FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264.h
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30 
31 #include "libavutil/intreadwrite.h"
32 #include "dsputil.h"
33 #include "cabac.h"
34 #include "mpegvideo.h"
35 #include "h264dsp.h"
36 #include "h264pred.h"
37 #include "rectangle.h"
38 
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_is_not_initialized_see_mb_type
41 
42 #define MAX_SPS_COUNT 32
43 #define MAX_PPS_COUNT 256
44 
45 #define MAX_MMCO_COUNT 66
46 
47 #define MAX_DELAYED_PIC_COUNT 16
48 
49 #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
50 
51 /* Compiling in interlaced support reduces the speed
52  * of progressive decoding by about 2%. */
53 #define ALLOW_INTERLACE
54 
55 #define FMO 0
56 
57 /**
58  * The maximum number of slices supported by the decoder.
59  * must be a power of 2
60  */
61 #define MAX_SLICES 16
62 
63 #ifdef ALLOW_INTERLACE
64 #define MB_MBAFF h->mb_mbaff
65 #define MB_FIELD h->mb_field_decoding_flag
66 #define FRAME_MBAFF h->mb_aff_frame
67 #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
68 #define LEFT_MBS 2
69 #define LTOP 0
70 #define LBOT 1
71 #define LEFT(i) (i)
72 #else
73 #define MB_MBAFF 0
74 #define MB_FIELD 0
75 #define FRAME_MBAFF 0
76 #define FIELD_PICTURE 0
77 #undef IS_INTERLACED
78 #define IS_INTERLACED(mb_type) 0
79 #define LEFT_MBS 1
80 #define LTOP 0
81 #define LBOT 0
82 #define LEFT(i) 0
83 #endif
84 #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
85 
86 #ifndef CABAC
87 #define CABAC h->pps.cabac
88 #endif
89 
90 #define CHROMA (h->sps.chroma_format_idc)
91 #define CHROMA422 (h->sps.chroma_format_idc == 2)
92 #define CHROMA444 (h->sps.chroma_format_idc == 3)
93 
94 #define EXTENDED_SAR 255
95 
96 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
97 #define MB_TYPE_8x8DCT 0x01000000
98 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
99 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
100 
101 #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
102 
103 /* NAL unit types */
104 enum {
119  NAL_FF_IGNORE = 0xff0f001,
120 };
121 
122 /**
123  * SEI message types
124  */
125 typedef enum {
126  SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
127  SEI_TYPE_PIC_TIMING = 1, ///< picture timing
128  SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35
129  SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
130  SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
131 } SEI_Type;
132 
133 /**
134  * pic_struct in picture timing SEI message
135  */
136 typedef enum {
137  SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
138  SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
139  SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
140  SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
141  SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
142  SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
143  SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
144  SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
145  SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
147 
148 /**
149  * Sequence parameter set
150  */
151 typedef struct SPS {
155  int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
156  int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
157  int poc_type; ///< pic_order_cnt_type
158  int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
162  int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
163  int ref_frame_count; ///< num_ref_frames
165  int mb_width; ///< pic_width_in_mbs_minus1 + 1
166  int mb_height; ///< pic_height_in_map_units_minus1 + 1
168  int mb_aff; ///< mb_adaptive_frame_field_flag
170  int crop; ///< frame_cropping_flag
171  unsigned int crop_left; ///< frame_cropping_rect_left_offset
172  unsigned int crop_right; ///< frame_cropping_rect_right_offset
173  unsigned int crop_top; ///< frame_cropping_rect_top_offset
174  unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
185  uint32_t time_scale;
187  short offset_for_ref_frame[256]; // FIXME dyn aloc?
197  int cpb_cnt; ///< See H.264 E.1.2
198  int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
199  int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
200  int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
201  int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
202  int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
203  int residual_color_transform_flag; ///< residual_colour_transform_flag
204  int constraint_set_flags; ///< constraint_set[0-3]_flag
205  int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
206 } SPS;
207 
208 /**
209  * Picture parameter set
210  */
211 typedef struct PPS {
212  unsigned int sps_id;
213  int cabac; ///< entropy_coding_mode_flag
214  int pic_order_present; ///< pic_order_present_flag
215  int slice_group_count; ///< num_slice_groups_minus1 + 1
217  unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
218  int weighted_pred; ///< weighted_pred_flag
220  int init_qp; ///< pic_init_qp_minus26 + 26
221  int init_qs; ///< pic_init_qs_minus26 + 26
223  int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
224  int constrained_intra_pred; ///< constrained_intra_pred_flag
225  int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
226  int transform_8x8_mode; ///< transform_8x8_mode_flag
229  uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
231 } PPS;
232 
233 /**
234  * Memory management control operation opcode.
235  */
236 typedef enum MMCOOpcode {
237  MMCO_END = 0,
244 } MMCOOpcode;
245 
246 /**
247  * Memory management control operation.
248  */
249 typedef struct MMCO {
251  int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
252  int long_arg; ///< index, pic_num, or num long refs depending on opcode
253 } MMCO;
254 
255 /**
256  * H264Context
257  */
258 typedef struct H264Context {
261  int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
262  int chroma_qp[2]; // QPc
263 
264  int qp_thresh; ///< QP threshold to skip loopfilter
265 
268 
269  // prediction stuff
272 
277 
279  int top_type;
282 
285 
290  unsigned int top_samples_available;
293  uint8_t (*top_borders[2])[(16 * 3) * 2];
294 
295  /**
296  * non zero coeff count cache.
297  * is 64 if not available.
298  */
300 
302 
303  /**
304  * Motion vector cache.
305  */
306  DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
307  DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
308 #define LIST_NOT_USED -1 // FIXME rename?
309 #define PART_NOT_AVAILABLE -2
310 
311  /**
312  * number of neighbors (top and/or left) that used 8x8 dct
313  */
315 
316  /**
317  * block_offset[ 0..23] for frame macroblocks
318  * block_offset[24..47] for field macroblocks
319  */
320  int block_offset[2 * (16 * 3)];
321 
322  uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
323  uint32_t *mb2br_xy;
324  int b_stride; // FIXME use s->b4_stride
325 
326  int mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
328 
331 
332  unsigned current_sps_id; ///< id of the current SPS
333  SPS sps; ///< current sps
334 
335  /**
336  * current pps
337  */
338  PPS pps; // FIXME move to Picture perhaps? (->no) do we need that?
339 
340  uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
341  uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
342  uint32_t(*dequant4_coeff[6])[16];
343  uint32_t(*dequant8_coeff[6])[64];
344 
346  uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
348  int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
350 
351  // interlacing specific flags
354  int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
355 
356  DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
357 
358  // Weighted pred stuff
363  // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
364  int luma_weight[48][2][2];
365  int chroma_weight[48][2][2][2];
366  int implicit_weight[48][48][2];
367 
373  int map_col_to_list0[2][16 + 32];
374  int map_col_to_list0_field[2][2][16 + 32];
375 
376  /**
377  * num_ref_idx_l0/1_active_minus1 + 1
378  */
379  unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
380  unsigned int list_count;
381  uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
382  Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
383  * Reordered version of default_ref_list
384  * according to picture reordering in slice header */
385  int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
386 
387  // data partitioning
392 
393  DECLARE_ALIGNED(16, DCTELEM, mb)[16 * 48 * 2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
395  DCTELEM mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
396 
397  /**
398  * Cabac
399  */
402 
403  /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
404  uint16_t *cbp_table;
405  int cbp;
406  int top_cbp;
407  int left_cbp;
408  /* chroma_pred_mode for i4x4 or i16x16, else 0 */
411  uint8_t (*mvd_table[2])[2];
412  DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
415 
428 
430 
431  int mb_xy;
432 
434 
435  // deblock
436  int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
439 
440  // =============================================================
441  // Things below are not used in the MB or more inner code
442 
446  unsigned int rbsp_buffer_size[2];
447 
448  /**
449  * Used to parse AVC variant of h264
450  */
451  int is_avc; ///< this flag is != 0 if codec is avc1
452  int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
453  int got_first; ///< this flag is != 0 if we've parsed a frame
454 
456 
459 
460  int dequant_coeff_pps; ///< reinit tables when pps changes
461 
462  uint16_t *slice_table_base;
463 
464  // POC stuff
465  int poc_lsb;
466  int poc_msb;
468  int delta_poc[2];
470  int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
471  int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
472  int frame_num_offset; ///< for POC type 2
473  int prev_frame_num_offset; ///< for POC type 2
474  int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
475 
476  /**
477  * frame_num for frames or 2 * frame_num + 1 for field pics.
478  */
480 
481  /**
482  * max_frame_num or 2 * max_frame_num for field pics.
483  */
485 
487 
490  Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
496 
497  /**
498  * memory management control operations buffer.
499  */
503 
504  int long_ref_count; ///< number of actual long term references
505  int short_ref_count; ///< number of actual short term references
506 
508 
509  /**
510  * @name Members for slice based multithreading
511  * @{
512  */
514 
515  /**
516  * current slice number, used to initialize slice_num of each thread/context
517  */
519 
520  /**
521  * Max number of threads / contexts.
522  * This is equal to AVCodecContext.thread_count unless
523  * multithreaded decoding is impossible, in which case it is
524  * reduced to 1.
525  */
527 
528  /**
529  * 1 if the single thread fallback warning has already been
530  * displayed, 0 otherwise.
531  */
533 
535  /** @} */
536 
537  /**
538  * pic_struct in picture timing SEI message
539  */
541 
542  /**
543  * Complement sei_pic_struct
544  * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
545  * However, soft telecined frames may have these values.
546  * This is used in an attempt to flag soft telecine progressive.
547  */
549 
550  /**
551  * Bit set of clock types for fields/frames in picture timing SEI message.
552  * For each found ct_type, appropriate bit is set (e.g., bit 1 for
553  * interlaced).
554  */
556 
557  /**
558  * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
559  */
561 
562  /**
563  * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
564  */
566 
567  /**
568  * recovery_frame_cnt from SEI message
569  *
570  * Set to -1 if no recovery point SEI message found or to number of frames
571  * before playback synchronizes. Frames having recovery point are key
572  * frames.
573  */
575  /**
576  * recovery_frame is the frame_num at which the next frame should
577  * be fully constructed.
578  *
579  * Set to -1 when not expecting a recovery point.
580  */
582 
583  /**
584  * Are the SEI recovery points looking valid.
585  */
587 
588  int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
589  int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
590 
591  // Timestamp stuff
592  int sei_buffering_period_present; ///< Buffering period SEI flag
593  int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
594 
597 
598  int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
599 
600  int sync; ///< did we had a keyframe or recovery point
601 
605 } H264Context;
606 
607 extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
608 extern const uint16_t ff_h264_mb_sizes[4];
609 
610 /**
611  * Decode SEI
612  */
614 
615 /**
616  * Decode SPS
617  */
619 
620 /**
621  * compute profile from sps
622  */
624 
625 /**
626  * Decode PPS
627  */
628 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
629 
630 /**
631  * Decode a network abstraction layer unit.
632  * @param consumed is the number of bytes used as input
633  * @param length is the length of the array
634  * @param dst_length is the number of decoded bytes FIXME here
635  * or a decode rbsp tailing?
636  * @return decoded bytes, might be src+1 if no escapes
637  */
638 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
639  int *dst_length, int *consumed, int length);
640 
641 /**
642  * Free any data that may have been allocated in the H264 context
643  * like SPS, PPS etc.
644  */
646 
647 /**
648  * Reconstruct bitstream slice_type.
649  */
650 int ff_h264_get_slice_type(const H264Context *h);
651 
652 /**
653  * Allocate tables.
654  * needs width/height
655  */
657 
658 /**
659  * Fill the default_ref_list.
660  */
662 
666 
667 /**
668  * Execute the reference picture marking (memory management control operations).
669  */
670 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
671 
673  int first_slice);
674 
675 int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
676 
677 /**
678  * Check if the top & left blocks are available if needed & change the
679  * dc mode so it only uses the available blocks.
680  */
682 
683 /**
684  * Check if the top & left blocks are available if needed & change the
685  * dc mode so it only uses the available blocks.
686  */
687 int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
688 
691 int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
694 
695 /**
696  * Decode a macroblock
697  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
698  */
700 
701 /**
702  * Decode a CABAC coded macroblock
703  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
704  */
706 
708 
711 void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
712 
713 void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
714  uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
715  unsigned int linesize, unsigned int uvlinesize);
716 void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
717  uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
718  unsigned int linesize, unsigned int uvlinesize);
719 
720 /**
721  * Reset SEI values at the beginning of the frame.
722  *
723  * @param h H.264 context.
724  */
726 
727 /*
728  * o-o o-o
729  * / / /
730  * o-o o-o
731  * ,---'
732  * o-o o-o
733  * / / /
734  * o-o o-o
735  */
736 
737 /* Scan8 organization:
738  * 0 1 2 3 4 5 6 7
739  * 0 DY y y y y y
740  * 1 y Y Y Y Y
741  * 2 y Y Y Y Y
742  * 3 y Y Y Y Y
743  * 4 y Y Y Y Y
744  * 5 DU u u u u u
745  * 6 u U U U U
746  * 7 u U U U U
747  * 8 u U U U U
748  * 9 u U U U U
749  * 10 DV v v v v v
750  * 11 v V V V V
751  * 12 v V V V V
752  * 13 v V V V V
753  * 14 v V V V V
754  * DY/DU/DV are for luma/chroma DC.
755  */
756 
757 #define LUMA_DC_BLOCK_INDEX 48
758 #define CHROMA_DC_BLOCK_INDEX 49
759 
760 // This table must be here because scan8[constant] must be known at compiletime
761 static const uint8_t scan8[16 * 3 + 3] = {
762  4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
763  6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
764  4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
765  6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
766  4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
767  6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
768  4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
769  6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
770  4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
771  6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
772  4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
773  6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
774  0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
775 };
776 
777 static av_always_inline uint32_t pack16to32(int a, int b)
778 {
779 #if HAVE_BIGENDIAN
780  return (b & 0xFFFF) + (a << 16);
781 #else
782  return (a & 0xFFFF) + (b << 16);
783 #endif
784 }
785 
786 static av_always_inline uint16_t pack8to16(int a, int b)
787 {
788 #if HAVE_BIGENDIAN
789  return (b & 0xFF) + (a << 8);
790 #else
791  return (a & 0xFF) + (b << 8);
792 #endif
793 }
794 
795 /**
796  * Get the chroma qp.
797  */
798 static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
799 {
800  return h->pps.chroma_qp_table[t][qscale];
801 }
802 
803 /**
804  * Get the predicted intra4x4 prediction mode.
805  */
807 {
808  const int index8 = scan8[n];
809  const int left = h->intra4x4_pred_mode_cache[index8 - 1];
810  const int top = h->intra4x4_pred_mode_cache[index8 - 8];
811  const int min = FFMIN(left, top);
812 
813  tprintf(h->s.avctx, "mode:%d %d min:%d\n", left, top, min);
814 
815  if (min < 0)
816  return DC_PRED;
817  else
818  return min;
819 }
820 
822 {
823  int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
824  int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
825 
826  AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
827  i4x4[4] = i4x4_cache[7 + 8 * 3];
828  i4x4[5] = i4x4_cache[7 + 8 * 2];
829  i4x4[6] = i4x4_cache[7 + 8 * 1];
830 }
831 
833 {
834  const int mb_xy = h->mb_xy;
835  uint8_t *nnz = h->non_zero_count[mb_xy];
836  uint8_t *nnz_cache = h->non_zero_count_cache;
837 
838  AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
839  AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
840  AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
841  AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
842  AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
843  AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
844  AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
845  AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
846 
847  if (!h->s.chroma_y_shift) {
848  AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
849  AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
850  AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
851  AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
852  }
853 }
854 
856  MpegEncContext *const s,
857  int b_stride,
858  int b_xy, int b8_xy,
859  int mb_type, int list)
860 {
861  int16_t(*mv_dst)[2] = &s->current_picture.f.motion_val[list][b_xy];
862  int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
863  AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
864  AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
865  AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
866  AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
867  if (CABAC) {
868  uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
869  : h->mb2br_xy[h->mb_xy]];
870  uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
871  if (IS_SKIP(mb_type)) {
872  AV_ZERO128(mvd_dst);
873  } else {
874  AV_COPY64(mvd_dst, mvd_src + 8 * 3);
875  AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
876  AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
877  AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
878  }
879  }
880 
881  {
882  int8_t *ref_index = &s->current_picture.f.ref_index[list][b8_xy];
883  int8_t *ref_cache = h->ref_cache[list];
884  ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
885  ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
886  ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
887  ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
888  }
889 }
890 
891 static av_always_inline void write_back_motion(H264Context *h, int mb_type)
892 {
893  MpegEncContext *const s = &h->s;
894  const int b_stride = h->b_stride;
895  const int b_xy = 4 * s->mb_x + 4 * s->mb_y * h->b_stride; // try mb2b(8)_xy
896  const int b8_xy = 4 * h->mb_xy;
897 
898  if (USES_LIST(mb_type, 0)) {
899  write_back_motion_list(h, s, b_stride, b_xy, b8_xy, mb_type, 0);
900  } else {
902  2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
903  }
904  if (USES_LIST(mb_type, 1))
905  write_back_motion_list(h, s, b_stride, b_xy, b8_xy, mb_type, 1);
906 
907  if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC) {
908  if (IS_8X8(mb_type)) {
909  uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
910  direct_table[1] = h->sub_mb_type[1] >> 1;
911  direct_table[2] = h->sub_mb_type[2] >> 1;
912  direct_table[3] = h->sub_mb_type[3] >> 1;
913  }
914  }
915 }
916 
918 {
920  return !(AV_RN64A(h->sub_mb_type) &
922  0x0001000100010001ULL));
923  else
924  return !(AV_RN64A(h->sub_mb_type) &
926  0x0001000100010001ULL));
927 }
928 
929 #endif /* AVCODEC_H264_H */