[FFmpeg-cvslog] lavu/tx: add support for double precision FFT and MDCT

Lynne git at videolan.org
Fri Aug 2 18:37:12 EEST 2019


ffmpeg | branch: master | Lynne <dev at lynne.ee> | Sat Jul 27 18:54:20 2019 +0100| [42e2319ba9b75c3ca55be7f18a0322ecb498ea97] | committer: Lynne

lavu/tx: add support for double precision FFT and MDCT

Simply moves and templates the actual transforms to support an
additional data type.
Unlike the float version, which is equal or better than libfftw3f,
double precision output is bit identical with libfftw3.

> http://git.videolan.org/gitweb.cgi/ffmpeg.git/?a=commit;h=42e2319ba9b75c3ca55be7f18a0322ecb498ea97
---

 doc/APIchanges          |   3 +
 libavutil/Makefile      |   2 +
 libavutil/tx.c          | 693 ++----------------------------------------------
 libavutil/tx.h          |  12 +
 libavutil/tx_double.c   |  21 ++
 libavutil/tx_float.c    |  21 ++
 libavutil/tx_priv.h     | 105 ++++++++
 libavutil/tx_template.c | 643 ++++++++++++++++++++++++++++++++++++++++++++
 libavutil/version.h     |   2 +-
 9 files changed, 825 insertions(+), 677 deletions(-)

diff --git a/doc/APIchanges b/doc/APIchanges
index 07331b16e7..6603a8229e 100644
--- a/doc/APIchanges
+++ b/doc/APIchanges
@@ -15,6 +15,9 @@ libavutil:     2017-10-21
 
 API changes, most recent first:
 
+2019-07-27 - xxxxxxxxxx - lavu 56.33.100 - tx.h
+  Add AV_TX_DOUBLE_FFT and AV_TX_DOUBLE_MDCT
+
 -------- 8< --------- FFmpeg 4.2 was cut here -------- 8< ---------
 
 2019-06-21 - a30e44098a - lavu 56.30.100 - frame.h
diff --git a/libavutil/Makefile b/libavutil/Makefile
index 8a7a44e4b5..57e6e3d7e8 100644
--- a/libavutil/Makefile
+++ b/libavutil/Makefile
@@ -161,6 +161,8 @@ OBJS = adler32.o                                                        \
        xtea.o                                                           \
        tea.o                                                            \
        tx.o                                                             \
+       tx_float.o                                                       \
+       tx_double.o
 
 OBJS-$(CONFIG_CUDA)                     += hwcontext_cuda.o
 OBJS-$(CONFIG_D3D11VA)                  += hwcontext_d3d11va.o
diff --git a/libavutil/tx.c b/libavutil/tx.c
index 93f6e489d3..b8683b416b 100644
--- a/libavutil/tx.c
+++ b/libavutil/tx.c
@@ -1,10 +1,4 @@
 /*
- * Copyright (c) 2019 Lynne <dev at lynne.ee>
- * Power of two FFT:
- * Copyright (c) 2008 Loren Merritt
- * Copyright (c) 2002 Fabrice Bellard
- * Partly based on libdjbfft by D. J. Bernstein
- *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
@@ -22,576 +16,10 @@
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
-#include <stddef.h>
-#include "tx.h"
-#include "thread.h"
-#include "mem.h"
-#include "avassert.h"
-
-typedef float FFTSample;
-typedef AVComplexFloat FFTComplex;
-
-struct AVTXContext {
-    int n;              /* Nptwo part */
-    int m;              /* Ptwo part */
-
-    FFTComplex *exptab; /* MDCT exptab */
-    FFTComplex *tmp;    /* Temporary buffer needed for all compound transforms */
-    int        *pfatab; /* Input/Output mapping for compound transforms */
-    int        *revtab; /* Input mapping for power of two transforms */
-};
-
-#define FFT_NAME(x) x
-
-#define COSTABLE(size) \
-    static DECLARE_ALIGNED(32, FFTSample, FFT_NAME(ff_cos_##size))[size/2]
-
-static FFTSample * const FFT_NAME(ff_cos_tabs)[18];
-
-COSTABLE(16);
-COSTABLE(32);
-COSTABLE(64);
-COSTABLE(128);
-COSTABLE(256);
-COSTABLE(512);
-COSTABLE(1024);
-COSTABLE(2048);
-COSTABLE(4096);
-COSTABLE(8192);
-COSTABLE(16384);
-COSTABLE(32768);
-COSTABLE(65536);
-COSTABLE(131072);
-
-static av_cold void init_ff_cos_tabs(int index)
-{
-    int m = 1 << index;
-    double freq = 2*M_PI/m;
-    FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
-    for(int i = 0; i <= m/4; i++)
-        tab[i] = cos(i*freq);
-    for(int i = 1; i < m/4; i++)
-        tab[m/2 - i] = tab[i];
-}
-
-typedef struct CosTabsInitOnce {
-    void (*func)(void);
-    AVOnce control;
-} CosTabsInitOnce;
-
-#define INIT_FF_COS_TABS_FUNC(index, size)                                     \
-static av_cold void init_ff_cos_tabs_ ## size (void)                           \
-{                                                                              \
-    init_ff_cos_tabs(index);                                                   \
-}
-
-INIT_FF_COS_TABS_FUNC(4, 16)
-INIT_FF_COS_TABS_FUNC(5, 32)
-INIT_FF_COS_TABS_FUNC(6, 64)
-INIT_FF_COS_TABS_FUNC(7, 128)
-INIT_FF_COS_TABS_FUNC(8, 256)
-INIT_FF_COS_TABS_FUNC(9, 512)
-INIT_FF_COS_TABS_FUNC(10, 1024)
-INIT_FF_COS_TABS_FUNC(11, 2048)
-INIT_FF_COS_TABS_FUNC(12, 4096)
-INIT_FF_COS_TABS_FUNC(13, 8192)
-INIT_FF_COS_TABS_FUNC(14, 16384)
-INIT_FF_COS_TABS_FUNC(15, 32768)
-INIT_FF_COS_TABS_FUNC(16, 65536)
-INIT_FF_COS_TABS_FUNC(17, 131072)
-
-static CosTabsInitOnce cos_tabs_init_once[] = {
-    { NULL },
-    { NULL },
-    { NULL },
-    { NULL },
-    { init_ff_cos_tabs_16, AV_ONCE_INIT },
-    { init_ff_cos_tabs_32, AV_ONCE_INIT },
-    { init_ff_cos_tabs_64, AV_ONCE_INIT },
-    { init_ff_cos_tabs_128, AV_ONCE_INIT },
-    { init_ff_cos_tabs_256, AV_ONCE_INIT },
-    { init_ff_cos_tabs_512, AV_ONCE_INIT },
-    { init_ff_cos_tabs_1024, AV_ONCE_INIT },
-    { init_ff_cos_tabs_2048, AV_ONCE_INIT },
-    { init_ff_cos_tabs_4096, AV_ONCE_INIT },
-    { init_ff_cos_tabs_8192, AV_ONCE_INIT },
-    { init_ff_cos_tabs_16384, AV_ONCE_INIT },
-    { init_ff_cos_tabs_32768, AV_ONCE_INIT },
-    { init_ff_cos_tabs_65536, AV_ONCE_INIT },
-    { init_ff_cos_tabs_131072, AV_ONCE_INIT },
-};
-
-static FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
-    NULL, NULL, NULL, NULL,
-    FFT_NAME(ff_cos_16),
-    FFT_NAME(ff_cos_32),
-    FFT_NAME(ff_cos_64),
-    FFT_NAME(ff_cos_128),
-    FFT_NAME(ff_cos_256),
-    FFT_NAME(ff_cos_512),
-    FFT_NAME(ff_cos_1024),
-    FFT_NAME(ff_cos_2048),
-    FFT_NAME(ff_cos_4096),
-    FFT_NAME(ff_cos_8192),
-    FFT_NAME(ff_cos_16384),
-    FFT_NAME(ff_cos_32768),
-    FFT_NAME(ff_cos_65536),
-    FFT_NAME(ff_cos_131072),
-};
-
-static av_cold void ff_init_ff_cos_tabs(int index)
-{
-    ff_thread_once(&cos_tabs_init_once[index].control,
-                    cos_tabs_init_once[index].func);
-}
-
-static AVOnce tabs_53_once = AV_ONCE_INIT;
-static DECLARE_ALIGNED(32, FFTComplex, FFT_NAME(ff_53_tabs))[4];
-
-static av_cold void ff_init_53_tabs(void)
-{
-    ff_53_tabs[0] = (FFTComplex){ cos(2 * M_PI / 12), cos(2 * M_PI / 12) };
-    ff_53_tabs[1] = (FFTComplex){ 0.5, 0.5 };
-    ff_53_tabs[2] = (FFTComplex){ cos(2 * M_PI /  5), sin(2 * M_PI /  5) };
-    ff_53_tabs[3] = (FFTComplex){ cos(2 * M_PI / 10), sin(2 * M_PI / 10) };
-}
-
-#define BF(x, y, a, b) do {                                                    \
-        x = (a) - (b);                                                         \
-        y = (a) + (b);                                                         \
-    } while (0)
-
-#define CMUL(dre, dim, are, aim, bre, bim) do {                                \
-        (dre) = (are) * (bre) - (aim) * (bim);                                 \
-        (dim) = (are) * (bim) + (aim) * (bre);                                 \
-    } while (0)
-
-#define CMUL3(c, a, b) CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
-
-static av_always_inline void fft3(FFTComplex *out, FFTComplex *in,
-                                  ptrdiff_t stride)
-{
-    FFTComplex tmp[2];
-
-    tmp[0].re = in[1].im - in[2].im;
-    tmp[0].im = in[1].re - in[2].re;
-    tmp[1].re = in[1].re + in[2].re;
-    tmp[1].im = in[1].im + in[2].im;
-
-    out[0*stride].re = in[0].re + tmp[1].re;
-    out[0*stride].im = in[0].im + tmp[1].im;
-
-    tmp[0].re *= ff_53_tabs[0].re;
-    tmp[0].im *= ff_53_tabs[0].im;
-    tmp[1].re *= ff_53_tabs[1].re;
-    tmp[1].im *= ff_53_tabs[1].re;
-
-    out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re;
-    out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im;
-    out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re;
-    out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im;
-}
-
-#define DECL_FFT5(NAME, D0, D1, D2, D3, D4)                                    \
-static av_always_inline void NAME(FFTComplex *out, FFTComplex *in,             \
-                                  ptrdiff_t stride)                            \
-{                                                                              \
-    FFTComplex z0[4], t[6];                                                    \
-                                                                               \
-    t[0].re = in[1].re + in[4].re;                                             \
-    t[0].im = in[1].im + in[4].im;                                             \
-    t[1].im = in[1].re - in[4].re;                                             \
-    t[1].re = in[1].im - in[4].im;                                             \
-    t[2].re = in[2].re + in[3].re;                                             \
-    t[2].im = in[2].im + in[3].im;                                             \
-    t[3].im = in[2].re - in[3].re;                                             \
-    t[3].re = in[2].im - in[3].im;                                             \
-                                                                               \
-    out[D0*stride].re = in[0].re + in[1].re + in[2].re +                       \
-                        in[3].re + in[4].re;                                   \
-    out[D0*stride].im = in[0].im + in[1].im + in[2].im +                       \
-                        in[3].im + in[4].im;                                   \
-                                                                               \
-    t[4].re = ff_53_tabs[2].re * t[2].re - ff_53_tabs[3].re * t[0].re;         \
-    t[4].im = ff_53_tabs[2].re * t[2].im - ff_53_tabs[3].re * t[0].im;         \
-    t[0].re = ff_53_tabs[2].re * t[0].re - ff_53_tabs[3].re * t[2].re;         \
-    t[0].im = ff_53_tabs[2].re * t[0].im - ff_53_tabs[3].re * t[2].im;         \
-    t[5].re = ff_53_tabs[2].im * t[3].re - ff_53_tabs[3].im * t[1].re;         \
-    t[5].im = ff_53_tabs[2].im * t[3].im - ff_53_tabs[3].im * t[1].im;         \
-    t[1].re = ff_53_tabs[2].im * t[1].re + ff_53_tabs[3].im * t[3].re;         \
-    t[1].im = ff_53_tabs[2].im * t[1].im + ff_53_tabs[3].im * t[3].im;         \
-                                                                               \
-    z0[0].re = t[0].re - t[1].re;                                              \
-    z0[0].im = t[0].im - t[1].im;                                              \
-    z0[1].re = t[4].re + t[5].re;                                              \
-    z0[1].im = t[4].im + t[5].im;                                              \
-                                                                               \
-    z0[2].re = t[4].re - t[5].re;                                              \
-    z0[2].im = t[4].im - t[5].im;                                              \
-    z0[3].re = t[0].re + t[1].re;                                              \
-    z0[3].im = t[0].im + t[1].im;                                              \
-                                                                               \
-    out[D1*stride].re = in[0].re + z0[3].re;                                   \
-    out[D1*stride].im = in[0].im + z0[0].im;                                   \
-    out[D2*stride].re = in[0].re + z0[2].re;                                   \
-    out[D2*stride].im = in[0].im + z0[1].im;                                   \
-    out[D3*stride].re = in[0].re + z0[1].re;                                   \
-    out[D3*stride].im = in[0].im + z0[2].im;                                   \
-    out[D4*stride].re = in[0].re + z0[0].re;                                   \
-    out[D4*stride].im = in[0].im + z0[3].im;                                   \
-}
-
-DECL_FFT5(fft5,     0,  1,  2,  3,  4)
-DECL_FFT5(fft5_m1,  0,  6, 12,  3,  9)
-DECL_FFT5(fft5_m2, 10,  1,  7, 13,  4)
-DECL_FFT5(fft5_m3,  5, 11,  2,  8, 14)
-
-static av_always_inline void fft15(FFTComplex *out, FFTComplex *in,
-                                   ptrdiff_t stride)
-{
-    FFTComplex tmp[15];
-
-    for (int i = 0; i < 5; i++)
-        fft3(tmp + i, in + i*3, 5);
-
-    fft5_m1(out, tmp +  0, stride);
-    fft5_m2(out, tmp +  5, stride);
-    fft5_m3(out, tmp + 10, stride);
-}
-
-#define BUTTERFLIES(a0,a1,a2,a3) {\
-    BF(t3, t5, t5, t1);\
-    BF(a2.re, a0.re, a0.re, t5);\
-    BF(a3.im, a1.im, a1.im, t3);\
-    BF(t4, t6, t2, t6);\
-    BF(a3.re, a1.re, a1.re, t4);\
-    BF(a2.im, a0.im, a0.im, t6);\
-}
-
-// force loading all the inputs before storing any.
-// this is slightly slower for small data, but avoids store->load aliasing
-// for addresses separated by large powers of 2.
-#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
-    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
-    BF(t3, t5, t5, t1);\
-    BF(a2.re, a0.re, r0, t5);\
-    BF(a3.im, a1.im, i1, t3);\
-    BF(t4, t6, t2, t6);\
-    BF(a3.re, a1.re, r1, t4);\
-    BF(a2.im, a0.im, i0, t6);\
-}
-
-#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
-    CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
-    CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
-    BUTTERFLIES(a0,a1,a2,a3)\
-}
-
-#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
-    t1 = a2.re;\
-    t2 = a2.im;\
-    t5 = a3.re;\
-    t6 = a3.im;\
-    BUTTERFLIES(a0,a1,a2,a3)\
-}
-
-/* z[0...8n-1], w[1...2n-1] */
-#define PASS(name)\
-static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
-{\
-    FFTSample t1, t2, t3, t4, t5, t6;\
-    int o1 = 2*n;\
-    int o2 = 4*n;\
-    int o3 = 6*n;\
-    const FFTSample *wim = wre+o1;\
-    n--;\
-\
-    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
-    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
-    do {\
-        z += 2;\
-        wre += 2;\
-        wim -= 2;\
-        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
-        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
-    } while(--n);\
-}
-
-PASS(pass)
-#undef BUTTERFLIES
-#define BUTTERFLIES BUTTERFLIES_BIG
-PASS(pass_big)
-
-#define DECL_FFT(n,n2,n4)\
-static void fft##n(FFTComplex *z)\
-{\
-    fft##n2(z);\
-    fft##n4(z+n4*2);\
-    fft##n4(z+n4*3);\
-    pass(z,FFT_NAME(ff_cos_##n),n4/2);\
-}
-
-static void fft4(FFTComplex *z)
-{
-    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
-
-    BF(t3, t1, z[0].re, z[1].re);
-    BF(t8, t6, z[3].re, z[2].re);
-    BF(z[2].re, z[0].re, t1, t6);
-    BF(t4, t2, z[0].im, z[1].im);
-    BF(t7, t5, z[2].im, z[3].im);
-    BF(z[3].im, z[1].im, t4, t8);
-    BF(z[3].re, z[1].re, t3, t7);
-    BF(z[2].im, z[0].im, t2, t5);
-}
-
-static void fft8(FFTComplex *z)
-{
-    FFTSample t1, t2, t3, t4, t5, t6;
-
-    fft4(z);
-
-    BF(t1, z[5].re, z[4].re, -z[5].re);
-    BF(t2, z[5].im, z[4].im, -z[5].im);
-    BF(t5, z[7].re, z[6].re, -z[7].re);
-    BF(t6, z[7].im, z[6].im, -z[7].im);
-
-    BUTTERFLIES(z[0],z[2],z[4],z[6]);
-    TRANSFORM(z[1],z[3],z[5],z[7],M_SQRT1_2,M_SQRT1_2);
-}
-
-static void fft16(FFTComplex *z)
-{
-    FFTSample t1, t2, t3, t4, t5, t6;
-    FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
-    FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
-
-    fft8(z);
-    fft4(z+8);
-    fft4(z+12);
-
-    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
-    TRANSFORM(z[2],z[6],z[10],z[14],M_SQRT1_2,M_SQRT1_2);
-    TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
-    TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
-}
-
-DECL_FFT(32,16,8)
-DECL_FFT(64,32,16)
-DECL_FFT(128,64,32)
-DECL_FFT(256,128,64)
-DECL_FFT(512,256,128)
-#define pass pass_big
-DECL_FFT(1024,512,256)
-DECL_FFT(2048,1024,512)
-DECL_FFT(4096,2048,1024)
-DECL_FFT(8192,4096,2048)
-DECL_FFT(16384,8192,4096)
-DECL_FFT(32768,16384,8192)
-DECL_FFT(65536,32768,16384)
-DECL_FFT(131072,65536,32768)
-
-static void (* const fft_dispatch[])(FFTComplex*) = {
-    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
-    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
-};
-
-#define DECL_COMP_FFT(N)                                                       \
-static void compound_fft_##N##xM(AVTXContext *s, void *_out,                   \
-                                 void *_in, ptrdiff_t stride)                  \
-{                                                                              \
-    const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m;          \
-    FFTComplex *in = _in;                                                      \
-    FFTComplex *out = _out;                                                    \
-    FFTComplex fft##N##in[N];                                                  \
-    void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m) - 2];                \
-                                                                               \
-    for (int i = 0; i < m; i++) {                                              \
-        for (int j = 0; j < N; j++)                                            \
-            fft##N##in[j] = in[in_map[i*N + j]];                               \
-        fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
-    }                                                                          \
-                                                                               \
-    for (int i = 0; i < N; i++)                                                \
-        fftp(s->tmp + m*i);                                                    \
-                                                                               \
-    for (int i = 0; i < N*m; i++)                                              \
-        out[i] = s->tmp[out_map[i]];                                           \
-}
-
-DECL_COMP_FFT(3)
-DECL_COMP_FFT(5)
-DECL_COMP_FFT(15)
-
-static void monolithic_fft(AVTXContext *s, void *_out, void *_in,
-                           ptrdiff_t stride)
-{
-    FFTComplex *in = _in;
-    FFTComplex *out = _out;
-    int m = s->m, mb = av_log2(m) - 2;
-    for (int i = 0; i < m; i++)
-        out[s->revtab[i]] = in[i];
-    fft_dispatch[mb](out);
-}
-
-#define DECL_COMP_IMDCT(N)                                                     \
-static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src,     \
-                                   ptrdiff_t stride)                           \
-{                                                                              \
-    FFTComplex fft##N##in[N];                                                  \
-    FFTComplex *z = _dst, *exp = s->exptab;                                    \
-    const int m = s->m, len8 = N*m >> 1;                                       \
-    const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
-    const float *src = _src, *in1, *in2;                                       \
-    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
-                                                                               \
-    stride /= sizeof(*src); /* To convert it from bytes */                     \
-    in1 = src;                                                                 \
-    in2 = src + ((N*m*2) - 1) * stride;                                        \
-                                                                               \
-    for (int i = 0; i < m; i++) {                                              \
-        for (int j = 0; j < N; j++) {                                          \
-            const int k = in_map[i*N + j];                                     \
-            FFTComplex tmp = { in2[-k*stride], in1[k*stride] };                \
-            CMUL3(fft##N##in[j], tmp, exp[k >> 1]);                            \
-        }                                                                      \
-        fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
-    }                                                                          \
-                                                                               \
-    for (int i = 0; i < N; i++)                                                \
-        fftp(s->tmp + m*i);                                                    \
-                                                                               \
-    for (int i = 0; i < len8; i++) {                                           \
-        const int i0 = len8 + i, i1 = len8 - i - 1;                            \
-        const int s0 = out_map[i0], s1 = out_map[i1];                          \
-        FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re };                    \
-        FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re };                    \
-                                                                               \
-        CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);    \
-        CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);    \
-    }                                                                          \
-}
-
-DECL_COMP_IMDCT(3)
-DECL_COMP_IMDCT(5)
-DECL_COMP_IMDCT(15)
-
-#define DECL_COMP_MDCT(N)                                                      \
-static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src,      \
-                                  ptrdiff_t stride)                            \
-{                                                                              \
-    float *src = _src, *dst = _dst;                                            \
-    FFTComplex *exp = s->exptab, tmp, fft##N##in[N];                           \
-    const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1;         \
-    const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
-    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
-                                                                               \
-    stride /= sizeof(*dst);                                                    \
-                                                                               \
-    for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */             \
-        for (int j = 0; j < N; j++) {                                          \
-            const int k = in_map[i*N + j];                                     \
-            if (k < len4) {                                                    \
-                tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];                \
-                tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];                \
-            } else {                                                           \
-                tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];                \
-                tmp.im =  src[-len4 + k] - src[1*len3 - 1 - k];                \
-            }                                                                  \
-            CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im,           \
-                 exp[k >> 1].re, exp[k >> 1].im);                              \
-        }                                                                      \
-        fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
-    }                                                                          \
-                                                                               \
-    for (int i = 0; i < N; i++)                                                \
-        fftp(s->tmp + m*i);                                                    \
-                                                                               \
-    for (int i = 0; i < len8; i++) {                                           \
-        const int i0 = len8 + i, i1 = len8 - i - 1;                            \
-        const int s0 = out_map[i0], s1 = out_map[i1];                          \
-        FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im };                    \
-        FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im };                    \
-                                                                               \
-        CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,    \
-             exp[i0].im, exp[i0].re);                                          \
-        CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,    \
-             exp[i1].im, exp[i1].re);                                          \
-    }                                                                          \
-}
-
-DECL_COMP_MDCT(3)
-DECL_COMP_MDCT(5)
-DECL_COMP_MDCT(15)
-
-static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src,
-                             ptrdiff_t stride)
-{
-    FFTComplex *z = _dst, *exp = s->exptab;
-    const int m = s->m, len8 = m >> 1;
-    const float *src = _src, *in1, *in2;
-    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
-
-    stride /= sizeof(*src);
-    in1 = src;
-    in2 = src + ((m*2) - 1) * stride;
-
-    for (int i = 0; i < m; i++) {
-        FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] };
-        CMUL3(z[s->revtab[i]], tmp, exp[i]);
-    }
-
-    fftp(z);
-
-    for (int i = 0; i < len8; i++) {
-        const int i0 = len8 + i, i1 = len8 - i - 1;
-        FFTComplex src1 = { z[i1].im, z[i1].re };
-        FFTComplex src0 = { z[i0].im, z[i0].re };
-
-        CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
-        CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
-    }
-}
-
-static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src,
-                            ptrdiff_t stride)
-{
-    float *src = _src, *dst = _dst;
-    FFTComplex *exp = s->exptab, tmp, *z = _dst;
-    const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1;
-    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
-
-    stride /= sizeof(*dst);
-
-    for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */
-        const int k = 2*i;
-        if (k < len4) {
-            tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];
-            tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];
-        } else {
-            tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];
-            tmp.im =  src[-len4 + k] - src[1*len3 - 1 - k];
-        }
-        CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im,
-             exp[i].re, exp[i].im);
-    }
-
-    fftp(z);
-
-    for (int i = 0; i < len8; i++) {
-        const int i0 = len8 + i, i1 = len8 - i - 1;
-        FFTComplex src1 = { z[i1].re, z[i1].im };
-        FFTComplex src0 = { z[i0].re, z[i0].im };
-
-        CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
-             exp[i0].im, exp[i0].re);
-        CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
-             exp[i1].im, exp[i1].re);
-    }
-}
+#include "tx_priv.h"
 
 /* Calculates the modular multiplicative inverse, not fast, replace */
-static int mulinv(int n, int m)
+static av_always_inline int mulinv(int n, int m)
 {
     n = n % m;
     for (int x = 1; x < m; x++)
@@ -601,14 +29,17 @@ static int mulinv(int n, int m)
 }
 
 /* Guaranteed to work for any n, m where gcd(n, m) == 1 */
-static int gen_compound_mapping(AVTXContext *s, int n, int m, int inv,
-                                enum AVTXType type)
+int ff_tx_gen_compound_mapping(AVTXContext *s)
 {
     int *in_map, *out_map;
+    const int n     = s->n;
+    const int m     = s->m;
+    const int inv   = s->inv;
+    const int type  = s->type;
     const int len   = n*m;
     const int m_inv = mulinv(m, n);
     const int n_inv = mulinv(n, m);
-    const int mdct  = type == AV_TX_FLOAT_MDCT;
+    const int mdct  = type == AV_TX_FLOAT_MDCT || type == AV_TX_DOUBLE_MDCT;
 
     if (!(s->pfatab = av_malloc(2*len*sizeof(*s->pfatab))))
         return AVERROR(ENOMEM);
@@ -619,7 +50,7 @@ static int gen_compound_mapping(AVTXContext *s, int n, int m, int inv,
     /* Ruritanian map for input, CRT map for output, can be swapped */
     for (int j = 0; j < m; j++) {
         for (int i = 0; i < n; i++) {
-            /* Shifted by 1 to simplify forward MDCTs */
+            /* Shifted by 1 to simplify MDCTs */
             in_map[j*n + i] = ((i*m + j*n) % len) << mdct;
             out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
         }
@@ -649,23 +80,10 @@ static int gen_compound_mapping(AVTXContext *s, int n, int m, int inv,
     return 0;
 }
 
-static int split_radix_permutation(int i, int n, int inverse)
+int ff_tx_gen_ptwo_revtab(AVTXContext *s)
 {
-    int m;
-    if (n <= 2)
-        return i & 1;
-    m = n >> 1;
-    if (!(i & m))
-        return split_radix_permutation(i, m, inverse)*2;
-    m >>= 1;
-    if (inverse == !(i & m))
-        return split_radix_permutation(i, m, inverse)*4 + 1;
-    else
-        return split_radix_permutation(i, m, inverse)*4 - 1;
-}
+    const int m = s->m, inv = s->inv;
 
-static int get_ptwo_revtab(AVTXContext *s, int m, int inv)
-{
     if (!(s->revtab = av_malloc(m*sizeof(*s->revtab))))
         return AVERROR(ENOMEM);
 
@@ -678,23 +96,6 @@ static int get_ptwo_revtab(AVTXContext *s, int m, int inv)
     return 0;
 }
 
-static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
-{
-    const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
-
-    if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab))))
-        return AVERROR(ENOMEM);
-
-    scale = sqrt(fabs(scale));
-    for (int i = 0; i < len4; i++) {
-        const double alpha = M_PI_2 * (i + theta) / len4;
-        s->exptab[i].re = cos(alpha) * scale;
-        s->exptab[i].im = sin(alpha) * scale;
-    }
-
-    return 0;
-}
-
 av_cold void av_tx_uninit(AVTXContext **ctx)
 {
     if (!(*ctx))
@@ -708,71 +109,6 @@ av_cold void av_tx_uninit(AVTXContext **ctx)
     av_freep(ctx);
 }
 
-static int init_mdct_fft(AVTXContext *s, av_tx_fn *tx, enum AVTXType type,
-                         int inv, int len, const void *scale, uint64_t flags)
-{
-    int err, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) + 1);
-
-    if (type == AV_TX_FLOAT_MDCT)
-        len >>= 1;
-
-#define CHECK_FACTOR(DST, FACTOR, SRC)                                         \
-    if (DST == 1 && !(SRC % FACTOR)) {                                         \
-        DST = FACTOR;                                                          \
-        SRC /= FACTOR;                                                         \
-    }
-    CHECK_FACTOR(n, 15, len)
-    CHECK_FACTOR(n,  5, len)
-    CHECK_FACTOR(n,  3, len)
-#undef CHECK_NPTWO_FACTOR
-
-    /* len must be a power of two now */
-    if (!(len & (len - 1)) && len >= 4 && len <= max_ptwo) {
-        m = len;
-        len = 1;
-    }
-
-    /* Filter out direct 3, 5 and 15 transforms, too niche */
-    if (len > 1 || m == 1) {
-        av_log(NULL, AV_LOG_ERROR, "Unsupported transform size: n = %i, "
-               "m = %i, residual = %i!\n", n, m, len);
-        return AVERROR(EINVAL);
-    } else if (n > 1 && m > 1) { /* 2D transform case */
-        if ((err = gen_compound_mapping(s, n, m, inv, type)))
-            return err;
-        if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp))))
-            return AVERROR(ENOMEM);
-        *tx = n == 3 ? compound_fft_3xM :
-              n == 5 ? compound_fft_5xM :
-                       compound_fft_15xM;
-        if (type == AV_TX_FLOAT_MDCT)
-            *tx = n == 3 ? inv ? compound_imdct_3xM  : compound_mdct_3xM :
-                  n == 5 ? inv ? compound_imdct_5xM  : compound_mdct_5xM :
-                           inv ? compound_imdct_15xM : compound_mdct_15xM;
-    } else { /* Direct transform case */
-        *tx = monolithic_fft;
-        if (type == AV_TX_FLOAT_MDCT)
-            *tx = inv ? monolithic_imdct : monolithic_mdct;
-    }
-
-    if (n != 1)
-        ff_thread_once(&tabs_53_once, ff_init_53_tabs);
-    if (m != 1) {
-        get_ptwo_revtab(s, m, inv);
-        for (int i = 4; i <= av_log2(m); i++)
-            ff_init_ff_cos_tabs(i);
-    }
-
-    if (type == AV_TX_FLOAT_MDCT)
-        if ((err = gen_mdct_exptab(s, n*m, *((float *)scale))))
-            return err;
-
-    s->n = n;
-    s->m = m;
-
-    return 0;
-}
-
 av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
                        int inv, int len, const void *scale, uint64_t flags)
 {
@@ -784,7 +120,12 @@ av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
     switch (type) {
     case AV_TX_FLOAT_FFT:
     case AV_TX_FLOAT_MDCT:
-        if ((err = init_mdct_fft(s, tx, type, inv, len, scale, flags)))
+        if ((err = ff_tx_init_mdct_fft_float(s, tx, type, inv, len, scale, flags)))
+            goto fail;
+        break;
+    case AV_TX_DOUBLE_FFT:
+    case AV_TX_DOUBLE_MDCT:
+        if ((err = ff_tx_init_mdct_fft_double(s, tx, type, inv, len, scale, flags)))
             goto fail;
         break;
     default:
diff --git a/libavutil/tx.h b/libavutil/tx.h
index b1f2d96353..d6cdfdf9f2 100644
--- a/libavutil/tx.h
+++ b/libavutil/tx.h
@@ -28,6 +28,10 @@ typedef struct AVComplexFloat {
     float re, im;
 } AVComplexFloat;
 
+typedef struct AVComplexDouble {
+    double re, im;
+} AVComplexDouble;
+
 enum AVTXType {
     /**
      * Standard complex to complex FFT with sample data type AVComplexFloat.
@@ -39,6 +43,14 @@ enum AVTXType {
      * float. Length is the frame size, not the window size (which is 2x frame)
      */
     AV_TX_FLOAT_MDCT = 1,
+    /**
+     * Same as AV_TX_FLOAT_FFT with a data type of AVComplexDouble.
+     */
+    AV_TX_DOUBLE_FFT = 2,
+    /**
+     * Same as AV_TX_FLOAT_MDCT with data and scale type of double.
+     */
+    AV_TX_DOUBLE_MDCT = 3,
 };
 
 /**
diff --git a/libavutil/tx_double.c b/libavutil/tx_double.c
new file mode 100644
index 0000000000..7ea4283c94
--- /dev/null
+++ b/libavutil/tx_double.c
@@ -0,0 +1,21 @@
+/*
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#define TX_DOUBLE
+#include "tx_priv.h"
+#include "tx_template.c"
diff --git a/libavutil/tx_float.c b/libavutil/tx_float.c
new file mode 100644
index 0000000000..018f2a21ac
--- /dev/null
+++ b/libavutil/tx_float.c
@@ -0,0 +1,21 @@
+/*
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#define TX_FLOAT
+#include "tx_priv.h"
+#include "tx_template.c"
diff --git a/libavutil/tx_priv.h b/libavutil/tx_priv.h
new file mode 100644
index 0000000000..94517b4b47
--- /dev/null
+++ b/libavutil/tx_priv.h
@@ -0,0 +1,105 @@
+/*
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef AVUTIL_TX_PRIV_H
+#define AVUTIL_TX_PRIV_H
+
+#include "tx.h"
+#include <stddef.h>
+#include "thread.h"
+#include "mem.h"
+#include "avassert.h"
+#include "attributes.h"
+
+#ifdef TX_FLOAT
+#define TX_NAME(x) x ## _float
+typedef float FFTSample;
+typedef AVComplexFloat FFTComplex;
+#elif defined(TX_DOUBLE)
+#define TX_NAME(x) x ## _double
+typedef double FFTSample;
+typedef AVComplexDouble FFTComplex;
+#else
+typedef void FFTComplex;
+#endif
+
+#if defined(TX_FLOAT) || defined(TX_DOUBLE)
+#define BF(x, y, a, b) do {                                                    \
+        x = (a) - (b);                                                         \
+        y = (a) + (b);                                                         \
+    } while (0)
+
+#define CMUL(dre, dim, are, aim, bre, bim) do {                                \
+        (dre) = (are) * (bre) - (aim) * (bim);                                 \
+        (dim) = (are) * (bim) + (aim) * (bre);                                 \
+    } while (0)
+#endif
+
+#define CMUL3(c, a, b)                                                         \
+    CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
+
+#define COSTABLE(size) \
+    DECLARE_ALIGNED(32, FFTSample, TX_NAME(ff_cos_##size))[size/2]
+
+/* Used by asm, reorder with care */
+struct AVTXContext {
+    int n;              /* Nptwo part */
+    int m;              /* Ptwo part */
+    int inv;            /* Is inverted */
+    int type;           /* Type */
+
+    FFTComplex *exptab; /* MDCT exptab */
+    FFTComplex *tmp;    /* Temporary buffer needed for all compound transforms */
+    int        *pfatab; /* Input/Output mapping for compound transforms */
+    int        *revtab; /* Input mapping for power of two transforms */
+};
+
+/* Shared functions */
+int ff_tx_gen_compound_mapping(AVTXContext *s);
+int ff_tx_gen_ptwo_revtab(AVTXContext *s);
+
+/* Also used by SIMD init */
+static inline int split_radix_permutation(int i, int n, int inverse)
+{
+    int m;
+    if (n <= 2)
+        return i & 1;
+    m = n >> 1;
+    if (!(i & m))
+        return split_radix_permutation(i, m, inverse)*2;
+    m >>= 1;
+    if (inverse == !(i & m))
+        return split_radix_permutation(i, m, inverse)*4 + 1;
+    else
+        return split_radix_permutation(i, m, inverse)*4 - 1;
+}
+
+/* Templated functions */
+int ff_tx_init_mdct_fft_float(AVTXContext *s, av_tx_fn *tx,
+                              enum AVTXType type, int inv, int len,
+                              const void *scale, uint64_t flags);
+int ff_tx_init_mdct_fft_double(AVTXContext *s, av_tx_fn *tx,
+                               enum AVTXType type, int inv, int len,
+                               const void *scale, uint64_t flags);
+
+typedef struct CosTabsInitOnce {
+    void (*func)(void);
+    AVOnce control;
+} CosTabsInitOnce;
+
+#endif /* AVUTIL_TX_PRIV_H */
diff --git a/libavutil/tx_template.c b/libavutil/tx_template.c
new file mode 100644
index 0000000000..9196ee383d
--- /dev/null
+++ b/libavutil/tx_template.c
@@ -0,0 +1,643 @@
+/*
+ * Copyright (c) 2019 Lynne <dev at lynne.ee>
+ * Power of two FFT:
+ * Copyright (c) 2008 Loren Merritt
+ * Copyright (c) 2002 Fabrice Bellard
+ * Partly based on libdjbfft by D. J. Bernstein
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/* All costabs for a type are defined here */
+COSTABLE(16);
+COSTABLE(32);
+COSTABLE(64);
+COSTABLE(128);
+COSTABLE(256);
+COSTABLE(512);
+COSTABLE(1024);
+COSTABLE(2048);
+COSTABLE(4096);
+COSTABLE(8192);
+COSTABLE(16384);
+COSTABLE(32768);
+COSTABLE(65536);
+COSTABLE(131072);
+DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4];
+
+static FFTSample * const cos_tabs[18] = {
+    NULL,
+    NULL,
+    NULL,
+    NULL,
+    TX_NAME(ff_cos_16),
+    TX_NAME(ff_cos_32),
+    TX_NAME(ff_cos_64),
+    TX_NAME(ff_cos_128),
+    TX_NAME(ff_cos_256),
+    TX_NAME(ff_cos_512),
+    TX_NAME(ff_cos_1024),
+    TX_NAME(ff_cos_2048),
+    TX_NAME(ff_cos_4096),
+    TX_NAME(ff_cos_8192),
+    TX_NAME(ff_cos_16384),
+    TX_NAME(ff_cos_32768),
+    TX_NAME(ff_cos_65536),
+    TX_NAME(ff_cos_131072),
+};
+
+static av_always_inline void init_cos_tabs_idx(int index)
+{
+    int m = 1 << index;
+    double freq = 2*M_PI/m;
+    FFTSample *tab = cos_tabs[index];
+    for(int i = 0; i <= m/4; i++)
+        tab[i] = cos(i*freq);
+    for(int i = 1; i < m/4; i++)
+        tab[m/2 - i] = tab[i];
+}
+
+#define INIT_FF_COS_TABS_FUNC(index, size)                                     \
+static av_cold void init_cos_tabs_ ## size (void)                              \
+{                                                                              \
+    init_cos_tabs_idx(index);                                                  \
+}
+
+INIT_FF_COS_TABS_FUNC(4, 16)
+INIT_FF_COS_TABS_FUNC(5, 32)
+INIT_FF_COS_TABS_FUNC(6, 64)
+INIT_FF_COS_TABS_FUNC(7, 128)
+INIT_FF_COS_TABS_FUNC(8, 256)
+INIT_FF_COS_TABS_FUNC(9, 512)
+INIT_FF_COS_TABS_FUNC(10, 1024)
+INIT_FF_COS_TABS_FUNC(11, 2048)
+INIT_FF_COS_TABS_FUNC(12, 4096)
+INIT_FF_COS_TABS_FUNC(13, 8192)
+INIT_FF_COS_TABS_FUNC(14, 16384)
+INIT_FF_COS_TABS_FUNC(15, 32768)
+INIT_FF_COS_TABS_FUNC(16, 65536)
+INIT_FF_COS_TABS_FUNC(17, 131072)
+
+static av_cold void ff_init_53_tabs(void)
+{
+    TX_NAME(ff_cos_53)[0] = (FFTComplex){ cos(2 * M_PI / 12), cos(2 * M_PI / 12) };
+    TX_NAME(ff_cos_53)[1] = (FFTComplex){ 0.5, 0.5 };
+    TX_NAME(ff_cos_53)[2] = (FFTComplex){ cos(2 * M_PI /  5), sin(2 * M_PI /  5) };
+    TX_NAME(ff_cos_53)[3] = (FFTComplex){ cos(2 * M_PI / 10), sin(2 * M_PI / 10) };
+}
+
+static CosTabsInitOnce cos_tabs_init_once[] = {
+    { ff_init_53_tabs, AV_ONCE_INIT },
+    { NULL },
+    { NULL },
+    { NULL },
+    { init_cos_tabs_16, AV_ONCE_INIT },
+    { init_cos_tabs_32, AV_ONCE_INIT },
+    { init_cos_tabs_64, AV_ONCE_INIT },
+    { init_cos_tabs_128, AV_ONCE_INIT },
+    { init_cos_tabs_256, AV_ONCE_INIT },
+    { init_cos_tabs_512, AV_ONCE_INIT },
+    { init_cos_tabs_1024, AV_ONCE_INIT },
+    { init_cos_tabs_2048, AV_ONCE_INIT },
+    { init_cos_tabs_4096, AV_ONCE_INIT },
+    { init_cos_tabs_8192, AV_ONCE_INIT },
+    { init_cos_tabs_16384, AV_ONCE_INIT },
+    { init_cos_tabs_32768, AV_ONCE_INIT },
+    { init_cos_tabs_65536, AV_ONCE_INIT },
+    { init_cos_tabs_131072, AV_ONCE_INIT },
+};
+
+static av_cold void init_cos_tabs(int index)
+{
+    ff_thread_once(&cos_tabs_init_once[index].control,
+                    cos_tabs_init_once[index].func);
+}
+
+static av_always_inline void fft3(FFTComplex *out, FFTComplex *in,
+                                  ptrdiff_t stride)
+{
+    FFTComplex tmp[2];
+
+    tmp[0].re = in[1].im - in[2].im;
+    tmp[0].im = in[1].re - in[2].re;
+    tmp[1].re = in[1].re + in[2].re;
+    tmp[1].im = in[1].im + in[2].im;
+
+    out[0*stride].re = in[0].re + tmp[1].re;
+    out[0*stride].im = in[0].im + tmp[1].im;
+
+    tmp[0].re *= TX_NAME(ff_cos_53)[0].re;
+    tmp[0].im *= TX_NAME(ff_cos_53)[0].im;
+    tmp[1].re *= TX_NAME(ff_cos_53)[1].re;
+    tmp[1].im *= TX_NAME(ff_cos_53)[1].re;
+
+    out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re;
+    out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im;
+    out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re;
+    out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im;
+}
+
+#define DECL_FFT5(NAME, D0, D1, D2, D3, D4)                                    \
+static av_always_inline void NAME(FFTComplex *out, FFTComplex *in,             \
+                                  ptrdiff_t stride)                            \
+{                                                                              \
+    FFTComplex z0[4], t[6];                                                    \
+                                                                               \
+    t[0].re = in[1].re + in[4].re;                                             \
+    t[0].im = in[1].im + in[4].im;                                             \
+    t[1].im = in[1].re - in[4].re;                                             \
+    t[1].re = in[1].im - in[4].im;                                             \
+    t[2].re = in[2].re + in[3].re;                                             \
+    t[2].im = in[2].im + in[3].im;                                             \
+    t[3].im = in[2].re - in[3].re;                                             \
+    t[3].re = in[2].im - in[3].im;                                             \
+                                                                               \
+    out[D0*stride].re = in[0].re + in[1].re + in[2].re +                       \
+                        in[3].re + in[4].re;                                   \
+    out[D0*stride].im = in[0].im + in[1].im + in[2].im +                       \
+                        in[3].im + in[4].im;                                   \
+                                                                               \
+    t[4].re  = TX_NAME(ff_cos_53)[2].re * t[2].re;                             \
+    t[4].im  = TX_NAME(ff_cos_53)[2].re * t[2].im;                             \
+    t[4].re -= TX_NAME(ff_cos_53)[3].re * t[0].re;                             \
+    t[4].im -= TX_NAME(ff_cos_53)[3].re * t[0].im;                             \
+    t[0].re  = TX_NAME(ff_cos_53)[2].re * t[0].re;                             \
+    t[0].im  = TX_NAME(ff_cos_53)[2].re * t[0].im;                             \
+    t[0].re -= TX_NAME(ff_cos_53)[3].re * t[2].re;                             \
+    t[0].im -= TX_NAME(ff_cos_53)[3].re * t[2].im;                             \
+    t[5].re  = TX_NAME(ff_cos_53)[2].im * t[3].re;                             \
+    t[5].im  = TX_NAME(ff_cos_53)[2].im * t[3].im;                             \
+    t[5].re -= TX_NAME(ff_cos_53)[3].im * t[1].re;                             \
+    t[5].im -= TX_NAME(ff_cos_53)[3].im * t[1].im;                             \
+    t[1].re  = TX_NAME(ff_cos_53)[2].im * t[1].re;                             \
+    t[1].im  = TX_NAME(ff_cos_53)[2].im * t[1].im;                             \
+    t[1].re += TX_NAME(ff_cos_53)[3].im * t[3].re;                             \
+    t[1].im += TX_NAME(ff_cos_53)[3].im * t[3].im;                             \
+                                                                               \
+    z0[0].re = t[0].re - t[1].re;                                              \
+    z0[0].im = t[0].im - t[1].im;                                              \
+    z0[1].re = t[4].re + t[5].re;                                              \
+    z0[1].im = t[4].im + t[5].im;                                              \
+                                                                               \
+    z0[2].re = t[4].re - t[5].re;                                              \
+    z0[2].im = t[4].im - t[5].im;                                              \
+    z0[3].re = t[0].re + t[1].re;                                              \
+    z0[3].im = t[0].im + t[1].im;                                              \
+                                                                               \
+    out[D1*stride].re = in[0].re + z0[3].re;                                   \
+    out[D1*stride].im = in[0].im + z0[0].im;                                   \
+    out[D2*stride].re = in[0].re + z0[2].re;                                   \
+    out[D2*stride].im = in[0].im + z0[1].im;                                   \
+    out[D3*stride].re = in[0].re + z0[1].re;                                   \
+    out[D3*stride].im = in[0].im + z0[2].im;                                   \
+    out[D4*stride].re = in[0].re + z0[0].re;                                   \
+    out[D4*stride].im = in[0].im + z0[3].im;                                   \
+}
+
+DECL_FFT5(fft5,     0,  1,  2,  3,  4)
+DECL_FFT5(fft5_m1,  0,  6, 12,  3,  9)
+DECL_FFT5(fft5_m2, 10,  1,  7, 13,  4)
+DECL_FFT5(fft5_m3,  5, 11,  2,  8, 14)
+
+static av_always_inline void fft15(FFTComplex *out, FFTComplex *in,
+                                   ptrdiff_t stride)
+{
+    FFTComplex tmp[15];
+
+    for (int i = 0; i < 5; i++)
+        fft3(tmp + i, in + i*3, 5);
+
+    fft5_m1(out, tmp +  0, stride);
+    fft5_m2(out, tmp +  5, stride);
+    fft5_m3(out, tmp + 10, stride);
+}
+
+#define BUTTERFLIES(a0,a1,a2,a3) {\
+    BF(t3, t5, t5, t1);\
+    BF(a2.re, a0.re, a0.re, t5);\
+    BF(a3.im, a1.im, a1.im, t3);\
+    BF(t4, t6, t2, t6);\
+    BF(a3.re, a1.re, a1.re, t4);\
+    BF(a2.im, a0.im, a0.im, t6);\
+}
+
+// force loading all the inputs before storing any.
+// this is slightly slower for small data, but avoids store->load aliasing
+// for addresses separated by large powers of 2.
+#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
+    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
+    BF(t3, t5, t5, t1);\
+    BF(a2.re, a0.re, r0, t5);\
+    BF(a3.im, a1.im, i1, t3);\
+    BF(t4, t6, t2, t6);\
+    BF(a3.re, a1.re, r1, t4);\
+    BF(a2.im, a0.im, i0, t6);\
+}
+
+#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
+    CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
+    CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
+    BUTTERFLIES(a0,a1,a2,a3)\
+}
+
+#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
+    t1 = a2.re;\
+    t2 = a2.im;\
+    t5 = a3.re;\
+    t6 = a3.im;\
+    BUTTERFLIES(a0,a1,a2,a3)\
+}
+
+/* z[0...8n-1], w[1...2n-1] */
+#define PASS(name)\
+static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
+{\
+    FFTSample t1, t2, t3, t4, t5, t6;\
+    int o1 = 2*n;\
+    int o2 = 4*n;\
+    int o3 = 6*n;\
+    const FFTSample *wim = wre+o1;\
+    n--;\
+\
+    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
+    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
+    do {\
+        z += 2;\
+        wre += 2;\
+        wim -= 2;\
+        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
+        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
+    } while(--n);\
+}
+
+PASS(pass)
+#undef BUTTERFLIES
+#define BUTTERFLIES BUTTERFLIES_BIG
+PASS(pass_big)
+
+#define DECL_FFT(n,n2,n4)\
+static void fft##n(FFTComplex *z)\
+{\
+    fft##n2(z);\
+    fft##n4(z+n4*2);\
+    fft##n4(z+n4*3);\
+    pass(z,TX_NAME(ff_cos_##n),n4/2);\
+}
+
+static void fft4(FFTComplex *z)
+{
+    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
+
+    BF(t3, t1, z[0].re, z[1].re);
+    BF(t8, t6, z[3].re, z[2].re);
+    BF(z[2].re, z[0].re, t1, t6);
+    BF(t4, t2, z[0].im, z[1].im);
+    BF(t7, t5, z[2].im, z[3].im);
+    BF(z[3].im, z[1].im, t4, t8);
+    BF(z[3].re, z[1].re, t3, t7);
+    BF(z[2].im, z[0].im, t2, t5);
+}
+
+static void fft8(FFTComplex *z)
+{
+    FFTSample t1, t2, t3, t4, t5, t6;
+
+    fft4(z);
+
+    BF(t1, z[5].re, z[4].re, -z[5].re);
+    BF(t2, z[5].im, z[4].im, -z[5].im);
+    BF(t5, z[7].re, z[6].re, -z[7].re);
+    BF(t6, z[7].im, z[6].im, -z[7].im);
+
+    BUTTERFLIES(z[0],z[2],z[4],z[6]);
+    TRANSFORM(z[1],z[3],z[5],z[7],M_SQRT1_2,M_SQRT1_2);
+}
+
+static void fft16(FFTComplex *z)
+{
+    FFTSample t1, t2, t3, t4, t5, t6;
+    FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1];
+    FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3];
+
+    fft8(z);
+    fft4(z+8);
+    fft4(z+12);
+
+    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
+    TRANSFORM(z[2],z[6],z[10],z[14],M_SQRT1_2,M_SQRT1_2);
+    TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
+    TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
+}
+
+DECL_FFT(32,16,8)
+DECL_FFT(64,32,16)
+DECL_FFT(128,64,32)
+DECL_FFT(256,128,64)
+DECL_FFT(512,256,128)
+#define pass pass_big
+DECL_FFT(1024,512,256)
+DECL_FFT(2048,1024,512)
+DECL_FFT(4096,2048,1024)
+DECL_FFT(8192,4096,2048)
+DECL_FFT(16384,8192,4096)
+DECL_FFT(32768,16384,8192)
+DECL_FFT(65536,32768,16384)
+DECL_FFT(131072,65536,32768)
+
+static void (* const fft_dispatch[])(FFTComplex*) = {
+    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
+    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
+};
+
+#define DECL_COMP_FFT(N)                                                       \
+static void compound_fft_##N##xM(AVTXContext *s, void *_out,                   \
+                                 void *_in, ptrdiff_t stride)                  \
+{                                                                              \
+    const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m;          \
+    FFTComplex *in = _in;                                                      \
+    FFTComplex *out = _out;                                                    \
+    FFTComplex fft##N##in[N];                                                  \
+    void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m) - 2];                \
+                                                                               \
+    for (int i = 0; i < m; i++) {                                              \
+        for (int j = 0; j < N; j++)                                            \
+            fft##N##in[j] = in[in_map[i*N + j]];                               \
+        fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
+    }                                                                          \
+                                                                               \
+    for (int i = 0; i < N; i++)                                                \
+        fftp(s->tmp + m*i);                                                    \
+                                                                               \
+    for (int i = 0; i < N*m; i++)                                              \
+        out[i] = s->tmp[out_map[i]];                                           \
+}
+
+DECL_COMP_FFT(3)
+DECL_COMP_FFT(5)
+DECL_COMP_FFT(15)
+
+static void monolithic_fft(AVTXContext *s, void *_out, void *_in,
+                           ptrdiff_t stride)
+{
+    FFTComplex *in = _in;
+    FFTComplex *out = _out;
+    int m = s->m, mb = av_log2(m) - 2;
+    for (int i = 0; i < m; i++)
+        out[s->revtab[i]] = in[i];
+    fft_dispatch[mb](out);
+}
+
+#define DECL_COMP_IMDCT(N)                                                     \
+static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src,     \
+                                   ptrdiff_t stride)                           \
+{                                                                              \
+    FFTComplex fft##N##in[N];                                                  \
+    FFTComplex *z = _dst, *exp = s->exptab;                                    \
+    const int m = s->m, len8 = N*m >> 1;                                       \
+    const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
+    const FFTSample *src = _src, *in1, *in2;                                   \
+    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
+                                                                               \
+    stride /= sizeof(*src); /* To convert it from bytes */                     \
+    in1 = src;                                                                 \
+    in2 = src + ((N*m*2) - 1) * stride;                                        \
+                                                                               \
+    for (int i = 0; i < m; i++) {                                              \
+        for (int j = 0; j < N; j++) {                                          \
+            const int k = in_map[i*N + j];                                     \
+            FFTComplex tmp = { in2[-k*stride], in1[k*stride] };                \
+            CMUL3(fft##N##in[j], tmp, exp[k >> 1]);                            \
+        }                                                                      \
+        fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
+    }                                                                          \
+                                                                               \
+    for (int i = 0; i < N; i++)                                                \
+        fftp(s->tmp + m*i);                                                    \
+                                                                               \
+    for (int i = 0; i < len8; i++) {                                           \
+        const int i0 = len8 + i, i1 = len8 - i - 1;                            \
+        const int s0 = out_map[i0], s1 = out_map[i1];                          \
+        FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re };                    \
+        FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re };                    \
+                                                                               \
+        CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);    \
+        CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);    \
+    }                                                                          \
+}
+
+DECL_COMP_IMDCT(3)
+DECL_COMP_IMDCT(5)
+DECL_COMP_IMDCT(15)
+
+#define DECL_COMP_MDCT(N)                                                      \
+static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src,      \
+                                  ptrdiff_t stride)                            \
+{                                                                              \
+    FFTSample *src = _src, *dst = _dst;                                        \
+    FFTComplex *exp = s->exptab, tmp, fft##N##in[N];                           \
+    const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1;         \
+    const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
+    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
+                                                                               \
+    stride /= sizeof(*dst);                                                    \
+                                                                               \
+    for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */             \
+        for (int j = 0; j < N; j++) {                                          \
+            const int k = in_map[i*N + j];                                     \
+            if (k < len4) {                                                    \
+                tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];                \
+                tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];                \
+            } else {                                                           \
+                tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];                \
+                tmp.im =  src[-len4 + k] - src[1*len3 - 1 - k];                \
+            }                                                                  \
+            CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im,           \
+                 exp[k >> 1].re, exp[k >> 1].im);                              \
+        }                                                                      \
+        fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
+    }                                                                          \
+                                                                               \
+    for (int i = 0; i < N; i++)                                                \
+        fftp(s->tmp + m*i);                                                    \
+                                                                               \
+    for (int i = 0; i < len8; i++) {                                           \
+        const int i0 = len8 + i, i1 = len8 - i - 1;                            \
+        const int s0 = out_map[i0], s1 = out_map[i1];                          \
+        FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im };                    \
+        FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im };                    \
+                                                                               \
+        CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,    \
+             exp[i0].im, exp[i0].re);                                          \
+        CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,    \
+             exp[i1].im, exp[i1].re);                                          \
+    }                                                                          \
+}
+
+DECL_COMP_MDCT(3)
+DECL_COMP_MDCT(5)
+DECL_COMP_MDCT(15)
+
+static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src,
+                             ptrdiff_t stride)
+{
+    FFTComplex *z = _dst, *exp = s->exptab;
+    const int m = s->m, len8 = m >> 1;
+    const FFTSample *src = _src, *in1, *in2;
+    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
+
+    stride /= sizeof(*src);
+    in1 = src;
+    in2 = src + ((m*2) - 1) * stride;
+
+    for (int i = 0; i < m; i++) {
+        FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] };
+        CMUL3(z[s->revtab[i]], tmp, exp[i]);
+    }
+
+    fftp(z);
+
+    for (int i = 0; i < len8; i++) {
+        const int i0 = len8 + i, i1 = len8 - i - 1;
+        FFTComplex src1 = { z[i1].im, z[i1].re };
+        FFTComplex src0 = { z[i0].im, z[i0].re };
+
+        CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
+        CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
+    }
+}
+
+static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src,
+                            ptrdiff_t stride)
+{
+    FFTSample *src = _src, *dst = _dst;
+    FFTComplex *exp = s->exptab, tmp, *z = _dst;
+    const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1;
+    void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
+
+    stride /= sizeof(*dst);
+
+    for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */
+        const int k = 2*i;
+        if (k < len4) {
+            tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];
+            tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];
+        } else {
+            tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];
+            tmp.im =  src[-len4 + k] - src[1*len3 - 1 - k];
+        }
+        CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im,
+             exp[i].re, exp[i].im);
+    }
+
+    fftp(z);
+
+    for (int i = 0; i < len8; i++) {
+        const int i0 = len8 + i, i1 = len8 - i - 1;
+        FFTComplex src1 = { z[i1].re, z[i1].im };
+        FFTComplex src0 = { z[i0].re, z[i0].im };
+
+        CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
+             exp[i0].im, exp[i0].re);
+        CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
+             exp[i1].im, exp[i1].re);
+    }
+}
+
+static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
+{
+    const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
+
+    if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab))))
+        return AVERROR(ENOMEM);
+
+    scale = sqrt(fabs(scale));
+    for (int i = 0; i < len4; i++) {
+        const double alpha = M_PI_2 * (i + theta) / len4;
+        s->exptab[i].re = cos(alpha) * scale;
+        s->exptab[i].im = sin(alpha) * scale;
+    }
+
+    return 0;
+}
+
+int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx,
+                                 enum AVTXType type, int inv, int len,
+                                 const void *scale, uint64_t flags)
+{
+    const int is_mdct = type == AV_TX_FLOAT_MDCT || type == AV_TX_DOUBLE_MDCT;
+    int err, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) + 1);
+
+    if (is_mdct)
+        len >>= 1;
+
+#define CHECK_FACTOR(DST, FACTOR, SRC)                                         \
+    if (DST == 1 && !(SRC % FACTOR)) {                                         \
+        DST = FACTOR;                                                          \
+        SRC /= FACTOR;                                                         \
+    }
+    CHECK_FACTOR(n, 15, len)
+    CHECK_FACTOR(n,  5, len)
+    CHECK_FACTOR(n,  3, len)
+#undef CHECK_NPTWO_FACTOR
+
+    /* len must be a power of two now */
+    if (!(len & (len - 1)) && len >= 4 && len <= max_ptwo) {
+        m = len;
+        len = 1;
+    }
+
+    s->n = n;
+    s->m = m;
+    s->inv = inv;
+    s->type = type;
+
+    /* Filter out direct 3, 5 and 15 transforms, too niche */
+    if (len > 1 || m == 1) {
+        av_log(NULL, AV_LOG_ERROR, "Unsupported transform size: n = %i, "
+               "m = %i, residual = %i!\n", n, m, len);
+        return AVERROR(EINVAL);
+    } else if (n > 1 && m > 1) { /* 2D transform case */
+        if ((err = ff_tx_gen_compound_mapping(s)))
+            return err;
+        if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp))))
+            return AVERROR(ENOMEM);
+        *tx = n == 3 ? compound_fft_3xM :
+              n == 5 ? compound_fft_5xM :
+                       compound_fft_15xM;
+        if (is_mdct)
+            *tx = n == 3 ? inv ? compound_imdct_3xM  : compound_mdct_3xM :
+                  n == 5 ? inv ? compound_imdct_5xM  : compound_mdct_5xM :
+                           inv ? compound_imdct_15xM : compound_mdct_15xM;
+    } else { /* Direct transform case */
+        *tx = monolithic_fft;
+        if (is_mdct)
+            *tx = inv ? monolithic_imdct : monolithic_mdct;
+    }
+
+    if (n != 1)
+        init_cos_tabs(0);
+    if (m != 1) {
+        ff_tx_gen_ptwo_revtab(s);
+        for (int i = 4; i <= av_log2(m); i++)
+            init_cos_tabs(i);
+    }
+
+    if (is_mdct)
+        return gen_mdct_exptab(s, n*m, *((FFTSample *)scale));
+
+    return 0;
+}
diff --git a/libavutil/version.h b/libavutil/version.h
index d28f21ce61..ecc6a7c9e2 100644
--- a/libavutil/version.h
+++ b/libavutil/version.h
@@ -79,7 +79,7 @@
  */
 
 #define LIBAVUTIL_VERSION_MAJOR  56
-#define LIBAVUTIL_VERSION_MINOR  32
+#define LIBAVUTIL_VERSION_MINOR  33
 #define LIBAVUTIL_VERSION_MICRO 100
 
 #define LIBAVUTIL_VERSION_INT   AV_VERSION_INT(LIBAVUTIL_VERSION_MAJOR, \



More information about the ffmpeg-cvslog mailing list