FFmpeg
vscale.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2015 Pedro Arthur <bygrandao@gmail.com>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 #include "swscale_internal.h"
21 
22 typedef struct VScalerContext
23 {
24  uint16_t *filter[2];
27  int isMMX;
28  void *pfn;
31 
32 
33 static int lum_planar_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
34 {
35  VScalerContext *inst = desc->instance;
36  int dstW = desc->dst->width;
37 
38  int first = FFMAX(1-inst->filter_size, inst->filter_pos[sliceY]);
39  int sp = first - desc->src->plane[0].sliceY;
40  int dp = sliceY - desc->dst->plane[0].sliceY;
41  uint8_t **src = desc->src->plane[0].line + sp;
42  uint8_t **dst = desc->dst->plane[0].line + dp;
43  uint16_t *filter = inst->filter[0] + (inst->isMMX ? 0 : sliceY * inst->filter_size);
44 
45  if (inst->filter_size == 1)
46  ((yuv2planar1_fn)inst->pfn)((const int16_t*)src[0], dst[0], dstW, c->lumDither8, 0);
47  else
48  ((yuv2planarX_fn)inst->pfn)(filter, inst->filter_size, (const int16_t**)src, dst[0], dstW, c->lumDither8, 0);
49 
50  if (desc->alpha) {
51  int sp = first - desc->src->plane[3].sliceY;
52  int dp = sliceY - desc->dst->plane[3].sliceY;
53  uint8_t **src = desc->src->plane[3].line + sp;
54  uint8_t **dst = desc->dst->plane[3].line + dp;
55  uint16_t *filter = inst->filter[1] + (inst->isMMX ? 0 : sliceY * inst->filter_size);
56 
57  if (inst->filter_size == 1)
58  ((yuv2planar1_fn)inst->pfn)((const int16_t*)src[0], dst[0], dstW, c->lumDither8, 0);
59  else
60  ((yuv2planarX_fn)inst->pfn)(filter, inst->filter_size, (const int16_t**)src, dst[0], dstW, c->lumDither8, 0);
61  }
62 
63  return 1;
64 }
65 
66 static int chr_planar_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
67 {
68  const int chrSkipMask = (1 << desc->dst->v_chr_sub_sample) - 1;
69  if (sliceY & chrSkipMask)
70  return 0;
71  else {
72  VScalerContext *inst = desc->instance;
73  int dstW = AV_CEIL_RSHIFT(desc->dst->width, desc->dst->h_chr_sub_sample);
74  int chrSliceY = sliceY >> desc->dst->v_chr_sub_sample;
75 
76  int first = FFMAX(1-inst->filter_size, inst->filter_pos[chrSliceY]);
77  int sp1 = first - desc->src->plane[1].sliceY;
78  int sp2 = first - desc->src->plane[2].sliceY;
79  int dp1 = chrSliceY - desc->dst->plane[1].sliceY;
80  int dp2 = chrSliceY - desc->dst->plane[2].sliceY;
81  uint8_t **src1 = desc->src->plane[1].line + sp1;
82  uint8_t **src2 = desc->src->plane[2].line + sp2;
83  uint8_t **dst1 = desc->dst->plane[1].line + dp1;
84  uint8_t **dst2 = desc->dst->plane[2].line + dp2;
85  uint16_t *filter = inst->filter[0] + (inst->isMMX ? 0 : chrSliceY * inst->filter_size);
86 
87  if (c->yuv2nv12cX) {
88  ((yuv2interleavedX_fn)inst->pfn)(c, filter, inst->filter_size, (const int16_t**)src1, (const int16_t**)src2, dst1[0], dstW);
89  } else if (inst->filter_size == 1) {
90  ((yuv2planar1_fn)inst->pfn)((const int16_t*)src1[0], dst1[0], dstW, c->chrDither8, 0);
91  ((yuv2planar1_fn)inst->pfn)((const int16_t*)src2[0], dst2[0], dstW, c->chrDither8, 3);
92  } else {
93  ((yuv2planarX_fn)inst->pfn)(filter, inst->filter_size, (const int16_t**)src1, dst1[0], dstW, c->chrDither8, 0);
94  ((yuv2planarX_fn)inst->pfn)(filter, inst->filter_size, (const int16_t**)src2, dst2[0], dstW, c->chrDither8, inst->isMMX ? (c->uv_offx2 >> 1) : 3);
95  }
96  }
97 
98  return 1;
99 }
100 
101 static int packed_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
102 {
103  VScalerContext *inst = desc->instance;
104  int dstW = desc->dst->width;
105  int chrSliceY = sliceY >> desc->dst->v_chr_sub_sample;
106 
107  int lum_fsize = inst[0].filter_size;
108  int chr_fsize = inst[1].filter_size;
109  uint16_t *lum_filter = inst[0].filter[0];
110  uint16_t *chr_filter = inst[1].filter[0];
111 
112  int firstLum = FFMAX(1-lum_fsize, inst[0].filter_pos[ sliceY]);
113  int firstChr = FFMAX(1-chr_fsize, inst[1].filter_pos[chrSliceY]);
114 
115  int sp0 = firstLum - desc->src->plane[0].sliceY;
116  int sp1 = firstChr - desc->src->plane[1].sliceY;
117  int sp2 = firstChr - desc->src->plane[2].sliceY;
118  int sp3 = firstLum - desc->src->plane[3].sliceY;
119  int dp = sliceY - desc->dst->plane[0].sliceY;
120  uint8_t **src0 = desc->src->plane[0].line + sp0;
121  uint8_t **src1 = desc->src->plane[1].line + sp1;
122  uint8_t **src2 = desc->src->plane[2].line + sp2;
123  uint8_t **src3 = desc->alpha ? desc->src->plane[3].line + sp3 : NULL;
124  uint8_t **dst = desc->dst->plane[0].line + dp;
125 
126 
127  if (c->yuv2packed1 && lum_fsize == 1 && chr_fsize == 1) { // unscaled RGB
128  ((yuv2packed1_fn)inst->pfn)(c, (const int16_t*)*src0, (const int16_t**)src1, (const int16_t**)src2,
129  (const int16_t*)(desc->alpha ? *src3 : NULL), *dst, dstW, 0, sliceY);
130  } else if (c->yuv2packed1 && lum_fsize == 1 && chr_fsize == 2 &&
131  chr_filter[2 * chrSliceY + 1] + chr_filter[2 * chrSliceY] == 4096 &&
132  chr_filter[2 * chrSliceY + 1] <= 4096U) { // unscaled RGB
133  int chrAlpha = chr_filter[2 * chrSliceY + 1];
134  ((yuv2packed1_fn)inst->pfn)(c, (const int16_t*)*src0, (const int16_t**)src1, (const int16_t**)src2,
135  (const int16_t*)(desc->alpha ? *src3 : NULL), *dst, dstW, chrAlpha, sliceY);
136  } else if (c->yuv2packed2 && lum_fsize == 2 && chr_fsize == 2 &&
137  lum_filter[2 * sliceY + 1] + lum_filter[2 * sliceY] == 4096 &&
138  lum_filter[2 * sliceY + 1] <= 4096U &&
139  chr_filter[2 * chrSliceY + 1] + chr_filter[2 * chrSliceY] == 4096 &&
140  chr_filter[2 * chrSliceY + 1] <= 4096U
141  ) { // bilinear upscale RGB
142  int lumAlpha = lum_filter[2 * sliceY + 1];
143  int chrAlpha = chr_filter[2 * chrSliceY + 1];
144  c->lumMmxFilter[2] =
145  c->lumMmxFilter[3] = lum_filter[2 * sliceY] * 0x10001;
146  c->chrMmxFilter[2] =
147  c->chrMmxFilter[3] = chr_filter[2 * chrSliceY] * 0x10001;
148  ((yuv2packed2_fn)inst->pfn)(c, (const int16_t**)src0, (const int16_t**)src1, (const int16_t**)src2, (const int16_t**)src3,
149  *dst, dstW, lumAlpha, chrAlpha, sliceY);
150  } else { // general RGB
151  if ((c->yuv2packed1 && lum_fsize == 1 && chr_fsize == 2) ||
152  (c->yuv2packed2 && lum_fsize == 2 && chr_fsize == 2)) {
154  av_log(c, AV_LOG_INFO, "Optimized 2 tap filter code cannot be used\n");
156  }
157 
158  inst->yuv2packedX(c, lum_filter + sliceY * lum_fsize,
159  (const int16_t**)src0, lum_fsize, chr_filter + chrSliceY * chr_fsize,
160  (const int16_t**)src1, (const int16_t**)src2, chr_fsize, (const int16_t**)src3, *dst, dstW, sliceY);
161  }
162  return 1;
163 }
164 
165 static int any_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
166 {
167  VScalerContext *inst = desc->instance;
168  int dstW = desc->dst->width;
169  int chrSliceY = sliceY >> desc->dst->v_chr_sub_sample;
170 
171  int lum_fsize = inst[0].filter_size;
172  int chr_fsize = inst[1].filter_size;
173  uint16_t *lum_filter = inst[0].filter[0];
174  uint16_t *chr_filter = inst[1].filter[0];
175 
176  int firstLum = FFMAX(1-lum_fsize, inst[0].filter_pos[ sliceY]);
177  int firstChr = FFMAX(1-chr_fsize, inst[1].filter_pos[chrSliceY]);
178 
179  int sp0 = firstLum - desc->src->plane[0].sliceY;
180  int sp1 = firstChr - desc->src->plane[1].sliceY;
181  int sp2 = firstChr - desc->src->plane[2].sliceY;
182  int sp3 = firstLum - desc->src->plane[3].sliceY;
183  int dp0 = sliceY - desc->dst->plane[0].sliceY;
184  int dp1 = chrSliceY - desc->dst->plane[1].sliceY;
185  int dp2 = chrSliceY - desc->dst->plane[2].sliceY;
186  int dp3 = sliceY - desc->dst->plane[3].sliceY;
187 
188  uint8_t **src0 = desc->src->plane[0].line + sp0;
189  uint8_t **src1 = desc->src->plane[1].line + sp1;
190  uint8_t **src2 = desc->src->plane[2].line + sp2;
191  uint8_t **src3 = desc->alpha ? desc->src->plane[3].line + sp3 : NULL;
192  uint8_t *dst[4] = { desc->dst->plane[0].line[dp0],
193  desc->dst->plane[1].line[dp1],
194  desc->dst->plane[2].line[dp2],
195  desc->alpha ? desc->dst->plane[3].line[dp3] : NULL };
196 
197  av_assert1(!c->yuv2packed1 && !c->yuv2packed2);
198  ((yuv2anyX_fn)inst->pfn)(c, lum_filter + sliceY * lum_fsize,
199  (const int16_t**)src0, lum_fsize, chr_filter + sliceY * chr_fsize,
200  (const int16_t**)src1, (const int16_t**)src2, chr_fsize, (const int16_t**)src3, dst, dstW, sliceY);
201 
202  return 1;
203 
204 }
205 
207 {
208  VScalerContext *lumCtx = NULL;
209  VScalerContext *chrCtx = NULL;
210 
211  if (isPlanarYUV(c->dstFormat) || (isGray(c->dstFormat) && !isALPHA(c->dstFormat))) {
212  lumCtx = av_mallocz(sizeof(VScalerContext));
213  if (!lumCtx)
214  return AVERROR(ENOMEM);
215 
216 
217  desc[0].process = lum_planar_vscale;
218  desc[0].instance = lumCtx;
219  desc[0].src = src;
220  desc[0].dst = dst;
221  desc[0].alpha = c->needAlpha;
222 
223  if (!isGray(c->dstFormat)) {
224  chrCtx = av_mallocz(sizeof(VScalerContext));
225  if (!chrCtx)
226  return AVERROR(ENOMEM);
227  desc[1].process = chr_planar_vscale;
228  desc[1].instance = chrCtx;
229  desc[1].src = src;
230  desc[1].dst = dst;
231  }
232  } else {
233  lumCtx = av_mallocz_array(sizeof(VScalerContext), 2);
234  if (!lumCtx)
235  return AVERROR(ENOMEM);
236  chrCtx = &lumCtx[1];
237 
238  desc[0].process = c->yuv2packedX ? packed_vscale : any_vscale;
239  desc[0].instance = lumCtx;
240  desc[0].src = src;
241  desc[0].dst = dst;
242  desc[0].alpha = c->needAlpha;
243  }
244 
247  return 0;
248 }
249 
251  yuv2planar1_fn yuv2plane1,
253  yuv2interleavedX_fn yuv2nv12cX,
254  yuv2packed1_fn yuv2packed1,
255  yuv2packed2_fn yuv2packed2,
257  yuv2anyX_fn yuv2anyX, int use_mmx)
258 {
259  VScalerContext *lumCtx = NULL;
260  VScalerContext *chrCtx = NULL;
261  int idx = c->numDesc - (c->is_internal_gamma ? 2 : 1); //FIXME avoid hardcoding indexes
262 
263  if (isPlanarYUV(c->dstFormat) || (isGray(c->dstFormat) && !isALPHA(c->dstFormat))) {
264  if (!isGray(c->dstFormat)) {
265  chrCtx = c->desc[idx].instance;
266 
267  chrCtx->filter[0] = use_mmx ? (int16_t*)c->chrMmxFilter : c->vChrFilter;
268  chrCtx->filter_size = c->vChrFilterSize;
269  chrCtx->filter_pos = c->vChrFilterPos;
270  chrCtx->isMMX = use_mmx;
271 
272  --idx;
273  if (yuv2nv12cX) chrCtx->pfn = yuv2nv12cX;
274  else if (c->vChrFilterSize == 1) chrCtx->pfn = yuv2plane1;
275  else chrCtx->pfn = yuv2planeX;
276  }
277 
278  lumCtx = c->desc[idx].instance;
279 
280  lumCtx->filter[0] = use_mmx ? (int16_t*)c->lumMmxFilter : c->vLumFilter;
281  lumCtx->filter[1] = use_mmx ? (int16_t*)c->alpMmxFilter : c->vLumFilter;
282  lumCtx->filter_size = c->vLumFilterSize;
283  lumCtx->filter_pos = c->vLumFilterPos;
284  lumCtx->isMMX = use_mmx;
285 
286  if (c->vLumFilterSize == 1) lumCtx->pfn = yuv2plane1;
287  else lumCtx->pfn = yuv2planeX;
288 
289  } else {
290  lumCtx = c->desc[idx].instance;
291  chrCtx = &lumCtx[1];
292 
293  lumCtx->filter[0] = c->vLumFilter;
294  lumCtx->filter_size = c->vLumFilterSize;
295  lumCtx->filter_pos = c->vLumFilterPos;
296 
297  chrCtx->filter[0] = c->vChrFilter;
298  chrCtx->filter_size = c->vChrFilterSize;
299  chrCtx->filter_pos = c->vChrFilterPos;
300 
301  lumCtx->isMMX = use_mmx;
302  chrCtx->isMMX = use_mmx;
303 
304  if (yuv2packedX) {
305  if (c->yuv2packed1 && c->vLumFilterSize == 1 && c->vChrFilterSize <= 2)
306  lumCtx->pfn = yuv2packed1;
307  else if (c->yuv2packed2 && c->vLumFilterSize == 2 && c->vChrFilterSize == 2)
308  lumCtx->pfn = yuv2packed2;
309  lumCtx->yuv2packedX = yuv2packedX;
310  } else
311  lumCtx->pfn = yuv2anyX;
312  }
313 }
314 
315 
#define NULL
Definition: coverity.c:32
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx)
setup vertical scaler functions
Definition: vscale.c:250
const char * desc
Definition: nvenc.c:68
int h_chr_sub_sample
horizontal chroma subsampling factor
Struct which holds all necessary data for processing a slice.
int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst)
initializes vertical scaling descriptors
Definition: vscale.c:206
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
uint16_t * filter[2]
Definition: vscale.c:24
const uint8_t * lumDither8
#define src
Definition: vp8dsp.c:254
uint8_t
static int any_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
Definition: vscale.c:165
uint8_t ** line
line buffer
int alpha
Flag for processing alpha channel.
int vChrFilterSize
Vertical filter size for chroma pixels.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
int v_chr_sub_sample
vertical chroma subsampling factor
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But first
SwsSlice * dst
Output slice.
void(* yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output without any additional vertical scaling (...
#define sp
Definition: regdef.h:63
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
#define av_log(a,...)
yuv2packedX_fn yuv2packedX
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
#define U(x)
Definition: vp56_arith.h:37
yuv2anyX_fn yuv2anyX
yuv2packed1_fn yuv2packed1
#define FFMAX(a, b)
Definition: common.h:94
SwsPlane plane[MAX_SLICE_PLANES]
color planes
int32_t alpMmxFilter[4 *MAX_FILTER_SIZE]
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
void * pfn
Definition: vscale.c:28
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
yuv2planar1_fn yuv2plane1
yuv2interleavedX_fn yuv2nv12cX
int32_t
struct SwsFilterDescriptor * desc
if(ret)
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
static int lum_planar_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
Definition: vscale.c:33
int32_t lumMmxFilter[4 *MAX_FILTER_SIZE]
static int packed_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
Definition: vscale.c:101
#define src1
Definition: h264pred.c:139
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
int width
Slice line width.
void(* yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing multi-point ver...
int(* process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH)
Function for processing input slice sliceH lines starting from line sliceY.
yuv2planarX_fn yuv2planeX
int warned_unuseable_bilinear
void(* yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output without any additional v...
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
int32_t * filter_pos
Definition: vscale.c:25
void(* yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output with multi-point vertical scaling between...
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define src0
Definition: h264pred.c:138
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
void * instance
Filter instance data.
const uint8_t * chrDither8
yuv2packed2_fn yuv2packed2
static void FUNC() yuv2planeX(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
void(* yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing bilinear scalin...
int32_t chrMmxFilter[4 *MAX_FILTER_SIZE]
yuv2packedX_fn yuv2packedX
Definition: vscale.c:29
void(* yuv2interleavedX_fn)(struct SwsContext *c, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW)
Write one line of horizontally scaled chroma to interleaved output with multi-point vertical scaling ...
void(* yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to YUV/RGB output by doing multi-point vertical scaling...
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
SwsSlice * src
Source slice.
int sliceY
index of first line
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
int filter_size
Definition: vscale.c:26
static int chr_planar_vscale(SwsContext *c, SwsFilterDescriptor *desc, int sliceY, int sliceH)
Definition: vscale.c:66
void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.c:191
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58