00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024 #include <math.h>
00025 #include <stdint.h>
00026 #include <string.h>
00027
00028 #include "libavutil/mathematics.h"
00029 #include "avcodec.h"
00030 #define ALT_BITSTREAM_READER_LE
00031 #include "get_bits.h"
00032 #include "dsputil.h"
00033
00034 #include "lsp.h"
00035 #include "celp_math.h"
00036 #include "acelp_vectors.h"
00037 #include "acelp_pitch_delay.h"
00038 #include "acelp_filters.h"
00039 #include "celp_filters.h"
00040
00041 #define MAX_SUBFRAME_COUNT 5
00042
00043 #include "sipr.h"
00044 #include "siprdata.h"
00045
00046 typedef struct {
00047 const char *mode_name;
00048 uint16_t bits_per_frame;
00049 uint8_t subframe_count;
00050 uint8_t frames_per_packet;
00051 float pitch_sharp_factor;
00052
00053
00054 uint8_t number_of_fc_indexes;
00055 uint8_t ma_predictor_bits;
00056
00058 uint8_t vq_indexes_bits[5];
00059
00061 uint8_t pitch_delay_bits[5];
00062
00063 uint8_t gp_index_bits;
00064 uint8_t fc_index_bits[10];
00065 uint8_t gc_index_bits;
00066 } SiprModeParam;
00067
00068 static const SiprModeParam modes[MODE_COUNT] = {
00069 [MODE_16k] = {
00070 .mode_name = "16k",
00071 .bits_per_frame = 160,
00072 .subframe_count = SUBFRAME_COUNT_16k,
00073 .frames_per_packet = 1,
00074 .pitch_sharp_factor = 0.00,
00075
00076 .number_of_fc_indexes = 10,
00077 .ma_predictor_bits = 1,
00078 .vq_indexes_bits = {7, 8, 7, 7, 7},
00079 .pitch_delay_bits = {9, 6},
00080 .gp_index_bits = 4,
00081 .fc_index_bits = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
00082 .gc_index_bits = 5
00083 },
00084
00085 [MODE_8k5] = {
00086 .mode_name = "8k5",
00087 .bits_per_frame = 152,
00088 .subframe_count = 3,
00089 .frames_per_packet = 1,
00090 .pitch_sharp_factor = 0.8,
00091
00092 .number_of_fc_indexes = 3,
00093 .ma_predictor_bits = 0,
00094 .vq_indexes_bits = {6, 7, 7, 7, 5},
00095 .pitch_delay_bits = {8, 5, 5},
00096 .gp_index_bits = 0,
00097 .fc_index_bits = {9, 9, 9},
00098 .gc_index_bits = 7
00099 },
00100
00101 [MODE_6k5] = {
00102 .mode_name = "6k5",
00103 .bits_per_frame = 232,
00104 .subframe_count = 3,
00105 .frames_per_packet = 2,
00106 .pitch_sharp_factor = 0.8,
00107
00108 .number_of_fc_indexes = 3,
00109 .ma_predictor_bits = 0,
00110 .vq_indexes_bits = {6, 7, 7, 7, 5},
00111 .pitch_delay_bits = {8, 5, 5},
00112 .gp_index_bits = 0,
00113 .fc_index_bits = {5, 5, 5},
00114 .gc_index_bits = 7
00115 },
00116
00117 [MODE_5k0] = {
00118 .mode_name = "5k0",
00119 .bits_per_frame = 296,
00120 .subframe_count = 5,
00121 .frames_per_packet = 2,
00122 .pitch_sharp_factor = 0.85,
00123
00124 .number_of_fc_indexes = 1,
00125 .ma_predictor_bits = 0,
00126 .vq_indexes_bits = {6, 7, 7, 7, 5},
00127 .pitch_delay_bits = {8, 5, 8, 5, 5},
00128 .gp_index_bits = 0,
00129 .fc_index_bits = {10},
00130 .gc_index_bits = 7
00131 }
00132 };
00133
00134 const float ff_pow_0_5[] = {
00135 1.0/(1 << 1), 1.0/(1 << 2), 1.0/(1 << 3), 1.0/(1 << 4),
00136 1.0/(1 << 5), 1.0/(1 << 6), 1.0/(1 << 7), 1.0/(1 << 8),
00137 1.0/(1 << 9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
00138 1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
00139 };
00140
00141 static void dequant(float *out, const int *idx, const float *cbs[])
00142 {
00143 int i;
00144 int stride = 2;
00145 int num_vec = 5;
00146
00147 for (i = 0; i < num_vec; i++)
00148 memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
00149
00150 }
00151
00152 static void lsf_decode_fp(float *lsfnew, float *lsf_history,
00153 const SiprParameters *parm)
00154 {
00155 int i;
00156 float lsf_tmp[LP_FILTER_ORDER];
00157
00158 dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
00159
00160 for (i = 0; i < LP_FILTER_ORDER; i++)
00161 lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
00162
00163 ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
00164
00165
00166
00167 ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
00168 lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
00169
00170 memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
00171
00172 for (i = 0; i < LP_FILTER_ORDER - 1; i++)
00173 lsfnew[i] = cos(lsfnew[i]);
00174 lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
00175 }
00176
00178 static void pitch_sharpening(int pitch_lag_int, float beta,
00179 float *fixed_vector)
00180 {
00181 int i;
00182
00183 for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
00184 fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
00185 }
00186
00192 static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
00193 const SiprModeParam *p)
00194 {
00195 int i, j;
00196
00197 if (p->ma_predictor_bits)
00198 parms->ma_pred_switch = get_bits(pgb, p->ma_predictor_bits);
00199
00200 for (i = 0; i < 5; i++)
00201 parms->vq_indexes[i] = get_bits(pgb, p->vq_indexes_bits[i]);
00202
00203 for (i = 0; i < p->subframe_count; i++) {
00204 parms->pitch_delay[i] = get_bits(pgb, p->pitch_delay_bits[i]);
00205 if (p->gp_index_bits)
00206 parms->gp_index[i] = get_bits(pgb, p->gp_index_bits);
00207
00208 for (j = 0; j < p->number_of_fc_indexes; j++)
00209 parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
00210
00211 parms->gc_index[i] = get_bits(pgb, p->gc_index_bits);
00212 }
00213 }
00214
00215 static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
00216 int num_subfr)
00217 {
00218 double lsfint[LP_FILTER_ORDER];
00219 int i,j;
00220 float t, t0 = 1.0 / num_subfr;
00221
00222 t = t0 * 0.5;
00223 for (i = 0; i < num_subfr; i++) {
00224 for (j = 0; j < LP_FILTER_ORDER; j++)
00225 lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
00226
00227 ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
00228 Az += LP_FILTER_ORDER;
00229 t += t0;
00230 }
00231 }
00232
00236 static void eval_ir(const float *Az, int pitch_lag, float *freq,
00237 float pitch_sharp_factor)
00238 {
00239 float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
00240 int i;
00241
00242 tmp1[0] = 1.;
00243 for (i = 0; i < LP_FILTER_ORDER; i++) {
00244 tmp1[i+1] = Az[i] * ff_pow_0_55[i];
00245 tmp2[i ] = Az[i] * ff_pow_0_7 [i];
00246 }
00247 memset(tmp1 + 11, 0, 37 * sizeof(float));
00248
00249 ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
00250 LP_FILTER_ORDER);
00251
00252 pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
00253 }
00254
00258 static void convolute_with_sparse(float *out, const AMRFixed *pulses,
00259 const float *shape, int length)
00260 {
00261 int i, j;
00262
00263 memset(out, 0, length*sizeof(float));
00264 for (i = 0; i < pulses->n; i++)
00265 for (j = pulses->x[i]; j < length; j++)
00266 out[j] += pulses->y[i] * shape[j - pulses->x[i]];
00267 }
00268
00272 static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
00273 {
00274 float buf[SUBFR_SIZE + LP_FILTER_ORDER];
00275 float *pole_out = buf + LP_FILTER_ORDER;
00276 float lpc_n[LP_FILTER_ORDER];
00277 float lpc_d[LP_FILTER_ORDER];
00278 int i;
00279
00280 for (i = 0; i < LP_FILTER_ORDER; i++) {
00281 lpc_d[i] = lpc[i] * ff_pow_0_75[i];
00282 lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
00283 };
00284
00285 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
00286 LP_FILTER_ORDER*sizeof(float));
00287
00288 ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
00289 LP_FILTER_ORDER);
00290
00291 memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
00292 LP_FILTER_ORDER*sizeof(float));
00293
00294 ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
00295
00296 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
00297 LP_FILTER_ORDER*sizeof(*pole_out));
00298
00299 memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
00300 LP_FILTER_ORDER*sizeof(*pole_out));
00301
00302 ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
00303 LP_FILTER_ORDER);
00304
00305 }
00306
00307 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
00308 SiprMode mode, int low_gain)
00309 {
00310 int i;
00311
00312 switch (mode) {
00313 case MODE_6k5:
00314 for (i = 0; i < 3; i++) {
00315 fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
00316 fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
00317 }
00318 fixed_sparse->n = 3;
00319 break;
00320 case MODE_8k5:
00321 for (i = 0; i < 3; i++) {
00322 fixed_sparse->x[2*i ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
00323 fixed_sparse->x[2*i + 1] = 3 * ( pulses[i] & 0xf) + i;
00324
00325 fixed_sparse->y[2*i ] = (pulses[i] & 0x100) ? -1.0: 1.0;
00326
00327 fixed_sparse->y[2*i + 1] =
00328 (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
00329 -fixed_sparse->y[2*i ] : fixed_sparse->y[2*i];
00330 }
00331
00332 fixed_sparse->n = 6;
00333 break;
00334 case MODE_5k0:
00335 default:
00336 if (low_gain) {
00337 int offset = (pulses[0] & 0x200) ? 2 : 0;
00338 int val = pulses[0];
00339
00340 for (i = 0; i < 3; i++) {
00341 int index = (val & 0x7) * 6 + 4 - i*2;
00342
00343 fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
00344 fixed_sparse->x[i] = index;
00345
00346 val >>= 3;
00347 }
00348 fixed_sparse->n = 3;
00349 } else {
00350 int pulse_subset = (pulses[0] >> 8) & 1;
00351
00352 fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
00353 fixed_sparse->x[1] = ( pulses[0] & 15) * 3 + pulse_subset + 1;
00354
00355 fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
00356 fixed_sparse->y[1] = -fixed_sparse->y[0];
00357 fixed_sparse->n = 2;
00358 }
00359 break;
00360 }
00361 }
00362
00363 static void decode_frame(SiprContext *ctx, SiprParameters *params,
00364 float *out_data)
00365 {
00366 int i, j;
00367 int subframe_count = modes[ctx->mode].subframe_count;
00368 int frame_size = subframe_count * SUBFR_SIZE;
00369 float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
00370 float *excitation;
00371 float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
00372 float lsf_new[LP_FILTER_ORDER];
00373 float *impulse_response = ir_buf + LP_FILTER_ORDER;
00374 float *synth = ctx->synth_buf + 16;
00375
00376 int t0_first = 0;
00377 AMRFixed fixed_cb;
00378
00379 memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
00380 lsf_decode_fp(lsf_new, ctx->lsf_history, params);
00381
00382 sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
00383
00384 memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
00385
00386 excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
00387
00388 for (i = 0; i < subframe_count; i++) {
00389 float *pAz = Az + i*LP_FILTER_ORDER;
00390 float fixed_vector[SUBFR_SIZE];
00391 int T0,T0_frac;
00392 float pitch_gain, gain_code, avg_energy;
00393
00394 ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
00395 ctx->mode == MODE_5k0, 6);
00396
00397 if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
00398 t0_first = T0;
00399
00400 ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
00401 ff_b60_sinc, 6,
00402 2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
00403 SUBFR_SIZE);
00404
00405 decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
00406 ctx->past_pitch_gain < 0.8);
00407
00408 eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
00409
00410 convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
00411 SUBFR_SIZE);
00412
00413 avg_energy =
00414 (0.01 + ff_dot_productf(fixed_vector, fixed_vector, SUBFR_SIZE))/
00415 SUBFR_SIZE;
00416
00417 ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
00418
00419 gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
00420 avg_energy, ctx->energy_history,
00421 34 - 15.0/(0.05*M_LN10/M_LN2),
00422 pred);
00423
00424 ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
00425 pitch_gain, gain_code, SUBFR_SIZE);
00426
00427 pitch_gain *= 0.5 * pitch_gain;
00428 pitch_gain = FFMIN(pitch_gain, 0.4);
00429
00430 ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
00431 ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
00432 gain_code *= ctx->gain_mem;
00433
00434 for (j = 0; j < SUBFR_SIZE; j++)
00435 fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
00436
00437 if (ctx->mode == MODE_5k0) {
00438 postfilter_5k0(ctx, pAz, fixed_vector);
00439
00440 ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
00441 pAz, excitation, SUBFR_SIZE,
00442 LP_FILTER_ORDER);
00443 }
00444
00445 ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
00446 SUBFR_SIZE, LP_FILTER_ORDER);
00447
00448 excitation += SUBFR_SIZE;
00449 }
00450
00451 memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
00452 LP_FILTER_ORDER * sizeof(float));
00453
00454 if (ctx->mode == MODE_5k0) {
00455 for (i = 0; i < subframe_count; i++) {
00456 float energy = ff_dot_productf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
00457 ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
00458 SUBFR_SIZE);
00459 ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
00460 &synth[i * SUBFR_SIZE], energy,
00461 SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
00462 }
00463
00464 memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
00465 LP_FILTER_ORDER*sizeof(float));
00466 }
00467 memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
00468 (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
00469
00470 ff_acelp_apply_order_2_transfer_function(out_data, synth,
00471 (const float[2]) {-1.99997 , 1.000000000},
00472 (const float[2]) {-1.93307352, 0.935891986},
00473 0.939805806,
00474 ctx->highpass_filt_mem,
00475 frame_size);
00476 }
00477
00478 static av_cold int sipr_decoder_init(AVCodecContext * avctx)
00479 {
00480 SiprContext *ctx = avctx->priv_data;
00481 int i;
00482
00483 if (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
00484 else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
00485 else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
00486 else ctx->mode = MODE_5k0;
00487
00488 av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
00489
00490 if (ctx->mode == MODE_16k)
00491 ff_sipr_init_16k(ctx);
00492
00493 for (i = 0; i < LP_FILTER_ORDER; i++)
00494 ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
00495
00496 for (i = 0; i < 4; i++)
00497 ctx->energy_history[i] = -14;
00498
00499 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00500
00501 return 0;
00502 }
00503
00504 static int sipr_decode_frame(AVCodecContext *avctx, void *datap,
00505 int *data_size, AVPacket *avpkt)
00506 {
00507 SiprContext *ctx = avctx->priv_data;
00508 const uint8_t *buf=avpkt->data;
00509 SiprParameters parm;
00510 const SiprModeParam *mode_par = &modes[ctx->mode];
00511 GetBitContext gb;
00512 float *data = datap;
00513 int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
00514 int i, out_size;
00515
00516 ctx->avctx = avctx;
00517 if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
00518 av_log(avctx, AV_LOG_ERROR,
00519 "Error processing packet: packet size (%d) too small\n",
00520 avpkt->size);
00521
00522 *data_size = 0;
00523 return -1;
00524 }
00525
00526 out_size = mode_par->frames_per_packet * subframe_size *
00527 mode_par->subframe_count *
00528 av_get_bytes_per_sample(avctx->sample_fmt);
00529 if (*data_size < out_size) {
00530 av_log(avctx, AV_LOG_ERROR,
00531 "Error processing packet: output buffer (%d) too small\n",
00532 *data_size);
00533
00534 *data_size = 0;
00535 return -1;
00536 }
00537
00538 init_get_bits(&gb, buf, mode_par->bits_per_frame);
00539
00540 for (i = 0; i < mode_par->frames_per_packet; i++) {
00541 decode_parameters(&parm, &gb, mode_par);
00542
00543 if (ctx->mode == MODE_16k)
00544 ff_sipr_decode_frame_16k(ctx, &parm, data);
00545 else
00546 decode_frame(ctx, &parm, data);
00547
00548 data += subframe_size * mode_par->subframe_count;
00549 }
00550
00551 *data_size = out_size;
00552
00553 return mode_par->bits_per_frame >> 3;
00554 }
00555
00556 AVCodec ff_sipr_decoder = {
00557 "sipr",
00558 AVMEDIA_TYPE_AUDIO,
00559 CODEC_ID_SIPR,
00560 sizeof(SiprContext),
00561 sipr_decoder_init,
00562 NULL,
00563 NULL,
00564 sipr_decode_frame,
00565 .long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
00566 };