FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
amrwbdec.c
Go to the documentation of this file.
1 /*
2  * AMR wideband decoder
3  * Copyright (c) 2010 Marcelo Galvao Povoa
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * AMR wideband decoder
25  */
26 
28 #include "libavutil/common.h"
29 #include "libavutil/lfg.h"
30 
31 #include "avcodec.h"
32 #include "dsputil.h"
33 #include "lsp.h"
34 #include "celp_filters.h"
35 #include "celp_math.h"
36 #include "acelp_filters.h"
37 #include "acelp_vectors.h"
38 #include "acelp_pitch_delay.h"
39 #include "internal.h"
40 
41 #define AMR_USE_16BIT_TABLES
42 #include "amr.h"
43 
44 #include "amrwbdata.h"
45 #include "mips/amrwbdec_mips.h"
46 
47 typedef struct {
48  AVFrame avframe; ///< AVFrame for decoded samples
49  AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
50  enum Mode fr_cur_mode; ///< mode index of current frame
51  uint8_t fr_quality; ///< frame quality index (FQI)
52  float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
53  float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
54  float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
55  double isp[4][LP_ORDER]; ///< ISP vectors from current frame
56  double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
57 
58  float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
59 
60  uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
61  uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
62 
63  float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
64  float *excitation; ///< points to current excitation in excitation_buf[]
65 
66  float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
67  float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
68 
69  float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
70  float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
71  float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
72 
73  float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
74 
75  float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
76  uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
77  float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
78 
79  float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
80  float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
81  float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
82 
83  float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
84  float demph_mem[1]; ///< previous value in the de-emphasis filter
85  float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
86  float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
87 
88  AVLFG prng; ///< random number generator for white noise excitation
89  uint8_t first_frame; ///< flag active during decoding of the first frame
90  ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
91  ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
92  CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
93  CELPMContext celpm_ctx; ///< context for fixed point math operations
94 
95 } AMRWBContext;
96 
98 {
99  AMRWBContext *ctx = avctx->priv_data;
100  int i;
101 
102  if (avctx->channels > 1) {
103  av_log_missing_feature(avctx, "multi-channel AMR", 0);
104  return AVERROR_PATCHWELCOME;
105  }
106 
107  avctx->channels = 1;
109  if (!avctx->sample_rate)
110  avctx->sample_rate = 16000;
111  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
112 
113  av_lfg_init(&ctx->prng, 1);
114 
116  ctx->first_frame = 1;
117 
118  for (i = 0; i < LP_ORDER; i++)
119  ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
120 
121  for (i = 0; i < 4; i++)
122  ctx->prediction_error[i] = MIN_ENERGY;
123 
125  avctx->coded_frame = &ctx->avframe;
126 
131 
132  return 0;
133 }
134 
135 /**
136  * Decode the frame header in the "MIME/storage" format. This format
137  * is simpler and does not carry the auxiliary frame information.
138  *
139  * @param[in] ctx The Context
140  * @param[in] buf Pointer to the input buffer
141  *
142  * @return The decoded header length in bytes
143  */
144 static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
145 {
146  /* Decode frame header (1st octet) */
147  ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
148  ctx->fr_quality = (buf[0] & 0x4) == 0x4;
149 
150  return 1;
151 }
152 
153 /**
154  * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
155  *
156  * @param[in] ind Array of 5 indexes
157  * @param[out] isf_q Buffer for isf_q[LP_ORDER]
158  *
159  */
160 static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
161 {
162  int i;
163 
164  for (i = 0; i < 9; i++)
165  isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
166 
167  for (i = 0; i < 7; i++)
168  isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
169 
170  for (i = 0; i < 5; i++)
171  isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
172 
173  for (i = 0; i < 4; i++)
174  isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
175 
176  for (i = 0; i < 7; i++)
177  isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
178 }
179 
180 /**
181  * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
182  *
183  * @param[in] ind Array of 7 indexes
184  * @param[out] isf_q Buffer for isf_q[LP_ORDER]
185  *
186  */
187 static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
188 {
189  int i;
190 
191  for (i = 0; i < 9; i++)
192  isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
193 
194  for (i = 0; i < 7; i++)
195  isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
196 
197  for (i = 0; i < 3; i++)
198  isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
199 
200  for (i = 0; i < 3; i++)
201  isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
202 
203  for (i = 0; i < 3; i++)
204  isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
205 
206  for (i = 0; i < 3; i++)
207  isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
208 
209  for (i = 0; i < 4; i++)
210  isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
211 }
212 
213 /**
214  * Apply mean and past ISF values using the prediction factor.
215  * Updates past ISF vector.
216  *
217  * @param[in,out] isf_q Current quantized ISF
218  * @param[in,out] isf_past Past quantized ISF
219  *
220  */
221 static void isf_add_mean_and_past(float *isf_q, float *isf_past)
222 {
223  int i;
224  float tmp;
225 
226  for (i = 0; i < LP_ORDER; i++) {
227  tmp = isf_q[i];
228  isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
229  isf_q[i] += PRED_FACTOR * isf_past[i];
230  isf_past[i] = tmp;
231  }
232 }
233 
234 /**
235  * Interpolate the fourth ISP vector from current and past frames
236  * to obtain an ISP vector for each subframe.
237  *
238  * @param[in,out] isp_q ISPs for each subframe
239  * @param[in] isp4_past Past ISP for subframe 4
240  */
241 static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
242 {
243  int i, k;
244 
245  for (k = 0; k < 3; k++) {
246  float c = isfp_inter[k];
247  for (i = 0; i < LP_ORDER; i++)
248  isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
249  }
250 }
251 
252 /**
253  * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
254  * Calculate integer lag and fractional lag always using 1/4 resolution.
255  * In 1st and 3rd subframes the index is relative to last subframe integer lag.
256  *
257  * @param[out] lag_int Decoded integer pitch lag
258  * @param[out] lag_frac Decoded fractional pitch lag
259  * @param[in] pitch_index Adaptive codebook pitch index
260  * @param[in,out] base_lag_int Base integer lag used in relative subframes
261  * @param[in] subframe Current subframe index (0 to 3)
262  */
263 static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
264  uint8_t *base_lag_int, int subframe)
265 {
266  if (subframe == 0 || subframe == 2) {
267  if (pitch_index < 376) {
268  *lag_int = (pitch_index + 137) >> 2;
269  *lag_frac = pitch_index - (*lag_int << 2) + 136;
270  } else if (pitch_index < 440) {
271  *lag_int = (pitch_index + 257 - 376) >> 1;
272  *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
273  /* the actual resolution is 1/2 but expressed as 1/4 */
274  } else {
275  *lag_int = pitch_index - 280;
276  *lag_frac = 0;
277  }
278  /* minimum lag for next subframe */
279  *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
281  // XXX: the spec states clearly that *base_lag_int should be
282  // the nearest integer to *lag_int (minus 8), but the ref code
283  // actually always uses its floor, I'm following the latter
284  } else {
285  *lag_int = (pitch_index + 1) >> 2;
286  *lag_frac = pitch_index - (*lag_int << 2);
287  *lag_int += *base_lag_int;
288  }
289 }
290 
291 /**
292  * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
293  * The description is analogous to decode_pitch_lag_high, but in 6k60 the
294  * relative index is used for all subframes except the first.
295  */
296 static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
297  uint8_t *base_lag_int, int subframe, enum Mode mode)
298 {
299  if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
300  if (pitch_index < 116) {
301  *lag_int = (pitch_index + 69) >> 1;
302  *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
303  } else {
304  *lag_int = pitch_index - 24;
305  *lag_frac = 0;
306  }
307  // XXX: same problem as before
308  *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
310  } else {
311  *lag_int = (pitch_index + 1) >> 1;
312  *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
313  *lag_int += *base_lag_int;
314  }
315 }
316 
317 /**
318  * Find the pitch vector by interpolating the past excitation at the
319  * pitch delay, which is obtained in this function.
320  *
321  * @param[in,out] ctx The context
322  * @param[in] amr_subframe Current subframe data
323  * @param[in] subframe Current subframe index (0 to 3)
324  */
326  const AMRWBSubFrame *amr_subframe,
327  const int subframe)
328 {
329  int pitch_lag_int, pitch_lag_frac;
330  int i;
331  float *exc = ctx->excitation;
332  enum Mode mode = ctx->fr_cur_mode;
333 
334  if (mode <= MODE_8k85) {
335  decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
336  &ctx->base_pitch_lag, subframe, mode);
337  } else
338  decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
339  &ctx->base_pitch_lag, subframe);
340 
341  ctx->pitch_lag_int = pitch_lag_int;
342  pitch_lag_int += pitch_lag_frac > 0;
343 
344  /* Calculate the pitch vector by interpolating the past excitation at the
345  pitch lag using a hamming windowed sinc function */
347  exc + 1 - pitch_lag_int,
348  ac_inter, 4,
349  pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
350  LP_ORDER, AMRWB_SFR_SIZE + 1);
351 
352  /* Check which pitch signal path should be used
353  * 6k60 and 8k85 modes have the ltp flag set to 0 */
354  if (amr_subframe->ltp) {
355  memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
356  } else {
357  for (i = 0; i < AMRWB_SFR_SIZE; i++)
358  ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
359  0.18 * exc[i + 1];
360  memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
361  }
362 }
363 
364 /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
365 #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
366 
367 /** Get the bit at specified position */
368 #define BIT_POS(x, p) (((x) >> (p)) & 1)
369 
370 /**
371  * The next six functions decode_[i]p_track decode exactly i pulses
372  * positions and amplitudes (-1 or 1) in a subframe track using
373  * an encoded pulse indexing (TS 26.190 section 5.8.2).
374  *
375  * The results are given in out[], in which a negative number means
376  * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
377  *
378  * @param[out] out Output buffer (writes i elements)
379  * @param[in] code Pulse index (no. of bits varies, see below)
380  * @param[in] m (log2) Number of potential positions
381  * @param[in] off Offset for decoded positions
382  */
383 static inline void decode_1p_track(int *out, int code, int m, int off)
384 {
385  int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
386 
387  out[0] = BIT_POS(code, m) ? -pos : pos;
388 }
389 
390 static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
391 {
392  int pos0 = BIT_STR(code, m, m) + off;
393  int pos1 = BIT_STR(code, 0, m) + off;
394 
395  out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
396  out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
397  out[1] = pos0 > pos1 ? -out[1] : out[1];
398 }
399 
400 static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
401 {
402  int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
403 
404  decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
405  m - 1, off + half_2p);
406  decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
407 }
408 
409 static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
410 {
411  int half_4p, subhalf_2p;
412  int b_offset = 1 << (m - 1);
413 
414  switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
415  case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
416  half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
417  subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
418 
419  decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
420  m - 2, off + half_4p + subhalf_2p);
421  decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
422  m - 1, off + half_4p);
423  break;
424  case 1: /* 1 pulse in A, 3 pulses in B */
425  decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
426  m - 1, off);
427  decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
428  m - 1, off + b_offset);
429  break;
430  case 2: /* 2 pulses in each half */
431  decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
432  m - 1, off);
433  decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
434  m - 1, off + b_offset);
435  break;
436  case 3: /* 3 pulses in A, 1 pulse in B */
437  decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
438  m - 1, off);
439  decode_1p_track(out + 3, BIT_STR(code, 0, m),
440  m - 1, off + b_offset);
441  break;
442  }
443 }
444 
445 static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
446 {
447  int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
448 
449  decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
450  m - 1, off + half_3p);
451 
452  decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
453 }
454 
455 static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
456 {
457  int b_offset = 1 << (m - 1);
458  /* which half has more pulses in cases 0 to 2 */
459  int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
460  int half_other = b_offset - half_more;
461 
462  switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
463  case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
464  decode_1p_track(out, BIT_STR(code, 0, m),
465  m - 1, off + half_more);
466  decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
467  m - 1, off + half_more);
468  break;
469  case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
470  decode_1p_track(out, BIT_STR(code, 0, m),
471  m - 1, off + half_other);
472  decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
473  m - 1, off + half_more);
474  break;
475  case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
476  decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
477  m - 1, off + half_other);
478  decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
479  m - 1, off + half_more);
480  break;
481  case 3: /* 3 pulses in A, 3 pulses in B */
482  decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
483  m - 1, off);
484  decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
485  m - 1, off + b_offset);
486  break;
487  }
488 }
489 
490 /**
491  * Decode the algebraic codebook index to pulse positions and signs,
492  * then construct the algebraic codebook vector.
493  *
494  * @param[out] fixed_vector Buffer for the fixed codebook excitation
495  * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
496  * @param[in] pulse_lo LSBs part of the pulse index array
497  * @param[in] mode Mode of the current frame
498  */
499 static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
500  const uint16_t *pulse_lo, const enum Mode mode)
501 {
502  /* sig_pos stores for each track the decoded pulse position indexes
503  * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
504  int sig_pos[4][6];
505  int spacing = (mode == MODE_6k60) ? 2 : 4;
506  int i, j;
507 
508  switch (mode) {
509  case MODE_6k60:
510  for (i = 0; i < 2; i++)
511  decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
512  break;
513  case MODE_8k85:
514  for (i = 0; i < 4; i++)
515  decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
516  break;
517  case MODE_12k65:
518  for (i = 0; i < 4; i++)
519  decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
520  break;
521  case MODE_14k25:
522  for (i = 0; i < 2; i++)
523  decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
524  for (i = 2; i < 4; i++)
525  decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
526  break;
527  case MODE_15k85:
528  for (i = 0; i < 4; i++)
529  decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
530  break;
531  case MODE_18k25:
532  for (i = 0; i < 4; i++)
533  decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
534  ((int) pulse_hi[i] << 14), 4, 1);
535  break;
536  case MODE_19k85:
537  for (i = 0; i < 2; i++)
538  decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
539  ((int) pulse_hi[i] << 10), 4, 1);
540  for (i = 2; i < 4; i++)
541  decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
542  ((int) pulse_hi[i] << 14), 4, 1);
543  break;
544  case MODE_23k05:
545  case MODE_23k85:
546  for (i = 0; i < 4; i++)
547  decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
548  ((int) pulse_hi[i] << 11), 4, 1);
549  break;
550  }
551 
552  memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
553 
554  for (i = 0; i < 4; i++)
555  for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
556  int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
557 
558  fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
559  }
560 }
561 
562 /**
563  * Decode pitch gain and fixed gain correction factor.
564  *
565  * @param[in] vq_gain Vector-quantized index for gains
566  * @param[in] mode Mode of the current frame
567  * @param[out] fixed_gain_factor Decoded fixed gain correction factor
568  * @param[out] pitch_gain Decoded pitch gain
569  */
570 static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
571  float *fixed_gain_factor, float *pitch_gain)
572 {
573  const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
574  qua_gain_7b[vq_gain]);
575 
576  *pitch_gain = gains[0] * (1.0f / (1 << 14));
577  *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
578 }
579 
580 /**
581  * Apply pitch sharpening filters to the fixed codebook vector.
582  *
583  * @param[in] ctx The context
584  * @param[in,out] fixed_vector Fixed codebook excitation
585  */
586 // XXX: Spec states this procedure should be applied when the pitch
587 // lag is less than 64, but this checking seems absent in reference and AMR-NB
588 static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
589 {
590  int i;
591 
592  /* Tilt part */
593  for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
594  fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
595 
596  /* Periodicity enhancement part */
597  for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
598  fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
599 }
600 
601 /**
602  * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
603  *
604  * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
605  * @param[in] p_gain, f_gain Pitch and fixed gains
606  * @param[in] ctx The context
607  */
608 // XXX: There is something wrong with the precision here! The magnitudes
609 // of the energies are not correct. Please check the reference code carefully
610 static float voice_factor(float *p_vector, float p_gain,
611  float *f_vector, float f_gain,
612  CELPMContext *ctx)
613 {
614  double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
615  AMRWB_SFR_SIZE) *
616  p_gain * p_gain;
617  double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
618  AMRWB_SFR_SIZE) *
619  f_gain * f_gain;
620 
621  return (p_ener - f_ener) / (p_ener + f_ener);
622 }
623 
624 /**
625  * Reduce fixed vector sparseness by smoothing with one of three IR filters,
626  * also known as "adaptive phase dispersion".
627  *
628  * @param[in] ctx The context
629  * @param[in,out] fixed_vector Unfiltered fixed vector
630  * @param[out] buf Space for modified vector if necessary
631  *
632  * @return The potentially overwritten filtered fixed vector address
633  */
634 static float *anti_sparseness(AMRWBContext *ctx,
635  float *fixed_vector, float *buf)
636 {
637  int ir_filter_nr;
638 
639  if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
640  return fixed_vector;
641 
642  if (ctx->pitch_gain[0] < 0.6) {
643  ir_filter_nr = 0; // strong filtering
644  } else if (ctx->pitch_gain[0] < 0.9) {
645  ir_filter_nr = 1; // medium filtering
646  } else
647  ir_filter_nr = 2; // no filtering
648 
649  /* detect 'onset' */
650  if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
651  if (ir_filter_nr < 2)
652  ir_filter_nr++;
653  } else {
654  int i, count = 0;
655 
656  for (i = 0; i < 6; i++)
657  if (ctx->pitch_gain[i] < 0.6)
658  count++;
659 
660  if (count > 2)
661  ir_filter_nr = 0;
662 
663  if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
664  ir_filter_nr--;
665  }
666 
667  /* update ir filter strength history */
668  ctx->prev_ir_filter_nr = ir_filter_nr;
669 
670  ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
671 
672  if (ir_filter_nr < 2) {
673  int i;
674  const float *coef = ir_filters_lookup[ir_filter_nr];
675 
676  /* Circular convolution code in the reference
677  * decoder was modified to avoid using one
678  * extra array. The filtered vector is given by:
679  *
680  * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
681  */
682 
683  memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
684  for (i = 0; i < AMRWB_SFR_SIZE; i++)
685  if (fixed_vector[i])
686  ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
687  AMRWB_SFR_SIZE);
688  fixed_vector = buf;
689  }
690 
691  return fixed_vector;
692 }
693 
694 /**
695  * Calculate a stability factor {teta} based on distance between
696  * current and past isf. A value of 1 shows maximum signal stability.
697  */
698 static float stability_factor(const float *isf, const float *isf_past)
699 {
700  int i;
701  float acc = 0.0;
702 
703  for (i = 0; i < LP_ORDER - 1; i++)
704  acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
705 
706  // XXX: This part is not so clear from the reference code
707  // the result is more accurate changing the "/ 256" to "* 512"
708  return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
709 }
710 
711 /**
712  * Apply a non-linear fixed gain smoothing in order to reduce
713  * fluctuation in the energy of excitation.
714  *
715  * @param[in] fixed_gain Unsmoothed fixed gain
716  * @param[in,out] prev_tr_gain Previous threshold gain (updated)
717  * @param[in] voice_fac Frame voicing factor
718  * @param[in] stab_fac Frame stability factor
719  *
720  * @return The smoothed gain
721  */
722 static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
723  float voice_fac, float stab_fac)
724 {
725  float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
726  float g0;
727 
728  // XXX: the following fixed-point constants used to in(de)crement
729  // gain by 1.5dB were taken from the reference code, maybe it could
730  // be simpler
731  if (fixed_gain < *prev_tr_gain) {
732  g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
733  (6226 * (1.0f / (1 << 15)))); // +1.5 dB
734  } else
735  g0 = FFMAX(*prev_tr_gain, fixed_gain *
736  (27536 * (1.0f / (1 << 15)))); // -1.5 dB
737 
738  *prev_tr_gain = g0; // update next frame threshold
739 
740  return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
741 }
742 
743 /**
744  * Filter the fixed_vector to emphasize the higher frequencies.
745  *
746  * @param[in,out] fixed_vector Fixed codebook vector
747  * @param[in] voice_fac Frame voicing factor
748  */
749 static void pitch_enhancer(float *fixed_vector, float voice_fac)
750 {
751  int i;
752  float cpe = 0.125 * (1 + voice_fac);
753  float last = fixed_vector[0]; // holds c(i - 1)
754 
755  fixed_vector[0] -= cpe * fixed_vector[1];
756 
757  for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
758  float cur = fixed_vector[i];
759 
760  fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
761  last = cur;
762  }
763 
764  fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
765 }
766 
767 /**
768  * Conduct 16th order linear predictive coding synthesis from excitation.
769  *
770  * @param[in] ctx Pointer to the AMRWBContext
771  * @param[in] lpc Pointer to the LPC coefficients
772  * @param[out] excitation Buffer for synthesis final excitation
773  * @param[in] fixed_gain Fixed codebook gain for synthesis
774  * @param[in] fixed_vector Algebraic codebook vector
775  * @param[in,out] samples Pointer to the output samples and memory
776  */
777 static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
778  float fixed_gain, const float *fixed_vector,
779  float *samples)
780 {
781  ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
782  ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
783 
784  /* emphasize pitch vector contribution in low bitrate modes */
785  if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
786  int i;
787  float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
789 
790  // XXX: Weird part in both ref code and spec. A unknown parameter
791  // {beta} seems to be identical to the current pitch gain
792  float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
793 
794  for (i = 0; i < AMRWB_SFR_SIZE; i++)
795  excitation[i] += pitch_factor * ctx->pitch_vector[i];
796 
797  ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
798  energy, AMRWB_SFR_SIZE);
799  }
800 
801  ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
803 }
804 
805 /**
806  * Apply to synthesis a de-emphasis filter of the form:
807  * H(z) = 1 / (1 - m * z^-1)
808  *
809  * @param[out] out Output buffer
810  * @param[in] in Input samples array with in[-1]
811  * @param[in] m Filter coefficient
812  * @param[in,out] mem State from last filtering
813  */
814 static void de_emphasis(float *out, float *in, float m, float mem[1])
815 {
816  int i;
817 
818  out[0] = in[0] + m * mem[0];
819 
820  for (i = 1; i < AMRWB_SFR_SIZE; i++)
821  out[i] = in[i] + out[i - 1] * m;
822 
823  mem[0] = out[AMRWB_SFR_SIZE - 1];
824 }
825 
826 /**
827  * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
828  * a FIR interpolation filter. Uses past data from before *in address.
829  *
830  * @param[out] out Buffer for interpolated signal
831  * @param[in] in Current signal data (length 0.8*o_size)
832  * @param[in] o_size Output signal length
833  * @param[in] ctx The context
834  */
835 static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
836 {
837  const float *in0 = in - UPS_FIR_SIZE + 1;
838  int i, j, k;
839  int int_part = 0, frac_part;
840 
841  i = 0;
842  for (j = 0; j < o_size / 5; j++) {
843  out[i] = in[int_part];
844  frac_part = 4;
845  i++;
846 
847  for (k = 1; k < 5; k++) {
848  out[i] = ctx->dot_productf(in0 + int_part,
849  upsample_fir[4 - frac_part],
850  UPS_MEM_SIZE);
851  int_part++;
852  frac_part--;
853  i++;
854  }
855  }
856 }
857 
858 /**
859  * Calculate the high-band gain based on encoded index (23k85 mode) or
860  * on the low-band speech signal and the Voice Activity Detection flag.
861  *
862  * @param[in] ctx The context
863  * @param[in] synth LB speech synthesis at 12.8k
864  * @param[in] hb_idx Gain index for mode 23k85 only
865  * @param[in] vad VAD flag for the frame
866  */
867 static float find_hb_gain(AMRWBContext *ctx, const float *synth,
868  uint16_t hb_idx, uint8_t vad)
869 {
870  int wsp = (vad > 0);
871  float tilt;
872 
873  if (ctx->fr_cur_mode == MODE_23k85)
874  return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
875 
876  tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
877  ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
878 
879  /* return gain bounded by [0.1, 1.0] */
880  return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
881 }
882 
883 /**
884  * Generate the high-band excitation with the same energy from the lower
885  * one and scaled by the given gain.
886  *
887  * @param[in] ctx The context
888  * @param[out] hb_exc Buffer for the excitation
889  * @param[in] synth_exc Low-band excitation used for synthesis
890  * @param[in] hb_gain Wanted excitation gain
891  */
892 static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
893  const float *synth_exc, float hb_gain)
894 {
895  int i;
896  float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
897 
898  /* Generate a white-noise excitation */
899  for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
900  hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
901 
903  energy * hb_gain * hb_gain,
904  AMRWB_SFR_SIZE_16k);
905 }
906 
907 /**
908  * Calculate the auto-correlation for the ISF difference vector.
909  */
910 static float auto_correlation(float *diff_isf, float mean, int lag)
911 {
912  int i;
913  float sum = 0.0;
914 
915  for (i = 7; i < LP_ORDER - 2; i++) {
916  float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
917  sum += prod * prod;
918  }
919  return sum;
920 }
921 
922 /**
923  * Extrapolate a ISF vector to the 16kHz range (20th order LP)
924  * used at mode 6k60 LP filter for the high frequency band.
925  *
926  * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
927  * values on input
928  */
929 static void extrapolate_isf(float isf[LP_ORDER_16k])
930 {
931  float diff_isf[LP_ORDER - 2], diff_mean;
932  float corr_lag[3];
933  float est, scale;
934  int i, j, i_max_corr;
935 
936  isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
937 
938  /* Calculate the difference vector */
939  for (i = 0; i < LP_ORDER - 2; i++)
940  diff_isf[i] = isf[i + 1] - isf[i];
941 
942  diff_mean = 0.0;
943  for (i = 2; i < LP_ORDER - 2; i++)
944  diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
945 
946  /* Find which is the maximum autocorrelation */
947  i_max_corr = 0;
948  for (i = 0; i < 3; i++) {
949  corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
950 
951  if (corr_lag[i] > corr_lag[i_max_corr])
952  i_max_corr = i;
953  }
954  i_max_corr++;
955 
956  for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
957  isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
958  - isf[i - 2 - i_max_corr];
959 
960  /* Calculate an estimate for ISF(18) and scale ISF based on the error */
961  est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
962  scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
963  (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
964 
965  for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
966  diff_isf[j] = scale * (isf[i] - isf[i - 1]);
967 
968  /* Stability insurance */
969  for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
970  if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
971  if (diff_isf[i] > diff_isf[i - 1]) {
972  diff_isf[i - 1] = 5.0 - diff_isf[i];
973  } else
974  diff_isf[i] = 5.0 - diff_isf[i - 1];
975  }
976 
977  for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
978  isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
979 
980  /* Scale the ISF vector for 16000 Hz */
981  for (i = 0; i < LP_ORDER_16k - 1; i++)
982  isf[i] *= 0.8;
983 }
984 
985 /**
986  * Spectral expand the LP coefficients using the equation:
987  * y[i] = x[i] * (gamma ** i)
988  *
989  * @param[out] out Output buffer (may use input array)
990  * @param[in] lpc LP coefficients array
991  * @param[in] gamma Weighting factor
992  * @param[in] size LP array size
993  */
994 static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
995 {
996  int i;
997  float fac = gamma;
998 
999  for (i = 0; i < size; i++) {
1000  out[i] = lpc[i] * fac;
1001  fac *= gamma;
1002  }
1003 }
1004 
1005 /**
1006  * Conduct 20th order linear predictive coding synthesis for the high
1007  * frequency band excitation at 16kHz.
1008  *
1009  * @param[in] ctx The context
1010  * @param[in] subframe Current subframe index (0 to 3)
1011  * @param[in,out] samples Pointer to the output speech samples
1012  * @param[in] exc Generated white-noise scaled excitation
1013  * @param[in] isf Current frame isf vector
1014  * @param[in] isf_past Past frame final isf vector
1015  */
1016 static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
1017  const float *exc, const float *isf, const float *isf_past)
1018 {
1019  float hb_lpc[LP_ORDER_16k];
1020  enum Mode mode = ctx->fr_cur_mode;
1021 
1022  if (mode == MODE_6k60) {
1023  float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
1024  double e_isp[LP_ORDER_16k];
1025 
1026  ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
1027  1.0 - isfp_inter[subframe], LP_ORDER);
1028 
1029  extrapolate_isf(e_isf);
1030 
1031  e_isf[LP_ORDER_16k - 1] *= 2.0;
1032  ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
1033  ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
1034 
1035  lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
1036  } else {
1037  lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
1038  }
1039 
1040  ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
1041  (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
1042 }
1043 
1044 /**
1045  * Apply a 15th order filter to high-band samples.
1046  * The filter characteristic depends on the given coefficients.
1047  *
1048  * @param[out] out Buffer for filtered output
1049  * @param[in] fir_coef Filter coefficients
1050  * @param[in,out] mem State from last filtering (updated)
1051  * @param[in] in Input speech data (high-band)
1052  *
1053  * @remark It is safe to pass the same array in in and out parameters
1054  */
1055 
1056 #ifndef hb_fir_filter
1057 static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
1058  float mem[HB_FIR_SIZE], const float *in)
1059 {
1060  int i, j;
1061  float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
1062 
1063  memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
1064  memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
1065 
1066  for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
1067  out[i] = 0.0;
1068  for (j = 0; j <= HB_FIR_SIZE; j++)
1069  out[i] += data[i + j] * fir_coef[j];
1070  }
1071 
1072  memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
1073 }
1074 #endif /* hb_fir_filter */
1075 
1076 /**
1077  * Update context state before the next subframe.
1078  */
1080 {
1081  memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
1082  (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
1083 
1084  memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
1085  memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
1086 
1087  memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
1088  LP_ORDER * sizeof(float));
1089  memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
1090  UPS_MEM_SIZE * sizeof(float));
1091  memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
1092  LP_ORDER_16k * sizeof(float));
1093 }
1094 
1095 static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
1096  int *got_frame_ptr, AVPacket *avpkt)
1097 {
1098  AMRWBContext *ctx = avctx->priv_data;
1099  AMRWBFrame *cf = &ctx->frame;
1100  const uint8_t *buf = avpkt->data;
1101  int buf_size = avpkt->size;
1102  int expected_fr_size, header_size;
1103  float *buf_out;
1104  float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
1105  float fixed_gain_factor; // fixed gain correction factor (gamma)
1106  float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
1107  float synth_fixed_gain; // the fixed gain that synthesis should use
1108  float voice_fac, stab_fac; // parameters used for gain smoothing
1109  float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
1110  float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
1111  float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
1112  float hb_gain;
1113  int sub, i, ret;
1114 
1115  /* get output buffer */
1117  if ((ret = ff_get_buffer(avctx, &ctx->avframe)) < 0) {
1118  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1119  return ret;
1120  }
1121  buf_out = (float *)ctx->avframe.data[0];
1122 
1123  header_size = decode_mime_header(ctx, buf);
1124  if (ctx->fr_cur_mode > MODE_SID) {
1125  av_log(avctx, AV_LOG_ERROR,
1126  "Invalid mode %d\n", ctx->fr_cur_mode);
1127  return AVERROR_INVALIDDATA;
1128  }
1129  expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
1130 
1131  if (buf_size < expected_fr_size) {
1132  av_log(avctx, AV_LOG_ERROR,
1133  "Frame too small (%d bytes). Truncated file?\n", buf_size);
1134  *got_frame_ptr = 0;
1135  return AVERROR_INVALIDDATA;
1136  }
1137 
1138  if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
1139  av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
1140 
1141  if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
1142  av_log_missing_feature(avctx, "SID mode", 1);
1143  return AVERROR_PATCHWELCOME;
1144  }
1145 
1146  ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
1147  buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
1148 
1149  /* Decode the quantized ISF vector */
1150  if (ctx->fr_cur_mode == MODE_6k60) {
1152  } else {
1154  }
1155 
1158 
1159  stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
1160 
1161  ctx->isf_cur[LP_ORDER - 1] *= 2.0;
1162  ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
1163 
1164  /* Generate a ISP vector for each subframe */
1165  if (ctx->first_frame) {
1166  ctx->first_frame = 0;
1167  memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
1168  }
1169  interpolate_isp(ctx->isp, ctx->isp_sub4_past);
1170 
1171  for (sub = 0; sub < 4; sub++)
1172  ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
1173 
1174  for (sub = 0; sub < 4; sub++) {
1175  const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
1176  float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
1177 
1178  /* Decode adaptive codebook (pitch vector) */
1179  decode_pitch_vector(ctx, cur_subframe, sub);
1180  /* Decode innovative codebook (fixed vector) */
1181  decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
1182  cur_subframe->pul_il, ctx->fr_cur_mode);
1183 
1184  pitch_sharpening(ctx, ctx->fixed_vector);
1185 
1186  decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
1187  &fixed_gain_factor, &ctx->pitch_gain[0]);
1188 
1189  ctx->fixed_gain[0] =
1190  ff_amr_set_fixed_gain(fixed_gain_factor,
1192  ctx->fixed_vector,
1193  AMRWB_SFR_SIZE) /
1195  ctx->prediction_error,
1197 
1198  /* Calculate voice factor and store tilt for next subframe */
1199  voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
1200  ctx->fixed_vector, ctx->fixed_gain[0],
1201  &ctx->celpm_ctx);
1202  ctx->tilt_coef = voice_fac * 0.25 + 0.25;
1203 
1204  /* Construct current excitation */
1205  for (i = 0; i < AMRWB_SFR_SIZE; i++) {
1206  ctx->excitation[i] *= ctx->pitch_gain[0];
1207  ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
1208  ctx->excitation[i] = truncf(ctx->excitation[i]);
1209  }
1210 
1211  /* Post-processing of excitation elements */
1212  synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
1213  voice_fac, stab_fac);
1214 
1215  synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
1216  spare_vector);
1217 
1218  pitch_enhancer(synth_fixed_vector, voice_fac);
1219 
1220  synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
1221  synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
1222 
1223  /* Synthesis speech post-processing */
1225  &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
1226 
1229  hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
1230 
1231  upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
1232  AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
1233 
1234  /* High frequency band (6.4 - 7.0 kHz) generation part */
1237  hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
1238 
1239  hb_gain = find_hb_gain(ctx, hb_samples,
1240  cur_subframe->hb_gain, cf->vad);
1241 
1242  scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
1243 
1244  hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
1245  hb_exc, ctx->isf_cur, ctx->isf_past_final);
1246 
1247  /* High-band post-processing filters */
1248  hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
1249  &ctx->samples_hb[LP_ORDER_16k]);
1250 
1251  if (ctx->fr_cur_mode == MODE_23k85)
1252  hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
1253  hb_samples);
1254 
1255  /* Add the low and high frequency bands */
1256  for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
1257  sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
1258 
1259  /* Update buffers and history */
1260  update_sub_state(ctx);
1261  }
1262 
1263  /* update state for next frame */
1264  memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
1265  memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
1266 
1267  *got_frame_ptr = 1;
1268  *(AVFrame *)data = ctx->avframe;
1269 
1270  return expected_fr_size;
1271 }
1272 
1274  .name = "amrwb",
1275  .type = AVMEDIA_TYPE_AUDIO,
1276  .id = AV_CODEC_ID_AMR_WB,
1277  .priv_data_size = sizeof(AMRWBContext),
1280  .capabilities = CODEC_CAP_DR1,
1281  .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
1282  .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
1284 };