FFmpeg
vsrc_gradients.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2020 Paul B Mahol
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "avfilter.h"
22 #include "formats.h"
23 #include "video.h"
24 #include "internal.h"
25 #include "libavutil/imgutils.h"
26 #include "libavutil/intreadwrite.h"
27 #include "libavutil/opt.h"
28 #include "libavutil/parseutils.h"
29 #include "libavutil/lfg.h"
30 #include "libavutil/random_seed.h"
31 #include <float.h>
32 #include <math.h>
33 
34 typedef struct GradientsContext {
35  const AVClass *class;
36  int w, h;
37  int type;
39  uint64_t pts;
40 
42  int nb_colors;
43  int x0, y0, x1, y1;
44  float fx0, fy0, fx1, fy1;
45 
46  int64_t seed;
47 
49  int (*draw_slice)(AVFilterContext *ctx, void *arg, int job, int nb_jobs);
51 
52 #define OFFSET(x) offsetof(GradientsContext, x)
53 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
54 
55 static const AVOption gradients_options[] = {
56  {"size", "set frame size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="640x480"}, 0, 0, FLAGS },
57  {"s", "set frame size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="640x480"}, 0, 0, FLAGS },
58  {"rate", "set frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS },
59  {"r", "set frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS },
60  {"c0", "set 1st color", OFFSET(color_rgba[0]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
61  {"c1", "set 2nd color", OFFSET(color_rgba[1]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
62  {"c2", "set 3rd color", OFFSET(color_rgba[2]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
63  {"c3", "set 4th color", OFFSET(color_rgba[3]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
64  {"c4", "set 5th color", OFFSET(color_rgba[4]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
65  {"c5", "set 6th color", OFFSET(color_rgba[5]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
66  {"c6", "set 7th color", OFFSET(color_rgba[6]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
67  {"c7", "set 8th color", OFFSET(color_rgba[7]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
68  {"x0", "set gradient line source x0", OFFSET(x0), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
69  {"y0", "set gradient line source y0", OFFSET(y0), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
70  {"x1", "set gradient line destination x1", OFFSET(x1), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
71  {"y1", "set gradient line destination y1", OFFSET(y1), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
72  {"nb_colors", "set the number of colors", OFFSET(nb_colors), AV_OPT_TYPE_INT, {.i64=2}, 2, 8, FLAGS },
73  {"n", "set the number of colors", OFFSET(nb_colors), AV_OPT_TYPE_INT, {.i64=2}, 2, 8, FLAGS },
74  {"seed", "set the seed", OFFSET(seed), AV_OPT_TYPE_INT64, {.i64=-1}, -1, UINT32_MAX, FLAGS },
75  {NULL},
76 };
77 
78 AVFILTER_DEFINE_CLASS(gradients);
79 
81 {
82  static const enum AVPixelFormat pix_fmts[] = {
86  };
87 
88  AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
89  if (!fmts_list)
90  return AVERROR(ENOMEM);
91  return ff_set_common_formats(ctx, fmts_list);
92 }
93 
94 static uint32_t lerp_color(uint8_t c0[4], uint8_t c1[4], float x)
95 {
96  const float y = 1.f - x;
97 
98  return (lrint(c0[0] * y + c1[0] * x)) << 0 |
99  (lrint(c0[1] * y + c1[1] * x)) << 8 |
100  (lrint(c0[2] * y + c1[2] * x)) << 16 |
101  (lrint(c0[3] * y + c1[3] * x)) << 24;
102 }
103 
104 static uint64_t lerp_color16(uint8_t c0[4], uint8_t c1[4], float x)
105 {
106  const float y = 1.f - x;
107 
108  return (llrint((c0[0] * y + c1[0] * x) * 256)) << 0 |
109  (llrint((c0[1] * y + c1[1] * x) * 256)) << 16 |
110  (llrint((c0[2] * y + c1[2] * x) * 256)) << 32 |
111  (llrint((c0[3] * y + c1[3] * x) * 256)) << 48;
112 }
113 
114 static uint32_t lerp_colors(uint8_t arr[3][4], int nb_colors, float step)
115 {
116  float scl;
117  int i;
118 
119  if (nb_colors == 1 || step <= 0.0) {
120  return arr[0][0] | (arr[0][1] << 8) | (arr[0][2] << 16) | (arr[0][3] << 24);
121  } else if (step >= 1.0) {
122  i = nb_colors - 1;
123  return arr[i][0] | (arr[i][1] << 8) | (arr[i][2] << 16) | (arr[i][3] << 24);
124  }
125 
126  scl = step * (nb_colors - 1);
127  i = floorf(scl);
128 
129  return lerp_color(arr[i], arr[i + 1], scl - i);
130 }
131 
132 static uint64_t lerp_colors16(uint8_t arr[3][4], int nb_colors, float step)
133 {
134  float scl;
135  int i;
136 
137  if (nb_colors == 1 || step <= 0.0) {
138  return ((uint64_t)arr[0][0] << 8) | ((uint64_t)arr[0][1] << 24) | ((uint64_t)arr[0][2] << 40) | ((uint64_t)arr[0][3] << 56);
139  } else if (step >= 1.0) {
140  i = nb_colors - 1;
141  return ((uint64_t)arr[i][0] << 8) | ((uint64_t)arr[i][1] << 24) | ((uint64_t)arr[i][2] << 40) | ((uint64_t)arr[i][3] << 56);
142  }
143 
144  scl = step * (nb_colors - 1);
145  i = floorf(scl);
146 
147  return lerp_color16(arr[i], arr[i + 1], scl - i);
148 }
149 
150 static float project(float origin_x, float origin_y,
151  float dest_x, float dest_y,
152  int point_x, int point_y)
153 {
154  // Rise and run of line.
155  float od_x = dest_x - origin_x;
156  float od_y = dest_y - origin_y;
157 
158  // Distance-squared of line.
159  float od_s_q = od_x * od_x + od_y * od_y;
160 
161  // Rise and run of projection.
162  float op_x = point_x - origin_x;
163  float op_y = point_y - origin_y;
164  float op_x_od = op_x * od_x + op_y * od_y;
165 
166  // Normalize and clamp range.
167  return av_clipf(op_x_od / od_s_q, 0.f, 1.f);
168 }
169 
170 static int draw_gradients_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
171 {
172  GradientsContext *s = ctx->priv;
173  AVFrame *frame = arg;
174  const int width = frame->width;
175  const int height = frame->height;
176  const int start = (height * job ) / nb_jobs;
177  const int end = (height * (job+1)) / nb_jobs;
178  const int linesize = frame->linesize[0] / 4;
179  uint32_t *dst = (uint32_t *)frame->data[0] + start * linesize;
180 
181  for (int y = start; y < end; y++) {
182  for (int x = 0; x < width; x++) {
183  float factor = project(s->fx0, s->fy0, s->fx1, s->fy1, x, y);
184  dst[x] = lerp_colors(s->color_rgba, s->nb_colors, factor);;
185  }
186 
187  dst += linesize;
188  }
189 
190  return 0;
191 }
192 
193 static int draw_gradients_slice16(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
194 {
195  GradientsContext *s = ctx->priv;
196  AVFrame *frame = arg;
197  const int width = frame->width;
198  const int height = frame->height;
199  const int start = (height * job ) / nb_jobs;
200  const int end = (height * (job+1)) / nb_jobs;
201  const int linesize = frame->linesize[0] / 8;
202  uint64_t *dst = (uint64_t *)frame->data[0] + start * linesize;
203 
204  for (int y = start; y < end; y++) {
205  for (int x = 0; x < width; x++) {
206  float factor = project(s->fx0, s->fy0, s->fx1, s->fy1, x, y);
207  dst[x] = lerp_colors16(s->color_rgba, s->nb_colors, factor);;
208  }
209 
210  dst += linesize;
211  }
212 
213  return 0;
215 {
216  AVFilterContext *ctx = inlink->src;
217  GradientsContext *s = ctx->priv;
219 
220  if (av_image_check_size(s->w, s->h, 0, ctx) < 0)
221  return AVERROR(EINVAL);
222 
223  inlink->w = s->w;
224  inlink->h = s->h;
225  inlink->time_base = av_inv_q(s->frame_rate);
226  inlink->sample_aspect_ratio = (AVRational) {1, 1};
227  if (s->seed == -1)
228  s->seed = av_get_random_seed();
229  av_lfg_init(&s->lfg, s->seed);
230 
232 
233  if (s->x0 < 0 || s->x0 >= s->w)
234  s->x0 = av_lfg_get(&s->lfg) % s->w;
235  if (s->y0 < 0 || s->y0 >= s->h)
236  s->y0 = av_lfg_get(&s->lfg) % s->h;
237  if (s->x1 < 0 || s->x1 >= s->w)
238  s->x1 = av_lfg_get(&s->lfg) % s->w;
239  if (s->y1 < 0 || s->y1 >= s->h)
240  s->y1 = av_lfg_get(&s->lfg) % s->h;
241 
242  return 0;
243 }
244 
246 {
247  AVFilterContext *ctx = outlink->src;
248  GradientsContext *s = ctx->priv;
249  AVFrame *frame = ff_get_video_buffer(outlink, s->w, s->h);
250  float angle = fmodf(s->pts / 100.f, 2.f * M_PI);
251  const float w2 = s->w / 2.f;
252  const float h2 = s->h / 2.f;
253 
254  s->fx0 = (s->x0 - w2) * cosf(angle) - (s->y0 - h2) * sinf(angle) + w2;
255  s->fy0 = (s->x0 - w2) * sinf(angle) + (s->y0 - h2) * cosf(angle) + h2;
256 
257  s->fx1 = (s->x1 - w2) * cosf(angle) - (s->y1 - h2) * sinf(angle) + w2;
258  s->fy1 = (s->x1 - w2) * sinf(angle) + (s->y1 - h2) * cosf(angle) + h2;
259 
260  if (!frame)
261  return AVERROR(ENOMEM);
262 
263  frame->sample_aspect_ratio = (AVRational) {1, 1};
264  frame->pts = s->pts++;
265 
266  ctx->internal->execute(ctx, s->draw_slice, frame, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
267 
268  return ff_filter_frame(outlink, frame);
269 }
270 
271 static const AVFilterPad gradients_outputs[] = {
272  {
273  .name = "default",
274  .type = AVMEDIA_TYPE_VIDEO,
275  .request_frame = gradients_request_frame,
276  .config_props = config_output,
277  },
278  { NULL }
279 };
280 
282  .name = "gradients",
283  .description = NULL_IF_CONFIG_SMALL("Draw a gradients."),
284  .priv_size = sizeof(GradientsContext),
285  .priv_class = &gradients_class,
287  .inputs = NULL,
288  .outputs = gradients_outputs,
290 };
Context structure for the Lagged Fibonacci PRNG.
Definition: lfg.h:33
#define NULL
Definition: coverity.c:32
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
static int draw_gradients_slice16(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:308
AVOption.
Definition: opt.h:248
misc image utilities
Main libavfilter public API header.
const char * desc
Definition: nvenc.c:87
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:389
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:283
const char * name
Pad name.
Definition: internal.h:60
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1091
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
AVOptions.
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:401
#define cosf(x)
Definition: libm.h:78
#define height
static const uint64_t c1
Definition: murmur3.c:49
#define OFFSET(x)
static int gradients_request_frame(AVFilterLink *outlink)
A filter pad used for either input or output.
Definition: internal.h:54
int width
Definition: frame.h:366
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:600
AVFilter ff_vsrc_gradients
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:153
void * priv
private data for use by the filter
Definition: avfilter.h:353
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:116
const char * arg
Definition: jacosubdec.c:66
static uint32_t lerp_colors(uint8_t arr[3][4], int nb_colors, float step)
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
static float project(float origin_x, float origin_y, float dest_x, float dest_y, int point_x, int point_y)
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:282
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:800
static const AVOption gradients_options[]
#define FFMIN(a, b)
Definition: common.h:96
#define FLAGS
#define width
AVFormatContext * ctx
Definition: movenc.c:48
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define s(width, name)
Definition: cbs_vp9.c:257
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
static int draw_gradients_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
#define sinf(x)
Definition: libm.h:419
static uint32_t lerp_color(uint8_t c0[4], uint8_t c1[4], float x)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:339
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
AVRational sample_aspect_ratio
Sample aspect ratio for the video frame, 0/1 if unknown/unspecified.
Definition: frame.h:396
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
Definition: lfg.h:53
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
#define llrint(x)
Definition: libm.h:394
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
Rational number (pair of numerator and denominator).
Definition: rational.h:58
offset must point to AVRational
Definition: opt.h:238
static const int factor[16]
Definition: vf_pp7.c:75
const char * name
Filter name.
Definition: avfilter.h:148
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:32
offset must point to two consecutive integers
Definition: opt.h:235
misc parsing utilities
AVFILTER_DEFINE_CLASS(gradients)
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
#define flags(name, subs,...)
Definition: cbs_av1.c:560
AVRational frame_rate
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
Definition: avfilter.h:378
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:322
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
Definition: rational.h:159
int
static int config_output(AVFilterLink *inlink)
static uint64_t lerp_colors16(uint8_t arr[3][4], int nb_colors, float step)
uint8_t color_rgba[8][4]
avfilter_execute_func * execute
Definition: internal.h:144
static uint64_t lerp_color16(uint8_t c0[4], uint8_t c1[4], float x)
static const AVFilterPad gradients_outputs[]
A list of supported formats for one end of a filter link.
Definition: formats.h:64
#define lrint
Definition: tablegen.h:53
An instance of a filter.
Definition: avfilter.h:338
int(* draw_slice)(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
static int query_formats(AVFilterContext *ctx)
int height
Definition: frame.h:366
#define M_PI
Definition: mathematics.h:52
uint32_t av_get_random_seed(void)
Get a seed to use in conjunction with random functions.
Definition: random_seed.c:120
internal API functions
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
int depth
Number of bits in the component.
Definition: pixdesc.h:58
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
for(j=16;j >0;--j)
int i
Definition: input.c:406
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step