00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00043 #include <string.h>
00044 #include <math.h>
00045
00046 #include "avcodec.h"
00047 #include "get_bits.h"
00048 #include "libavutil/common.h"
00049 #include "celp_math.h"
00050 #include "celp_filters.h"
00051 #include "acelp_filters.h"
00052 #include "acelp_vectors.h"
00053 #include "acelp_pitch_delay.h"
00054 #include "lsp.h"
00055 #include "amr.h"
00056
00057 #include "amrnbdata.h"
00058
00059 #define AMR_BLOCK_SIZE 160
00060 #define AMR_SAMPLE_BOUND 32768.0
00061
00062
00071 #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
00072
00074 #define PRED_FAC_MODE_12k2 0.65
00075
00076 #define LSF_R_FAC (8000.0 / 32768.0)
00077 #define MIN_LSF_SPACING (50.0488 / 8000.0)
00078 #define PITCH_LAG_MIN_MODE_12k2 18
00079
00080
00081 #define MIN_ENERGY -14.0
00082
00088 #define SHARP_MAX 0.79449462890625
00089
00091 #define AMR_TILT_RESPONSE 22
00092
00093 #define AMR_TILT_GAMMA_T 0.8
00094
00095 #define AMR_AGC_ALPHA 0.9
00096
00097 typedef struct AMRContext {
00098 AMRNBFrame frame;
00099 uint8_t bad_frame_indicator;
00100 enum Mode cur_frame_mode;
00101
00102 int16_t prev_lsf_r[LP_FILTER_ORDER];
00103 double lsp[4][LP_FILTER_ORDER];
00104 double prev_lsp_sub4[LP_FILTER_ORDER];
00105
00106 float lsf_q[4][LP_FILTER_ORDER];
00107 float lsf_avg[LP_FILTER_ORDER];
00108
00109 float lpc[4][LP_FILTER_ORDER];
00110
00111 uint8_t pitch_lag_int;
00112
00113 float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE];
00114 float *excitation;
00115
00116 float pitch_vector[AMR_SUBFRAME_SIZE];
00117 float fixed_vector[AMR_SUBFRAME_SIZE];
00118
00119 float prediction_error[4];
00120 float pitch_gain[5];
00121 float fixed_gain[5];
00122
00123 float beta;
00124 uint8_t diff_count;
00125 uint8_t hang_count;
00126
00127 float prev_sparse_fixed_gain;
00128 uint8_t prev_ir_filter_nr;
00129 uint8_t ir_filter_onset;
00130
00131 float postfilter_mem[10];
00132 float tilt_mem;
00133 float postfilter_agc;
00134 float high_pass_mem[2];
00135
00136 float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE];
00137
00138 } AMRContext;
00139
00141 static void weighted_vector_sumd(double *out, const double *in_a,
00142 const double *in_b, double weight_coeff_a,
00143 double weight_coeff_b, int length)
00144 {
00145 int i;
00146
00147 for (i = 0; i < length; i++)
00148 out[i] = weight_coeff_a * in_a[i]
00149 + weight_coeff_b * in_b[i];
00150 }
00151
00152 static av_cold int amrnb_decode_init(AVCodecContext *avctx)
00153 {
00154 AMRContext *p = avctx->priv_data;
00155 int i;
00156
00157 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00158
00159
00160 p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
00161
00162 for (i = 0; i < LP_FILTER_ORDER; i++) {
00163 p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
00164 p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
00165 }
00166
00167 for (i = 0; i < 4; i++)
00168 p->prediction_error[i] = MIN_ENERGY;
00169
00170 return 0;
00171 }
00172
00173
00185 static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
00186 int buf_size)
00187 {
00188 GetBitContext gb;
00189 enum Mode mode;
00190
00191 init_get_bits(&gb, buf, buf_size * 8);
00192
00193
00194 skip_bits(&gb, 1);
00195 mode = get_bits(&gb, 4);
00196 p->bad_frame_indicator = !get_bits1(&gb);
00197 skip_bits(&gb, 2);
00198
00199 if (mode < MODE_DTX)
00200 ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
00201 amr_unpacking_bitmaps_per_mode[mode]);
00202
00203 return mode;
00204 }
00205
00206
00209
00217 static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
00218 {
00219 int i;
00220
00221 for (i = 0; i < 4; i++)
00222 ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
00223 0.25 * (3 - i), 0.25 * (i + 1),
00224 LP_FILTER_ORDER);
00225 }
00226
00238 static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
00239 const float lsf_no_r[LP_FILTER_ORDER],
00240 const int16_t *lsf_quantizer[5],
00241 const int quantizer_offset,
00242 const int sign, const int update)
00243 {
00244 int16_t lsf_r[LP_FILTER_ORDER];
00245 float lsf_q[LP_FILTER_ORDER];
00246 int i;
00247
00248 for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
00249 memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
00250 2 * sizeof(*lsf_r));
00251
00252 if (sign) {
00253 lsf_r[4] *= -1;
00254 lsf_r[5] *= -1;
00255 }
00256
00257 if (update)
00258 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
00259
00260 for (i = 0; i < LP_FILTER_ORDER; i++)
00261 lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
00262
00263 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
00264
00265 if (update)
00266 interpolate_lsf(p->lsf_q, lsf_q);
00267
00268 ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
00269 }
00270
00276 static void lsf2lsp_5(AMRContext *p)
00277 {
00278 const uint16_t *lsf_param = p->frame.lsf;
00279 float lsf_no_r[LP_FILTER_ORDER];
00280 const int16_t *lsf_quantizer[5];
00281 int i;
00282
00283 lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
00284 lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
00285 lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
00286 lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
00287 lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
00288
00289 for (i = 0; i < LP_FILTER_ORDER; i++)
00290 lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
00291
00292 lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
00293 lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
00294
00295
00296 weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
00297 weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
00298 }
00299
00305 static void lsf2lsp_3(AMRContext *p)
00306 {
00307 const uint16_t *lsf_param = p->frame.lsf;
00308 int16_t lsf_r[LP_FILTER_ORDER];
00309 float lsf_q[LP_FILTER_ORDER];
00310 const int16_t *lsf_quantizer;
00311 int i, j;
00312
00313 lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
00314 memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
00315
00316 lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
00317 memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
00318
00319 lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
00320 memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
00321
00322
00323 for (i = 0; i < LP_FILTER_ORDER; i++)
00324 lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
00325
00326 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
00327
00328
00329 interpolate_lsf(p->lsf_q, lsf_q);
00330 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
00331
00332 ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
00333
00334
00335 for (i = 1; i <= 3; i++)
00336 for(j = 0; j < LP_FILTER_ORDER; j++)
00337 p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
00338 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
00339 }
00340
00342
00343
00346
00350 static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
00351 const int prev_lag_int, const int subframe)
00352 {
00353 if (subframe == 0 || subframe == 2) {
00354 if (pitch_index < 463) {
00355 *lag_int = (pitch_index + 107) * 10923 >> 16;
00356 *lag_frac = pitch_index - *lag_int * 6 + 105;
00357 } else {
00358 *lag_int = pitch_index - 368;
00359 *lag_frac = 0;
00360 }
00361 } else {
00362 *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
00363 *lag_frac = pitch_index - *lag_int * 6 - 3;
00364 *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
00365 PITCH_DELAY_MAX - 9);
00366 }
00367 }
00368
00369 static void decode_pitch_vector(AMRContext *p,
00370 const AMRNBSubframe *amr_subframe,
00371 const int subframe)
00372 {
00373 int pitch_lag_int, pitch_lag_frac;
00374 enum Mode mode = p->cur_frame_mode;
00375
00376 if (p->cur_frame_mode == MODE_12k2) {
00377 decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
00378 amr_subframe->p_lag, p->pitch_lag_int,
00379 subframe);
00380 } else
00381 ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
00382 amr_subframe->p_lag,
00383 p->pitch_lag_int, subframe,
00384 mode != MODE_4k75 && mode != MODE_5k15,
00385 mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
00386
00387 p->pitch_lag_int = pitch_lag_int;
00388
00389 pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
00390
00391 pitch_lag_int += pitch_lag_frac > 0;
00392
00393
00394
00395 ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
00396 ff_b60_sinc, 6,
00397 pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
00398 10, AMR_SUBFRAME_SIZE);
00399
00400 memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
00401 }
00402
00404
00405
00408
00412 static void decode_10bit_pulse(int code, int pulse_position[8],
00413 int i1, int i2, int i3)
00414 {
00415
00416
00417 const uint8_t *positions = base_five_table[code >> 3];
00418 pulse_position[i1] = (positions[2] << 1) + ( code & 1);
00419 pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
00420 pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
00421 }
00422
00430 static void decode_8_pulses_31bits(const int16_t *fixed_index,
00431 AMRFixed *fixed_sparse)
00432 {
00433 int pulse_position[8];
00434 int i, temp;
00435
00436 decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
00437 decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
00438
00439
00440
00441 temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
00442 pulse_position[3] = temp % 5;
00443 pulse_position[7] = temp / 5;
00444 if (pulse_position[7] & 1)
00445 pulse_position[3] = 4 - pulse_position[3];
00446 pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
00447 pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
00448
00449 fixed_sparse->n = 8;
00450 for (i = 0; i < 4; i++) {
00451 const int pos1 = (pulse_position[i] << 2) + i;
00452 const int pos2 = (pulse_position[i + 4] << 2) + i;
00453 const float sign = fixed_index[i] ? -1.0 : 1.0;
00454 fixed_sparse->x[i ] = pos1;
00455 fixed_sparse->x[i + 4] = pos2;
00456 fixed_sparse->y[i ] = sign;
00457 fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
00458 }
00459 }
00460
00476 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
00477 const enum Mode mode, const int subframe)
00478 {
00479 assert(MODE_4k75 <= mode && mode <= MODE_12k2);
00480
00481 if (mode == MODE_12k2) {
00482 ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
00483 } else if (mode == MODE_10k2) {
00484 decode_8_pulses_31bits(pulses, fixed_sparse);
00485 } else {
00486 int *pulse_position = fixed_sparse->x;
00487 int i, pulse_subset;
00488 const int fixed_index = pulses[0];
00489
00490 if (mode <= MODE_5k15) {
00491 pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
00492 pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
00493 pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
00494 fixed_sparse->n = 2;
00495 } else if (mode == MODE_5k9) {
00496 pulse_subset = ((fixed_index & 1) << 1) + 1;
00497 pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
00498 pulse_subset = (fixed_index >> 4) & 3;
00499 pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
00500 fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
00501 } else if (mode == MODE_6k7) {
00502 pulse_position[0] = (fixed_index & 7) * 5;
00503 pulse_subset = (fixed_index >> 2) & 2;
00504 pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
00505 pulse_subset = (fixed_index >> 6) & 2;
00506 pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
00507 fixed_sparse->n = 3;
00508 } else {
00509 pulse_position[0] = gray_decode[ fixed_index & 7];
00510 pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
00511 pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
00512 pulse_subset = (fixed_index >> 9) & 1;
00513 pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
00514 fixed_sparse->n = 4;
00515 }
00516 for (i = 0; i < fixed_sparse->n; i++)
00517 fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
00518 }
00519 }
00520
00529 static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
00530 AMRFixed *fixed_sparse)
00531 {
00532
00533
00534
00535 if (mode == MODE_12k2)
00536 p->beta = FFMIN(p->pitch_gain[4], 1.0);
00537
00538 fixed_sparse->pitch_lag = p->pitch_lag_int;
00539 fixed_sparse->pitch_fac = p->beta;
00540
00541
00542
00543
00544 if (mode != MODE_4k75 || subframe & 1)
00545 p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
00546 }
00548
00549
00552
00565 static float fixed_gain_smooth(AMRContext *p , const float *lsf,
00566 const float *lsf_avg, const enum Mode mode)
00567 {
00568 float diff = 0.0;
00569 int i;
00570
00571 for (i = 0; i < LP_FILTER_ORDER; i++)
00572 diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
00573
00574
00575
00576 p->diff_count++;
00577 if (diff <= 0.65)
00578 p->diff_count = 0;
00579
00580 if (p->diff_count > 10) {
00581 p->hang_count = 0;
00582 p->diff_count--;
00583 }
00584
00585 if (p->hang_count < 40) {
00586 p->hang_count++;
00587 } else if (mode < MODE_7k4 || mode == MODE_10k2) {
00588 const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
00589 const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
00590 p->fixed_gain[2] + p->fixed_gain[3] +
00591 p->fixed_gain[4]) * 0.2;
00592 return smoothing_factor * p->fixed_gain[4] +
00593 (1.0 - smoothing_factor) * fixed_gain_mean;
00594 }
00595 return p->fixed_gain[4];
00596 }
00597
00607 static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
00608 const enum Mode mode, const int subframe,
00609 float *fixed_gain_factor)
00610 {
00611 if (mode == MODE_12k2 || mode == MODE_7k95) {
00612 p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
00613 * (1.0 / 16384.0);
00614 *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
00615 * (1.0 / 2048.0);
00616 } else {
00617 const uint16_t *gains;
00618
00619 if (mode >= MODE_6k7) {
00620 gains = gains_high[amr_subframe->p_gain];
00621 } else if (mode >= MODE_5k15) {
00622 gains = gains_low [amr_subframe->p_gain];
00623 } else {
00624
00625 gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
00626 }
00627
00628 p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
00629 *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
00630 }
00631 }
00632
00634
00635
00638
00649 static void apply_ir_filter(float *out, const AMRFixed *in,
00650 const float *filter)
00651 {
00652 float filter1[AMR_SUBFRAME_SIZE],
00653 filter2[AMR_SUBFRAME_SIZE];
00654 int lag = in->pitch_lag;
00655 float fac = in->pitch_fac;
00656 int i;
00657
00658 if (lag < AMR_SUBFRAME_SIZE) {
00659 ff_celp_circ_addf(filter1, filter, filter, lag, fac,
00660 AMR_SUBFRAME_SIZE);
00661
00662 if (lag < AMR_SUBFRAME_SIZE >> 1)
00663 ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
00664 AMR_SUBFRAME_SIZE);
00665 }
00666
00667 memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
00668 for (i = 0; i < in->n; i++) {
00669 int x = in->x[i];
00670 float y = in->y[i];
00671 const float *filterp;
00672
00673 if (x >= AMR_SUBFRAME_SIZE - lag) {
00674 filterp = filter;
00675 } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
00676 filterp = filter1;
00677 } else
00678 filterp = filter2;
00679
00680 ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
00681 }
00682 }
00683
00696 static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
00697 const float *fixed_vector,
00698 float fixed_gain, float *out)
00699 {
00700 int ir_filter_nr;
00701
00702 if (p->pitch_gain[4] < 0.6) {
00703 ir_filter_nr = 0;
00704 } else if (p->pitch_gain[4] < 0.9) {
00705 ir_filter_nr = 1;
00706 } else
00707 ir_filter_nr = 2;
00708
00709
00710 if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
00711 p->ir_filter_onset = 2;
00712 } else if (p->ir_filter_onset)
00713 p->ir_filter_onset--;
00714
00715 if (!p->ir_filter_onset) {
00716 int i, count = 0;
00717
00718 for (i = 0; i < 5; i++)
00719 if (p->pitch_gain[i] < 0.6)
00720 count++;
00721 if (count > 2)
00722 ir_filter_nr = 0;
00723
00724 if (ir_filter_nr > p->prev_ir_filter_nr + 1)
00725 ir_filter_nr--;
00726 } else if (ir_filter_nr < 2)
00727 ir_filter_nr++;
00728
00729
00730
00731
00732 if (fixed_gain < 5.0)
00733 ir_filter_nr = 2;
00734
00735 if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
00736 && ir_filter_nr < 2) {
00737 apply_ir_filter(out, fixed_sparse,
00738 (p->cur_frame_mode == MODE_7k95 ?
00739 ir_filters_lookup_MODE_7k95 :
00740 ir_filters_lookup)[ir_filter_nr]);
00741 fixed_vector = out;
00742 }
00743
00744
00745 p->prev_ir_filter_nr = ir_filter_nr;
00746 p->prev_sparse_fixed_gain = fixed_gain;
00747
00748 return fixed_vector;
00749 }
00750
00752
00753
00756
00767 static int synthesis(AMRContext *p, float *lpc,
00768 float fixed_gain, const float *fixed_vector,
00769 float *samples, uint8_t overflow)
00770 {
00771 int i;
00772 float excitation[AMR_SUBFRAME_SIZE];
00773
00774
00775
00776 if (overflow)
00777 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00778 p->pitch_vector[i] *= 0.25;
00779
00780 ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
00781 p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
00782
00783
00784 if (p->pitch_gain[4] > 0.5 && !overflow) {
00785 float energy = ff_dot_productf(excitation, excitation,
00786 AMR_SUBFRAME_SIZE);
00787 float pitch_factor =
00788 p->pitch_gain[4] *
00789 (p->cur_frame_mode == MODE_12k2 ?
00790 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
00791 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
00792
00793 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00794 excitation[i] += pitch_factor * p->pitch_vector[i];
00795
00796 ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
00797 AMR_SUBFRAME_SIZE);
00798 }
00799
00800 ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
00801 LP_FILTER_ORDER);
00802
00803
00804 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00805 if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
00806 return 1;
00807 }
00808
00809 return 0;
00810 }
00811
00813
00814
00817
00823 static void update_state(AMRContext *p)
00824 {
00825 memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
00826
00827 memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
00828 (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
00829
00830 memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
00831 memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
00832
00833 memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
00834 LP_FILTER_ORDER * sizeof(float));
00835 }
00836
00838
00839
00842
00849 static float tilt_factor(float *lpc_n, float *lpc_d)
00850 {
00851 float rh0, rh1;
00852
00853
00854 float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
00855 float *hf = impulse_buffer + LP_FILTER_ORDER;
00856
00857 hf[0] = 1.0;
00858 memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
00859 ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
00860 LP_FILTER_ORDER);
00861
00862 rh0 = ff_dot_productf(hf, hf, AMR_TILT_RESPONSE);
00863 rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
00864
00865
00866
00867 return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
00868 }
00869
00878 static void postfilter(AMRContext *p, float *lpc, float *buf_out)
00879 {
00880 int i;
00881 float *samples = p->samples_in + LP_FILTER_ORDER;
00882
00883 float speech_gain = ff_dot_productf(samples, samples,
00884 AMR_SUBFRAME_SIZE);
00885
00886 float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];
00887 const float *gamma_n, *gamma_d;
00888 float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER];
00889
00890 if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
00891 gamma_n = ff_pow_0_7;
00892 gamma_d = ff_pow_0_75;
00893 } else {
00894 gamma_n = ff_pow_0_55;
00895 gamma_d = ff_pow_0_7;
00896 }
00897
00898 for (i = 0; i < LP_FILTER_ORDER; i++) {
00899 lpc_n[i] = lpc[i] * gamma_n[i];
00900 lpc_d[i] = lpc[i] * gamma_d[i];
00901 }
00902
00903 memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
00904 ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
00905 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
00906 memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
00907 sizeof(float) * LP_FILTER_ORDER);
00908
00909 ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
00910 pole_out + LP_FILTER_ORDER,
00911 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
00912
00913 ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
00914 AMR_SUBFRAME_SIZE);
00915
00916 ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
00917 AMR_AGC_ALPHA, &p->postfilter_agc);
00918 }
00919
00921
00922 static int amrnb_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
00923 AVPacket *avpkt)
00924 {
00925
00926 AMRContext *p = avctx->priv_data;
00927 const uint8_t *buf = avpkt->data;
00928 int buf_size = avpkt->size;
00929 float *buf_out = data;
00930 int i, subframe;
00931 float fixed_gain_factor;
00932 AMRFixed fixed_sparse = {0};
00933 float spare_vector[AMR_SUBFRAME_SIZE];
00934 float synth_fixed_gain;
00935 const float *synth_fixed_vector;
00936
00937 p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
00938 if (p->cur_frame_mode == MODE_DTX) {
00939 av_log_missing_feature(avctx, "dtx mode", 1);
00940 return -1;
00941 }
00942
00943 if (p->cur_frame_mode == MODE_12k2) {
00944 lsf2lsp_5(p);
00945 } else
00946 lsf2lsp_3(p);
00947
00948 for (i = 0; i < 4; i++)
00949 ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
00950
00951 for (subframe = 0; subframe < 4; subframe++) {
00952 const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
00953
00954 decode_pitch_vector(p, amr_subframe, subframe);
00955
00956 decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
00957 p->cur_frame_mode, subframe);
00958
00959
00960
00961
00962
00963 decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
00964 &fixed_gain_factor);
00965
00966 pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
00967
00968 ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
00969 AMR_SUBFRAME_SIZE);
00970
00971 p->fixed_gain[4] =
00972 ff_amr_set_fixed_gain(fixed_gain_factor,
00973 ff_dot_productf(p->fixed_vector, p->fixed_vector,
00974 AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
00975 p->prediction_error,
00976 energy_mean[p->cur_frame_mode], energy_pred_fac);
00977
00978
00979
00980 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00981 p->excitation[i] *= p->pitch_gain[4];
00982 ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
00983 AMR_SUBFRAME_SIZE);
00984
00985
00986
00987
00988
00989
00990 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00991 p->excitation[i] = truncf(p->excitation[i]);
00992
00993
00994
00995
00996 synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
00997 p->lsf_avg, p->cur_frame_mode);
00998
00999 synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
01000 synth_fixed_gain, spare_vector);
01001
01002 if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
01003 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
01004
01005
01006
01007 synthesis(p, p->lpc[subframe], synth_fixed_gain,
01008 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
01009
01010 postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
01011
01012
01013 ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
01014 update_state(p);
01015 }
01016
01017 ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
01018 highpass_poles,
01019 highpass_gain * AMR_SAMPLE_SCALE,
01020 p->high_pass_mem, AMR_BLOCK_SIZE);
01021
01022
01023
01024
01025
01026
01027
01028 ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
01029 0.84, 0.16, LP_FILTER_ORDER);
01030
01031
01032 *data_size = AMR_BLOCK_SIZE * sizeof(float);
01033
01034
01035 return frame_sizes_nb[p->cur_frame_mode] + 1;
01036 }
01037
01038
01039 AVCodec ff_amrnb_decoder = {
01040 .name = "amrnb",
01041 .type = AVMEDIA_TYPE_AUDIO,
01042 .id = CODEC_ID_AMR_NB,
01043 .priv_data_size = sizeof(AMRContext),
01044 .init = amrnb_decode_init,
01045 .decode = amrnb_decode_frame,
01046 .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
01047 .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
01048 };