00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00028 #include <assert.h>
00029
00030 #include <limits.h>
00031
00032 #include "common.h"
00033 #include "mathematics.h"
00034 #include "rational.h"
00035
00036 int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max){
00037 AVRational a0={0,1}, a1={1,0};
00038 int sign= (num<0) ^ (den<0);
00039 int64_t gcd= av_gcd(FFABS(num), FFABS(den));
00040
00041 if(gcd){
00042 num = FFABS(num)/gcd;
00043 den = FFABS(den)/gcd;
00044 }
00045 if(num<=max && den<=max){
00046 a1= (AVRational){num, den};
00047 den=0;
00048 }
00049
00050 while(den){
00051 uint64_t x = num / den;
00052 int64_t next_den= num - den*x;
00053 int64_t a2n= x*a1.num + a0.num;
00054 int64_t a2d= x*a1.den + a0.den;
00055
00056 if(a2n > max || a2d > max){
00057 if(a1.num) x= (max - a0.num) / a1.num;
00058 if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den);
00059
00060 if (den*(2*x*a1.den + a0.den) > num*a1.den)
00061 a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den};
00062 break;
00063 }
00064
00065 a0= a1;
00066 a1= (AVRational){a2n, a2d};
00067 num= den;
00068 den= next_den;
00069 }
00070 assert(av_gcd(a1.num, a1.den) <= 1U);
00071
00072 *dst_num = sign ? -a1.num : a1.num;
00073 *dst_den = a1.den;
00074
00075 return den==0;
00076 }
00077
00078 AVRational av_mul_q(AVRational b, AVRational c){
00079 av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX);
00080 return b;
00081 }
00082
00083 AVRational av_div_q(AVRational b, AVRational c){
00084 return av_mul_q(b, (AVRational){c.den, c.num});
00085 }
00086
00087 AVRational av_add_q(AVRational b, AVRational c){
00088 av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX);
00089 return b;
00090 }
00091
00092 AVRational av_sub_q(AVRational b, AVRational c){
00093 return av_add_q(b, (AVRational){-c.num, c.den});
00094 }
00095
00096 AVRational av_d2q(double d, int max){
00097 AVRational a;
00098 #define LOG2 0.69314718055994530941723212145817656807550013436025
00099 int exponent= FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0);
00100 int64_t den= 1LL << (61 - exponent);
00101 if (isnan(d))
00102 return (AVRational){0,0};
00103 av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max);
00104
00105 return a;
00106 }
00107
00108 int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
00109 {
00110
00111 int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
00112 int64_t b = 2 * (int64_t)q1.den * q2.den;
00113
00114
00115 int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
00116
00117
00118 int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
00119
00120 return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
00121 }
00122
00123 int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
00124 {
00125 int i, nearest_q_idx = 0;
00126 for(i=0; q_list[i].den; i++)
00127 if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
00128 nearest_q_idx = i;
00129
00130 return nearest_q_idx;
00131 }