PL
1193  { 128, 0, 0, 0 }, // PUL
1194  { 0, 0, 0, 128 }, // PUL|PL
1195  { 64, 0, 64, 0 }, // PUL|PUR
1196  { 0, 0, 53, 75 }, // PUL|PUR|PL
1197  { 0, 128, 0, 0 }, // PUL|PU
1198  { -104, 116, 0, 116 }, // PUL|PU |PL
1199  { 24, 80, 24, 0 }, // PUL|PU |PUR
1200  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1201  };
1202 
1203  /* This table shows which types of blocks can use other blocks for
1204  * prediction. For example, INTRA is the only mode in this table to
1205  * have a frame number of 0. That means INTRA blocks can only predict
1206  * from other INTRA blocks. There are 2 golden frame coding types;
1207  * blocks encoding in these modes can only predict from other blocks
1208  * that were encoded with these 1 of these 2 modes. */
1209  static const unsigned char compatible_frame[9] = {
1210  1, /* MODE_INTER_NO_MV */
1211  0, /* MODE_INTRA */
1212  1, /* MODE_INTER_PLUS_MV */
1213  1, /* MODE_INTER_LAST_MV */
1214  1, /* MODE_INTER_PRIOR_MV */
1215  2, /* MODE_USING_GOLDEN */
1216  2, /* MODE_GOLDEN_MV */
1217  1, /* MODE_INTER_FOUR_MV */
1218  3 /* MODE_COPY */
1219  };
1220  int current_frame_type;
1221 
1222  /* there is a last DC predictor for each of the 3 frame types */
1223  short last_dc[3];
1224 
1225  int transform = 0;
1226 
1227  vul =
1228  vu =
1229  vur =
1230  vl = 0;
1231  last_dc[0] =
1232  last_dc[1] =
1233  last_dc[2] = 0;
1234 
1235  /* for each fragment row... */
1236  for (y = 0; y < fragment_height; y++) {
1237  /* for each fragment in a row... */
1238  for (x = 0; x < fragment_width; x++, i++) {
1239 
1240  /* reverse prediction if this block was coded */
1241  if (s->all_fragments[i].coding_method != MODE_COPY) {
1242  current_frame_type =
1243  compatible_frame[s->all_fragments[i].coding_method];
1244 
1245  transform = 0;
1246  if (x) {
1247  l = i - 1;
1248  vl = DC_COEFF(l);
1249  if (COMPATIBLE_FRAME(l))
1250  transform |= PL;
1251  }
1252  if (y) {
1253  u = i - fragment_width;
1254  vu = DC_COEFF(u);
1255  if (COMPATIBLE_FRAME(u))
1256  transform |= PU;
1257  if (x) {
1258  ul = i - fragment_width - 1;
1259  vul = DC_COEFF(ul);
1260  if (COMPATIBLE_FRAME(ul))
1261  transform |= PUL;
1262  }
1263  if (x + 1 < fragment_width) {
1264  ur = i - fragment_width + 1;
1265  vur = DC_COEFF(ur);
1266  if (COMPATIBLE_FRAME(ur))
1267  transform |= PUR;
1268  }
1269  }
1270 
1271  if (transform == 0) {
1272  /* if there were no fragments to predict from, use last
1273  * DC saved */
1274  predicted_dc = last_dc[current_frame_type];
1275  } else {
1276  /* apply the appropriate predictor transform */
1277  predicted_dc =
1278  (predictor_transform[transform][0] * vul) +
1279  (predictor_transform[transform][1] * vu) +
1280  (predictor_transform[transform][2] * vur) +
1281  (predictor_transform[transform][3] * vl);
1282 
1283  predicted_dc /= 128;
1284 
1285  /* check for outranging on the [ul u l] and
1286  * [ul u ur l] predictors */
1287  if ((transform == 15) || (transform == 13)) {
1288  if (FFABS(predicted_dc - vu) > 128)
1289  predicted_dc = vu;
1290  else if (FFABS(predicted_dc - vl) > 128)
1291  predicted_dc = vl;
1292  else if (FFABS(predicted_dc - vul) > 128)
1293  predicted_dc = vul;
1294  }
1295  }
1296 
1297  /* at long last, apply the predictor */
1298  DC_COEFF(i) += predicted_dc;
1299  /* save the DC */
1300  last_dc[current_frame_type] = DC_COEFF(i);
1301  }
1302  }
1303  }
1304 }
1305 
1306 static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1307  int ystart, int yend)
1308 {
1309  int x, y;
1310  int *bounding_values = s->bounding_values_array + 127;
1311 
1312  int width = s->fragment_width[!!plane];
1313  int height = s->fragment_height[!!plane];
1314  int fragment = s->fragment_start[plane] + ystart * width;
1315  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1316  uint8_t *plane_data = s->current_frame.f->data[plane];
1317  if (!s->flipped_image)
1318  stride = -stride;
1319  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1320 
1321  for (y = ystart; y < yend; y++) {
1322  for (x = 0; x < width; x++) {
1323  /* This code basically just deblocks on the edges of coded blocks.
1324  * However, it has to be much more complicated because of the
1325  * braindamaged deblock ordering used in VP3/Theora. Order matters
1326  * because some pixels get filtered twice. */
1327  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1328  /* do not perform left edge filter for left columns frags */
1329  if (x > 0) {
1330  s->vp3dsp.h_loop_filter(
1331  plane_data + 8 * x,
1332  stride, bounding_values);
1333  }
1334 
1335  /* do not perform top edge filter for top row fragments */
1336  if (y > 0) {
1337  s->vp3dsp.v_loop_filter(
1338  plane_data + 8 * x,
1339  stride, bounding_values);
1340  }
1341 
1342  /* do not perform right edge filter for right column
1343  * fragments or if right fragment neighbor is also coded
1344  * in this frame (it will be filtered in next iteration) */
1345  if ((x < width - 1) &&
1346  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1347  s->vp3dsp.h_loop_filter(
1348  plane_data + 8 * x + 8,
1349  stride, bounding_values);
1350  }
1351 
1352  /* do not perform bottom edge filter for bottom row
1353  * fragments or if bottom fragment neighbor is also coded
1354  * in this frame (it will be filtered in the next row) */
1355  if ((y < height - 1) &&
1356  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1357  s->vp3dsp.v_loop_filter(
1358  plane_data + 8 * x + 8 * stride,
1359  stride, bounding_values);
1360  }
1361  }
1362 
1363  fragment++;
1364  }
1365  plane_data += 8 * stride;
1366  }
1367 }
1368 
1369 /**
1370  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1371  * for the next block in coding order
1372  */
1373 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1374  int plane, int inter, int16_t block[64])
1375 {
1376  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1377  uint8_t *perm = s->idct_scantable;
1378  int i = 0;
1379 
1380  do {
1381  int token = *s->dct_tokens[plane][i];
1382  switch (token & 3) {
1383  case 0: // EOB
1384  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1385  s->dct_tokens[plane][i]++;
1386  else
1387  *s->dct_tokens[plane][i] = token & ~3;
1388  goto end;
1389  case 1: // zero run
1390  s->dct_tokens[plane][i]++;
1391  i += (token >> 2) & 0x7f;
1392  if (i > 63) {
1393  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1394  return i;
1395  }
1396  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1397  i++;
1398  break;
1399  case 2: // coeff
1400  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1401  s->dct_tokens[plane][i++]++;
1402  break;
1403  default: // shouldn't happen
1404  return i;
1405  }
1406  } while (i < 64);
1407  // return value is expected to be a valid level
1408  i--;
1409 end:
1410  // the actual DC+prediction is in the fragment structure
1411  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1412  return i;
1413 }
1414 
1415 /**
1416  * called when all pixels up to row y are complete
1417  */
1419 {
1420  int h, cy, i;
1422 
1423  if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
1424  int y_flipped = s->flipped_image ? s->height - y : y;
1425 
1426  /* At the end of the frame, report INT_MAX instead of the height of
1427  * the frame. This makes the other threads' ff_thread_await_progress()
1428  * calls cheaper, because they don't have to clip their values. */
1430  y_flipped == s->height ? INT_MAX
1431  : y_flipped - 1,
1432  0);
1433  }
1434 
1435  if (!s->avctx->draw_horiz_band)
1436  return;
1437 
1438  h = y - s->last_slice_end;
1439  s->last_slice_end = y;
1440  y -= h;
1441 
1442  if (!s->flipped_image)
1443  y = s->height - y - h;
1444 
1445  cy = y >> s->chroma_y_shift;
1446  offset[0] = s->current_frame.f->linesize[0] * y;
1447  offset[1] = s->current_frame.f->linesize[1] * cy;
1448  offset[2] = s->current_frame.f->linesize[2] * cy;
1449  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1450  offset[i] = 0;
1451 
1452  emms_c();
1453  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1454 }
1455 
1456 /**
1457  * Wait for the reference frame of the current fragment.
1458  * The progress value is in luma pixel rows.
1459  */
1461  int motion_y, int y)
1462 {
1464  int ref_row;
1465  int border = motion_y & 1;
1466 
1467  if (fragment->coding_method == MODE_USING_GOLDEN ||
1468  fragment->coding_method == MODE_GOLDEN_MV)
1469  ref_frame = &s->golden_frame;
1470  else
1471  ref_frame = &s->last_frame;
1472 
1473  ref_row = y + (motion_y >> 1);
1474  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1475 
1476  ff_thread_await_progress(ref_frame, ref_row, 0);
1477 }
1478 
1479 /*
1480  * Perform the final rendering for a particular slice of data.
1481  * The slice number ranges from 0..(c_superblock_height - 1).
1482  */
1483 static void render_slice(Vp3DecodeContext *s, int slice)
1484 {
1485  int x, y, i, j, fragment;
1486  int16_t *block = s->block;
1487  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1488  int motion_halfpel_index;
1489  uint8_t *motion_source;
1490  int plane, first_pixel;
1491 
1492  if (slice >= s->c_superblock_height)
1493  return;
1494 
1495  for (plane = 0; plane < 3; plane++) {
1496  uint8_t *output_plane = s->current_frame.f->data[plane] +
1497  s->data_offset[plane];
1498  uint8_t *last_plane = s->last_frame.f->data[plane] +
1499  s->data_offset[plane];
1500  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
1501  s->data_offset[plane];
1502  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1503  int plane_width = s->width >> (plane && s->chroma_x_shift);
1504  int plane_height = s->height >> (plane && s->chroma_y_shift);
1505  int8_t(*motion_val)[2] = s->motion_val[!!plane];
1506 
1507  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1508  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1509  int slice_width = plane ? s->c_superblock_width
1510  : s->y_superblock_width;
1511 
1512  int fragment_width = s->fragment_width[!!plane];
1513  int fragment_height = s->fragment_height[!!plane];
1514  int fragment_start = s->fragment_start[plane];
1515 
1516  int do_await = !plane && HAVE_THREADS &&
1518 
1519  if (!s->flipped_image)
1520  stride = -stride;
1521  if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1522  continue;
1523 
1524  /* for each superblock row in the slice (both of them)... */
1525  for (; sb_y < slice_height; sb_y++) {
1526  /* for each superblock in a row... */
1527  for (sb_x = 0; sb_x < slice_width; sb_x++) {
1528  /* for each block in a superblock... */
1529  for (j = 0; j < 16; j++) {
1530  x = 4 * sb_x + hilbert_offset[j][0];
1531  y = 4 * sb_y + hilbert_offset[j][1];
1532  fragment = y * fragment_width + x;
1533 
1534  i = fragment_start + fragment;
1535 
1536  // bounds check
1537  if (x >= fragment_width || y >= fragment_height)
1538  continue;
1539 
1540  first_pixel = 8 * y * stride + 8 * x;
1541 
1542  if (do_await &&
1545  motion_val[fragment][1],
1546  (16 * y) >> s->chroma_y_shift);
1547 
1548  /* transform if this block was coded */
1549  if (s->all_fragments[i].coding_method != MODE_COPY) {
1552  motion_source = golden_plane;
1553  else
1554  motion_source = last_plane;
1555 
1556  motion_source += first_pixel;
1557  motion_halfpel_index = 0;
1558 
1559  /* sort out the motion vector if this fragment is coded
1560  * using a motion vector method */
1561  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1563  int src_x, src_y;
1564  motion_x = motion_val[fragment][0];
1565  motion_y = motion_val[fragment][1];
1566 
1567  src_x = (motion_x >> 1) + 8 * x;
1568  src_y = (motion_y >> 1) + 8 * y;
1569 
1570  motion_halfpel_index = motion_x & 0x01;
1571  motion_source += (motion_x >> 1);
1572 
1573  motion_halfpel_index |= (motion_y & 0x01) << 1;
1574  motion_source += ((motion_y >> 1) * stride);
1575 
1576  if (src_x < 0 || src_y < 0 ||
1577  src_x + 9 >= plane_width ||
1578  src_y + 9 >= plane_height) {
1580  if (stride < 0)
1581  temp -= 8 * stride;
1582 
1583  s->vdsp.emulated_edge_mc(temp, motion_source,
1584  stride, stride,
1585  9, 9, src_x, src_y,
1586  plane_width,
1587  plane_height);
1588  motion_source = temp;
1589  }
1590  }
1591 
1592  /* first, take care of copying a block from either the
1593  * previous or the golden frame */
1594  if (s->all_fragments[i].coding_method != MODE_INTRA) {
1595  /* Note, it is possible to implement all MC cases
1596  * with put_no_rnd_pixels_l2 which would look more
1597  * like the VP3 source but this would be slower as
1598  * put_no_rnd_pixels_tab is better optimzed */
1599  if (motion_halfpel_index != 3) {
1600  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1601  output_plane + first_pixel,
1602  motion_source, stride, 8);
1603  } else {
1604  /* d is 0 if motion_x and _y have the same sign,
1605  * else -1 */
1606  int d = (motion_x ^ motion_y) >> 31;
1607  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
1608  motion_source - d,
1609  motion_source + stride + 1 + d,
1610  stride, 8);
1611  }
1612  }
1613 
1614  /* invert DCT and place (or add) in final output */
1615 
1616  if (s->all_fragments[i].coding_method == MODE_INTRA) {
1617  vp3_dequant(s, s->all_fragments + i,
1618  plane, 0, block);
1619  s->vp3dsp.idct_put(output_plane + first_pixel,
1620  stride,
1621  block);
1622  } else {
1623  if (vp3_dequant(s, s->all_fragments + i,
1624  plane, 1, block)) {
1625  s->vp3dsp.idct_add(output_plane + first_pixel,
1626  stride,
1627  block);
1628  } else {
1629  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
1630  stride, block);
1631  }
1632  }
1633  } else {
1634  /* copy directly from the previous frame */
1635  s->hdsp.put_pixels_tab[1][0](
1636  output_plane + first_pixel,
1637  last_plane + first_pixel,
1638  stride, 8);
1639  }
1640  }
1641  }
1642 
1643  // Filter up to the last row in the superblock row
1644  if (!s->skip_loop_filter)
1645  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
1646  FFMIN(4 * sb_y + 3, fragment_height - 1));
1647  }
1648  }
1649 
1650  /* this looks like a good place for slice dispatch... */
1651  /* algorithm:
1652  * if (slice == s->macroblock_height - 1)
1653  * dispatch (both last slice & 2nd-to-last slice);
1654  * else if (slice > 0)
1655  * dispatch (slice - 1);
1656  */
1657 
1658  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
1659  s->height - 16));
1660 }
1661 
1662 /// Allocate tables for per-frame data in Vp3DecodeContext
1664 {
1665  Vp3DecodeContext *s = avctx->priv_data;
1666  int y_fragment_count, c_fragment_count;
1667 
1668  free_tables(avctx);
1669 
1670  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1671  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1672 
1675 
1676  s->coded_fragment_list[0] = av_mallocz_array(s->fragment_count, sizeof(int));
1677 
1679  64 * sizeof(*s->dct_tokens_base));
1680  s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
1681  s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
1682 
1683  /* work out the block mapping tables */
1684  s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
1686 
1687  if (!s->superblock_coding || !s->all_fragments ||
1688  !s->dct_tokens_base || !s->coded_fragment_list[0] ||
1690  !s->motion_val[0] || !s->motion_val[1]) {
1691  vp3_decode_end(avctx);
1692  return -1;
1693  }
1694 
1695  init_block_mapping(s);
1696 
1697  return 0;
1698 }
1699 
1701 {
1703  s->last_frame.f = av_frame_alloc();
1704  s->golden_frame.f = av_frame_alloc();
1705 
1706  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
1708  av_frame_free(&s->last_frame.f);
1710  return AVERROR(ENOMEM);
1711  }
1712 
1713  return 0;
1714 }
1715 
1717 {
1718  Vp3DecodeContext *s = avctx->priv_data;
1719  int i, inter, plane, ret;
1720  int c_width;
1721  int c_height;
1722  int y_fragment_count, c_fragment_count;
1723 
1724  ret = init_frames(s);
1725  if (ret < 0)
1726  return ret;
1727 
1728  avctx->internal->allocate_progress = 1;
1729 
1730  if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
1731  s->version = 0;
1732  else
1733  s->version = 1;
1734 
1735  s->avctx = avctx;
1736  s->width = FFALIGN(avctx->coded_width, 16);
1737  s->height = FFALIGN(avctx->coded_height, 16);
1738  if (avctx->codec_id != AV_CODEC_ID_THEORA)
1739  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1742  ff_videodsp_init(&s->vdsp, 8);
1743  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1744 
1745  for (i = 0; i < 64; i++) {
1746 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
1747  s->idct_permutation[i] = TRANSPOSE(i);
1749 #undef TRANSPOSE
1750  }
1751 
1752  /* initialize to an impossible value which will force a recalculation
1753  * in the first frame decode */
1754  for (i = 0; i < 3; i++)
1755  s->qps[i] = -1;
1756 
1758 
1759  s->y_superblock_width = (s->width + 31) / 32;
1760  s->y_superblock_height = (s->height + 31) / 32;
1762 
1763  /* work out the dimensions for the C planes */
1764  c_width = s->width >> s->chroma_x_shift;
1765  c_height = s->height >> s->chroma_y_shift;
1766  s->c_superblock_width = (c_width + 31) / 32;
1767  s->c_superblock_height = (c_height + 31) / 32;
1769 
1773 
1774  s->macroblock_width = (s->width + 15) / 16;
1775  s->macroblock_height = (s->height + 15) / 16;
1777 
1778  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1779  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1780  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1781  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1782 
1783  /* fragment count covers all 8x8 blocks for all 3 planes */
1784  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1785  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1786  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
1787  s->fragment_start[1] = y_fragment_count;
1788  s->fragment_start[2] = y_fragment_count + c_fragment_count;
1789 
1790  if (!s->theora_tables) {
1791  for (i = 0; i < 64; i++) {
1794  s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1795  s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1796  s->base_matrix[2][i] = vp31_inter_dequant[i];
1798  }
1799 
1800  for (inter = 0; inter < 2; inter++) {
1801  for (plane = 0; plane < 3; plane++) {
1802  s->qr_count[inter][plane] = 1;
1803  s->qr_size[inter][plane][0] = 63;
1804  s->qr_base[inter][plane][0] =
1805  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
1806  }
1807  }
1808 
1809  /* init VLC tables */
1810  for (i = 0; i < 16; i++) {
1811  /* DC histograms */
1812  init_vlc(&s->dc_vlc[i], 11, 32,
1813  &dc_bias[i][0][1], 4, 2,
1814  &dc_bias[i][0][0], 4, 2, 0);
1815 
1816  /* group 1 AC histograms */
1817  init_vlc(&s->ac_vlc_1[i], 11, 32,
1818  &ac_bias_0[i][0][1], 4, 2,
1819  &ac_bias_0[i][0][0], 4, 2, 0);
1820 
1821  /* group 2 AC histograms */
1822  init_vlc(&s->ac_vlc_2[i], 11, 32,
1823  &ac_bias_1[i][0][1], 4, 2,
1824  &ac_bias_1[i][0][0], 4, 2, 0);
1825 
1826  /* group 3 AC histograms */
1827  init_vlc(&s->ac_vlc_3[i], 11, 32,
1828  &ac_bias_2[i][0][1], 4, 2,
1829  &ac_bias_2[i][0][0], 4, 2, 0);
1830 
1831  /* group 4 AC histograms */
1832  init_vlc(&s->ac_vlc_4[i], 11, 32,
1833  &ac_bias_3[i][0][1], 4, 2,
1834  &ac_bias_3[i][0][0], 4, 2, 0);
1835  }
1836  } else {
1837  for (i = 0; i < 16; i++) {
1838  /* DC histograms */
1839  if (init_vlc(&s->dc_vlc[i], 11, 32,
1840  &s->huffman_table[i][0][1], 8, 4,
1841  &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1842  goto vlc_fail;
1843 
1844  /* group 1 AC histograms */
1845  if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1846  &s->huffman_table[i + 16][0][1], 8, 4,
1847  &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
1848  goto vlc_fail;
1849 
1850  /* group 2 AC histograms */
1851  if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1852  &s->huffman_table[i + 16 * 2][0][1], 8, 4,
1853  &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
1854  goto vlc_fail;
1855 
1856  /* group 3 AC histograms */
1857  if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1858  &s->huffman_table[i + 16 * 3][0][1], 8, 4,
1859  &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
1860  goto vlc_fail;
1861 
1862  /* group 4 AC histograms */
1863  if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1864  &s->huffman_table[i + 16 * 4][0][1], 8, 4,
1865  &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
1866  goto vlc_fail;
1867  }
1868  }
1869 
1871  &superblock_run_length_vlc_table[0][1], 4, 2,
1872  &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1873 
1874  init_vlc(&s->fragment_run_length_vlc, 5, 30,
1875  &fragment_run_length_vlc_table[0][1], 4, 2,
1876  &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1877 
1878  init_vlc(&s->mode_code_vlc, 3, 8,
1879  &mode_code_vlc_table[0][1], 2, 1,
1880  &mode_code_vlc_table[0][0], 2, 1, 0);
1881 
1882  init_vlc(&s->motion_vector_vlc, 6, 63,
1883  &motion_vector_vlc_table[0][1], 2, 1,
1884  &motion_vector_vlc_table[0][0], 2, 1, 0);
1885 
1886  return allocate_tables(avctx);
1887 
1888 vlc_fail:
1889  av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1890  return -1;
1891 }
1892 
1893 /// Release and shuffle frames after decode finishes
1894 static int update_frames(AVCodecContext *avctx)
1895 {
1896  Vp3DecodeContext *s = avctx->priv_data;
1897  int ret = 0;
1898 
1899  /* shuffle frames (last = current) */
1902  if (ret < 0)
1903  goto fail;
1904 
1905  if (s->keyframe) {
1908  }
1909 
1910 fail:
1912  return ret;
1913 }
1914 
1916 {
1918  if (src->f->data[0])
1919  return ff_thread_ref_frame(dst, src);
1920  return 0;
1921 }
1922 
1924 {
1925  int ret;
1926  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
1927  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
1928  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
1929  return ret;
1930  return 0;
1931 }
1932 
1934 {
1935  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1936  int qps_changed = 0, i, err;
1937 
1938 #define copy_fields(to, from, start_field, end_field) \
1939  memcpy(&to->start_field, &from->start_field, \
1940  (char *) &to->end_field - (char *) &to->start_field)
1941 
1942  if (!s1->current_frame.f->data[0] ||
1943  s->width != s1->width || s->height != s1->height) {
1944  if (s != s1)
1945  ref_frames(s, s1);
1946  return -1;
1947  }
1948 
1949  if (s != s1) {
1950  // init tables if the first frame hasn't been decoded
1951  if (!s->current_frame.f->data[0]) {
1952  int y_fragment_count, c_fragment_count;
1953  s->avctx = dst;
1954  err = allocate_tables(dst);
1955  if (err)
1956  return err;
1957  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1958  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1959  memcpy(s->motion_val[0], s1->motion_val[0],
1960  y_fragment_count * sizeof(*s->motion_val[0]));
1961  memcpy(s->motion_val[1], s1->motion_val[1],
1962  c_fragment_count * sizeof(*s->motion_val[1]));
1963  }
1964 
1965  // copy previous frame data
1966  if ((err = ref_frames(s, s1)) < 0)
1967  return err;
1968 
1969  s->keyframe = s1->keyframe;
1970 
1971  // copy qscale data if necessary
1972  for (i = 0; i < 3; i++) {
1973  if (s->qps[i] != s1->qps[1]) {
1974  qps_changed = 1;
1975  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1976  }
1977  }
1978 
1979  if (s->qps[0] != s1->qps[0])
1980  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
1981  sizeof(s->bounding_values_array));
1982 
1983  if (qps_changed)
1984  copy_fields(s, s1, qps, superblock_count);
1985 #undef copy_fields
1986  }
1987 
1988  return update_frames(dst);
1989 }
1990 
1992  void *data, int *got_frame,
1993  AVPacket *avpkt)
1994 {
1995  const uint8_t *buf = avpkt->data;
1996  int buf_size = avpkt->size;
1997  Vp3DecodeContext *s = avctx->priv_data;
1998  GetBitContext gb;
1999  int i, ret;
2000 
2001  init_get_bits(&gb, buf, buf_size * 8);
2002 
2003 #if CONFIG_THEORA_DECODER
2004  if (s->theora && get_bits1(&gb)) {
2005  int type = get_bits(&gb, 7);
2006  skip_bits_long(&gb, 6*8); /* "theora" */
2007 
2009  av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2010  return AVERROR_PATCHWELCOME;
2011  }
2012  if (type == 0) {
2013  vp3_decode_end(avctx);
2014  ret = theora_decode_header(avctx, &gb);
2015 
2016  if (ret < 0) {
2017  vp3_decode_end(avctx);
2018  } else
2019  ret = vp3_decode_init(avctx);
2020  return ret;
2021  } else if (type == 2) {
2022  ret = theora_decode_tables(avctx, &gb);
2023  if (ret < 0) {
2024  vp3_decode_end(avctx);
2025  } else
2026  ret = vp3_decode_init(avctx);
2027  return ret;
2028  }
2029 
2030  av_log(avctx, AV_LOG_ERROR,
2031  "Header packet passed to frame decoder, skipping\n");
2032  return -1;
2033  }
2034 #endif
2035 
2036  s->keyframe = !get_bits1(&gb);
2037  if (!s->all_fragments) {
2038  av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2039  return -1;
2040  }
2041  if (!s->theora)
2042  skip_bits(&gb, 1);
2043  for (i = 0; i < 3; i++)
2044  s->last_qps[i] = s->qps[i];
2045 
2046  s->nqps = 0;
2047  do {
2048  s->qps[s->nqps++] = get_bits(&gb, 6);
2049  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2050  for (i = s->nqps; i < 3; i++)
2051  s->qps[i] = -1;
2052 
2053  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2054  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2055  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2056 
2057  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2058  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2059  : AVDISCARD_NONKEY);
2060 
2061  if (s->qps[0] != s->last_qps[0])
2063 
2064  for (i = 0; i < s->nqps; i++)
2065  // reinit all dequantizers if the first one changed, because
2066  // the DC of the first quantizer must be used for all matrices
2067  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2068  init_dequantizer(s, i);
2069 
2070  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2071  return buf_size;
2072 
2073  s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
2075  s->current_frame.f->key_frame = s->keyframe;
2076  if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
2077  goto error;
2078 
2079  if (!s->edge_emu_buffer)
2080  s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
2081 
2082  if (s->keyframe) {
2083  if (!s->theora) {
2084  skip_bits(&gb, 4); /* width code */
2085  skip_bits(&gb, 4); /* height code */
2086  if (s->version) {
2087  s->version = get_bits(&gb, 5);
2088  if (avctx->frame_number == 0)
2089  av_log(s->avctx, AV_LOG_DEBUG,
2090  "VP version: %d\n", s->version);
2091  }
2092  }
2093  if (s->version || s->theora) {
2094  if (get_bits1(&gb))
2095  av_log(s->avctx, AV_LOG_ERROR,
2096  "Warning, unsupported keyframe coding type?!\n");
2097  skip_bits(&gb, 2); /* reserved? */
2098  }
2099  } else {
2100  if (!s->golden_frame.f->data[0]) {
2101  av_log(s->avctx, AV_LOG_WARNING,
2102  "vp3: first frame not a keyframe\n");
2103 
2104  s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
2105  if (ff_thread_get_buffer(avctx, &s->golden_frame,
2107  goto error;
2108  ff_thread_release_buffer(avctx, &s->last_frame);
2109  if ((ret = ff_thread_ref_frame(&s->last_frame,
2110  &s->golden_frame)) < 0)
2111  goto error;
2112  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2113  }
2114  }
2115 
2116  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2117  ff_thread_finish_setup(avctx);
2118 
2119  if (unpack_superblocks(s, &gb)) {
2120  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2121  goto error;
2122  }
2123  if (unpack_modes(s, &gb)) {
2124  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2125  goto error;
2126  }
2127  if (unpack_vectors(s, &gb)) {
2128  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2129  goto error;
2130  }
2131  if (unpack_block_qpis(s, &gb)) {
2132  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2133  goto error;
2134  }
2135  if (unpack_dct_coeffs(s, &gb)) {
2136  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2137  goto error;
2138  }
2139 
2140  for (i = 0; i < 3; i++) {
2141  int height = s->height >> (i && s->chroma_y_shift);
2142  if (s->flipped_image)
2143  s->data_offset[i] = 0;
2144  else
2145  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2146  }
2147 
2148  s->last_slice_end = 0;
2149  for (i = 0; i < s->c_superblock_height; i++)
2150  render_slice(s, i);
2151 
2152  // filter the last row
2153  for (i = 0; i < 3; i++) {
2154  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2155  apply_loop_filter(s, i, row, row + 1);
2156  }
2157  vp3_draw_horiz_band(s, s->height);
2158 
2159  /* output frame, offset as needed */
2160  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2161  return ret;
2162  for (i = 0; i < 3; i++) {
2163  AVFrame *dst = data;
2164  int off = (s->offset_x >> (i && s->chroma_y_shift)) +
2165  (s->offset_y >> (i && s->chroma_y_shift)) * dst->linesize[i];
2166  dst->data[i] += off;
2167  }
2168  *got_frame = 1;
2169 
2170  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2171  ret = update_frames(avctx);
2172  if (ret < 0)
2173  return ret;
2174  }
2175 
2176  return buf_size;
2177 
2178 error:
2179  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2180 
2181  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2182  av_frame_unref(s->current_frame.f);
2183 
2184  return -1;
2185 }
2186 
2188 {
2189  Vp3DecodeContext *s = avctx->priv_data;
2190 
2191  if (get_bits1(gb)) {
2192  int token;
2193  if (s->entries >= 32) { /* overflow */
2194  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2195  return -1;
2196  }
2197  token = get_bits(gb, 5);
2198  av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2199  s->hti, s->hbits, token, s->entries, s->huff_code_size);
2200  s->huffman_table[s->hti][token][0] = s->hbits;
2201  s->huffman_table[s->hti][token][1] = s->huff_code_size;
2202  s->entries++;
2203  } else {
2204  if (s->huff_code_size >= 32) { /* overflow */
2205  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2206  return -1;
2207  }
2208  s->huff_code_size++;
2209  s->hbits <<= 1;
2210  if (read_huffman_tree(avctx, gb))
2211  return -1;
2212  s->hbits |= 1;
2213  if (read_huffman_tree(avctx, gb))
2214  return -1;
2215  s->hbits >>= 1;
2216  s->huff_code_size--;
2217  }
2218  return 0;
2219 }
2220 
2222 {
2223  Vp3DecodeContext *s = avctx->priv_data;
2224 
2225  s->superblock_coding = NULL;
2226  s->all_fragments = NULL;
2227  s->coded_fragment_list[0] = NULL;
2228  s->dct_tokens_base = NULL;
2229  s->superblock_fragments = NULL;
2230  s->macroblock_coding = NULL;
2231  s->motion_val[0] = NULL;
2232  s->motion_val[1] = NULL;
2233  s->edge_emu_buffer = NULL;
2234 
2235  return init_frames(s);
2236 }
2237 
2238 #if CONFIG_THEORA_DECODER
2239 static const enum AVPixelFormat theora_pix_fmts[4] = {
2241 };
2242 
2243 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2244 {
2245  Vp3DecodeContext *s = avctx->priv_data;
2246  int visible_width, visible_height, colorspace;
2247  uint8_t offset_x = 0, offset_y = 0;
2248  int ret;
2249  AVRational fps, aspect;
2250 
2251  s->theora = get_bits_long(gb, 24);
2252  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2253 
2254  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2255  * but previous versions have the image flipped relative to vp3 */
2256  if (s->theora < 0x030200) {
2257  s->flipped_image = 1;
2258  av_log(avctx, AV_LOG_DEBUG,
2259  "Old (<alpha3) Theora bitstream, flipped image\n");
2260  }
2261 
2262  visible_width =
2263  s->width = get_bits(gb, 16) << 4;
2264  visible_height =
2265  s->height = get_bits(gb, 16) << 4;
2266 
2267  if (s->theora >= 0x030200) {
2268  visible_width = get_bits_long(gb, 24);
2269  visible_height = get_bits_long(gb, 24);
2270 
2271  offset_x = get_bits(gb, 8); /* offset x */
2272  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2273  }
2274 
2275  /* sanity check */
2276  if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
2277  visible_width + offset_x > s->width ||
2278  visible_height + offset_y > s->height) {
2279  av_log(s, AV_LOG_ERROR,
2280  "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2281  visible_width, visible_height, offset_x, offset_y,
2282  s->width, s->height);
2283  return AVERROR_INVALIDDATA;
2284  }
2285 
2286  fps.num = get_bits_long(gb, 32);
2287  fps.den = get_bits_long(gb, 32);
2288  if (fps.num && fps.den) {
2289  if (fps.num < 0 || fps.den < 0) {
2290  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2291  return AVERROR_INVALIDDATA;
2292  }
2293  av_reduce(&avctx->framerate.den, &avctx->framerate.num,
2294  fps.den, fps.num, 1 << 30);
2295  }
2296 
2297  aspect.num = get_bits_long(gb, 24);
2298  aspect.den = get_bits_long(gb, 24);
2299  if (aspect.num && aspect.den) {
2301  &avctx->sample_aspect_ratio.den,
2302  aspect.num, aspect.den, 1 << 30);
2303  ff_set_sar(avctx, avctx->sample_aspect_ratio);
2304  }
2305 
2306  if (s->theora < 0x030200)
2307  skip_bits(gb, 5); /* keyframe frequency force */
2308  colorspace = get_bits(gb, 8);
2309  skip_bits(gb, 24); /* bitrate */
2310 
2311  skip_bits(gb, 6); /* quality hint */
2312 
2313  if (s->theora >= 0x030200) {
2314  skip_bits(gb, 5); /* keyframe frequency force */
2315  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2316  if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2317  av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2318  return AVERROR_INVALIDDATA;
2319  }
2320  skip_bits(gb, 3); /* reserved */
2321  }
2322 
2323  ret = ff_set_dimensions(avctx, s->width, s->height);
2324  if (ret < 0)
2325  return ret;
2326  if (!(avctx->flags2 & CODEC_FLAG2_IGNORE_CROP)) {
2327  avctx->width = visible_width;
2328  avctx->height = visible_height;
2329  // translate offsets from theora axis ([0,0] lower left)
2330  // to normal axis ([0,0] upper left)
2331  s->offset_x = offset_x;
2332  s->offset_y = s->height - visible_height - offset_y;
2333 
2334  if ((s->offset_x & 0x1F) && !(avctx->flags & CODEC_FLAG_UNALIGNED)) {
2335  s->offset_x &= ~0x1F;
2336  if (!s->offset_x_warned) {
2337  s->offset_x_warned = 1;
2338  av_log(avctx, AV_LOG_WARNING, "Reducing offset_x from %d to %d"
2339  "chroma samples to preserve alignment.\n",
2340  offset_x, s->offset_x);
2341  }
2342  }
2343  }
2344 
2345  if (colorspace == 1)
2347  else if (colorspace == 2)
2349 
2350  if (colorspace == 1 || colorspace == 2) {
2351  avctx->colorspace = AVCOL_SPC_BT470BG;
2352  avctx->color_trc = AVCOL_TRC_BT709;
2353  }
2354 
2355  return 0;
2356 }
2357 
2358 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2359 {
2360  Vp3DecodeContext *s = avctx->priv_data;
2361  int i, n, matrices, inter, plane;
2362 
2363  if (s->theora >= 0x030200) {
2364  n = get_bits(gb, 3);
2365  /* loop filter limit values table */
2366  if (n)
2367  for (i = 0; i < 64; i++)
2368  s->filter_limit_values[i] = get_bits(gb, n);
2369  }
2370 
2371  if (s->theora >= 0x030200)
2372  n = get_bits(gb, 4) + 1;
2373  else
2374  n = 16;
2375  /* quality threshold table */
2376  for (i = 0; i < 64; i++)
2377  s->coded_ac_scale_factor[i] = get_bits(gb, n);
2378 
2379  if (s->theora >= 0x030200)
2380  n = get_bits(gb, 4) + 1;
2381  else
2382  n = 16;
2383  /* dc scale factor table */
2384  for (i = 0; i < 64; i++)
2385  s->coded_dc_scale_factor[i] = get_bits(gb, n);
2386 
2387  if (s->theora >= 0x030200)
2388  matrices = get_bits(gb, 9) + 1;
2389  else
2390  matrices = 3;
2391 
2392  if (matrices > 384) {
2393  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2394  return -1;
2395  }
2396 
2397  for (n = 0; n < matrices; n++)
2398  for (i = 0; i < 64; i++)
2399  s->base_matrix[n][i] = get_bits(gb, 8);
2400 
2401  for (inter = 0; inter <= 1; inter++) {
2402  for (plane = 0; plane <= 2; plane++) {
2403  int newqr = 1;
2404  if (inter || plane > 0)
2405  newqr = get_bits1(gb);
2406  if (!newqr) {
2407  int qtj, plj;
2408  if (inter && get_bits1(gb)) {
2409  qtj = 0;
2410  plj = plane;
2411  } else {
2412  qtj = (3 * inter + plane - 1) / 3;
2413  plj = (plane + 2) % 3;
2414  }
2415  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
2416  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
2417  sizeof(s->qr_size[0][0]));
2418  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
2419  sizeof(s->qr_base[0][0]));
2420  } else {
2421  int qri = 0;
2422  int qi = 0;
2423 
2424  for (;;) {
2425  i = get_bits(gb, av_log2(matrices - 1) + 1);
2426  if (i >= matrices) {
2427  av_log(avctx, AV_LOG_ERROR,
2428  "invalid base matrix index\n");
2429  return -1;
2430  }
2431  s->qr_base[inter][plane][qri] = i;
2432  if (qi >= 63)
2433  break;
2434  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
2435  s->qr_size[inter][plane][qri++] = i;
2436  qi += i;
2437  }
2438 
2439  if (qi > 63) {
2440  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2441  return -1;
2442  }
2443  s->qr_count[inter][plane] = qri;
2444  }
2445  }
2446  }
2447 
2448  /* Huffman tables */
2449  for (s->hti = 0; s->hti < 80; s->hti++) {
2450  s->entries = 0;
2451  s->huff_code_size = 1;
2452  if (!get_bits1(gb)) {
2453  s->hbits = 0;
2454  if (read_huffman_tree(avctx, gb))
2455  return -1;
2456  s->hbits = 1;
2457  if (read_huffman_tree(avctx, gb))
2458  return -1;
2459  }
2460  }
2461 
2462  s->theora_tables = 1;
2463 
2464  return 0;
2465 }
2466 
2467 static av_cold int theora_decode_init(AVCodecContext *avctx)
2468 {
2469  Vp3DecodeContext *s = avctx->priv_data;
2470  GetBitContext gb;
2471  int ptype;
2472  const uint8_t *header_start[3];
2473  int header_len[3];
2474  int i;
2475 
2476  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2477 
2478  s->theora = 1;
2479 
2480  if (!avctx->extradata_size) {
2481  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2482  return -1;
2483  }
2484 
2486  42, header_start, header_len) < 0) {
2487  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2488  return -1;
2489  }
2490 
2491  for (i = 0; i < 3; i++) {
2492  if (header_len[i] <= 0)
2493  continue;
2494  init_get_bits(&gb, header_start[i], header_len[i] * 8);
2495 
2496  ptype = get_bits(&gb, 8);
2497 
2498  if (!(ptype & 0x80)) {
2499  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2500 // return -1;
2501  }
2502 
2503  // FIXME: Check for this as well.
2504  skip_bits_long(&gb, 6 * 8); /* "theora" */
2505 
2506  switch (ptype) {
2507  case 0x80:
2508  if (theora_decode_header(avctx, &gb) < 0)
2509  return -1;
2510  break;
2511  case 0x81:
2512 // FIXME: is this needed? it breaks sometimes
2513 // theora_decode_comments(avctx, gb);
2514  break;
2515  case 0x82:
2516  if (theora_decode_tables(avctx, &gb))
2517  return -1;
2518  break;
2519  default:
2520  av_log(avctx, AV_LOG_ERROR,
2521  "Unknown Theora config packet: %d\n", ptype & ~0x80);
2522  break;
2523  }
2524  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
2525  av_log(avctx, AV_LOG_WARNING,
2526  "%d bits left in packet %X\n",
2527  8 * header_len[i] - get_bits_count(&gb), ptype);
2528  if (s->theora < 0x030200)
2529  break;
2530  }
2531 
2532  return vp3_decode_init(avctx);
2533 }
2534 
2535 AVCodec ff_theora_decoder = {
2536  .name = "theora",
2537  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2538  .type = AVMEDIA_TYPE_VIDEO,
2539  .id = AV_CODEC_ID_THEORA,
2540  .priv_data_size = sizeof(Vp3DecodeContext),
2541  .init = theora_decode_init,
2542  .close = vp3_decode_end,
2544  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2548  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2549 };
2550 #endif
2551 
2553  .name = "vp3",
2554  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2555  .type = AVMEDIA_TYPE_VIDEO,
2556  .id = AV_CODEC_ID_VP3,
2557  .priv_data_size = sizeof(Vp3DecodeContext),
2558  .init = vp3_decode_init,
2559  .close = vp3_decode_end,
2561  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2565  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2566 };