FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vc1dec.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * VC-1 and WMV3 decoder
27  */
28 
29 #include "internal.h"
30 #include "dsputil.h"
31 #include "avcodec.h"
32 #include "mpegvideo.h"
33 #include "h263.h"
34 #include "vc1.h"
35 #include "vc1data.h"
36 #include "vc1acdata.h"
37 #include "msmpeg4data.h"
38 #include "unary.h"
39 #include "mathops.h"
40 #include "vdpau_internal.h"
41 #include "libavutil/avassert.h"
42 
43 #undef NDEBUG
44 #include <assert.h>
45 
46 #define MB_INTRA_VLC_BITS 9
47 #define DC_VLC_BITS 9
48 
49 
50 // offset tables for interlaced picture MVDATA decoding
51 static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
52 static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
53 
54 /***********************************************************************/
55 /**
56  * @name VC-1 Bitplane decoding
57  * @see 8.7, p56
58  * @{
59  */
60 
61 /**
62  * Imode types
63  * @{
64  */
65 enum Imode {
73 };
74 /** @} */ //imode defines
75 
76 
77 /** @} */ //Bitplane group
78 
80 {
81  MpegEncContext *s = &v->s;
82  int topleft_mb_pos, top_mb_pos;
83  int stride_y, fieldtx;
84  int v_dist;
85 
86  /* The put pixels loop is always one MB row behind the decoding loop,
87  * because we can only put pixels when overlap filtering is done, and
88  * for filtering of the bottom edge of a MB, we need the next MB row
89  * present as well.
90  * Within the row, the put pixels loop is also one MB col behind the
91  * decoding loop. The reason for this is again, because for filtering
92  * of the right MB edge, we need the next MB present. */
93  if (!s->first_slice_line) {
94  if (s->mb_x) {
95  topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
96  fieldtx = v->fieldtx_plane[topleft_mb_pos];
97  stride_y = s->linesize << fieldtx;
98  v_dist = (16 - fieldtx) >> (fieldtx == 0);
100  s->dest[0] - 16 * s->linesize - 16,
101  stride_y);
103  s->dest[0] - 16 * s->linesize - 8,
104  stride_y);
106  s->dest[0] - v_dist * s->linesize - 16,
107  stride_y);
109  s->dest[0] - v_dist * s->linesize - 8,
110  stride_y);
112  s->dest[1] - 8 * s->uvlinesize - 8,
113  s->uvlinesize);
115  s->dest[2] - 8 * s->uvlinesize - 8,
116  s->uvlinesize);
117  }
118  if (s->mb_x == s->mb_width - 1) {
119  top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
120  fieldtx = v->fieldtx_plane[top_mb_pos];
121  stride_y = s->linesize << fieldtx;
122  v_dist = fieldtx ? 15 : 8;
124  s->dest[0] - 16 * s->linesize,
125  stride_y);
127  s->dest[0] - 16 * s->linesize + 8,
128  stride_y);
130  s->dest[0] - v_dist * s->linesize,
131  stride_y);
133  s->dest[0] - v_dist * s->linesize + 8,
134  stride_y);
136  s->dest[1] - 8 * s->uvlinesize,
137  s->uvlinesize);
139  s->dest[2] - 8 * s->uvlinesize,
140  s->uvlinesize);
141  }
142  }
143 
144 #define inc_blk_idx(idx) do { \
145  idx++; \
146  if (idx >= v->n_allocated_blks) \
147  idx = 0; \
148  } while (0)
149 
154 }
155 
156 static void vc1_loop_filter_iblk(VC1Context *v, int pq)
157 {
158  MpegEncContext *s = &v->s;
159  int j;
160  if (!s->first_slice_line) {
161  v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
162  if (s->mb_x)
163  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
164  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
165  for (j = 0; j < 2; j++) {
166  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
167  if (s->mb_x)
168  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
169  }
170  }
171  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
172 
173  if (s->mb_y == s->end_mb_y - 1) {
174  if (s->mb_x) {
175  v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
176  v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
177  v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
178  }
179  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
180  }
181 }
182 
184 {
185  MpegEncContext *s = &v->s;
186  int j;
187 
188  /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
189  * means it runs two rows/cols behind the decoding loop. */
190  if (!s->first_slice_line) {
191  if (s->mb_x) {
192  if (s->mb_y >= s->start_mb_y + 2) {
193  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
194 
195  if (s->mb_x >= 2)
196  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
197  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
198  for (j = 0; j < 2; j++) {
199  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
200  if (s->mb_x >= 2) {
201  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
202  }
203  }
204  }
205  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
206  }
207 
208  if (s->mb_x == s->mb_width - 1) {
209  if (s->mb_y >= s->start_mb_y + 2) {
210  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
211 
212  if (s->mb_x)
213  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
214  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
215  for (j = 0; j < 2; j++) {
216  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
217  if (s->mb_x >= 2) {
218  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
219  }
220  }
221  }
222  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
223  }
224 
225  if (s->mb_y == s->end_mb_y) {
226  if (s->mb_x) {
227  if (s->mb_x >= 2)
228  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
229  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
230  if (s->mb_x >= 2) {
231  for (j = 0; j < 2; j++) {
232  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
233  }
234  }
235  }
236 
237  if (s->mb_x == s->mb_width - 1) {
238  if (s->mb_x)
239  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
240  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
241  if (s->mb_x) {
242  for (j = 0; j < 2; j++) {
243  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
244  }
245  }
246  }
247  }
248  }
249 }
250 
252 {
253  MpegEncContext *s = &v->s;
254  int mb_pos;
255 
256  if (v->condover == CONDOVER_NONE)
257  return;
258 
259  mb_pos = s->mb_x + s->mb_y * s->mb_stride;
260 
261  /* Within a MB, the horizontal overlap always runs before the vertical.
262  * To accomplish that, we run the H on left and internal borders of the
263  * currently decoded MB. Then, we wait for the next overlap iteration
264  * to do H overlap on the right edge of this MB, before moving over and
265  * running the V overlap. Therefore, the V overlap makes us trail by one
266  * MB col and the H overlap filter makes us trail by one MB row. This
267  * is reflected in the time at which we run the put_pixels loop. */
268  if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
269  if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
270  v->over_flags_plane[mb_pos - 1])) {
272  v->block[v->cur_blk_idx][0]);
274  v->block[v->cur_blk_idx][2]);
275  if (!(s->flags & CODEC_FLAG_GRAY)) {
277  v->block[v->cur_blk_idx][4]);
279  v->block[v->cur_blk_idx][5]);
280  }
281  }
283  v->block[v->cur_blk_idx][1]);
285  v->block[v->cur_blk_idx][3]);
286 
287  if (s->mb_x == s->mb_width - 1) {
288  if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
289  v->over_flags_plane[mb_pos - s->mb_stride])) {
291  v->block[v->cur_blk_idx][0]);
293  v->block[v->cur_blk_idx][1]);
294  if (!(s->flags & CODEC_FLAG_GRAY)) {
296  v->block[v->cur_blk_idx][4]);
298  v->block[v->cur_blk_idx][5]);
299  }
300  }
302  v->block[v->cur_blk_idx][2]);
304  v->block[v->cur_blk_idx][3]);
305  }
306  }
307  if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
308  if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
309  v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
311  v->block[v->left_blk_idx][0]);
313  v->block[v->left_blk_idx][1]);
314  if (!(s->flags & CODEC_FLAG_GRAY)) {
316  v->block[v->left_blk_idx][4]);
318  v->block[v->left_blk_idx][5]);
319  }
320  }
322  v->block[v->left_blk_idx][2]);
324  v->block[v->left_blk_idx][3]);
325  }
326 }
327 
328 /** Do motion compensation over 1 macroblock
329  * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
330  */
331 static void vc1_mc_1mv(VC1Context *v, int dir)
332 {
333  MpegEncContext *s = &v->s;
334  DSPContext *dsp = &v->s.dsp;
335  uint8_t *srcY, *srcU, *srcV;
336  int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
337  int off, off_uv;
338  int v_edge_pos = s->v_edge_pos >> v->field_mode;
339 
340  if ((!v->field_mode ||
341  (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
342  !v->s.last_picture.f.data[0])
343  return;
344 
345  mx = s->mv[dir][0][0];
346  my = s->mv[dir][0][1];
347 
348  // store motion vectors for further use in B frames
349  if (s->pict_type == AV_PICTURE_TYPE_P) {
350  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = mx;
351  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = my;
352  }
353 
354  uvmx = (mx + ((mx & 3) == 3)) >> 1;
355  uvmy = (my + ((my & 3) == 3)) >> 1;
356  v->luma_mv[s->mb_x][0] = uvmx;
357  v->luma_mv[s->mb_x][1] = uvmy;
358 
359  if (v->field_mode &&
360  v->cur_field_type != v->ref_field_type[dir]) {
361  my = my - 2 + 4 * v->cur_field_type;
362  uvmy = uvmy - 2 + 4 * v->cur_field_type;
363  }
364 
365  // fastuvmc shall be ignored for interlaced frame picture
366  if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
367  uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
368  uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
369  }
370  if (v->field_mode) { // interlaced field picture
371  if (!dir) {
372  if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
373  srcY = s->current_picture.f.data[0];
374  srcU = s->current_picture.f.data[1];
375  srcV = s->current_picture.f.data[2];
376  } else {
377  srcY = s->last_picture.f.data[0];
378  srcU = s->last_picture.f.data[1];
379  srcV = s->last_picture.f.data[2];
380  }
381  } else {
382  srcY = s->next_picture.f.data[0];
383  srcU = s->next_picture.f.data[1];
384  srcV = s->next_picture.f.data[2];
385  }
386  } else {
387  if (!dir) {
388  srcY = s->last_picture.f.data[0];
389  srcU = s->last_picture.f.data[1];
390  srcV = s->last_picture.f.data[2];
391  } else {
392  srcY = s->next_picture.f.data[0];
393  srcU = s->next_picture.f.data[1];
394  srcV = s->next_picture.f.data[2];
395  }
396  }
397 
398  if(!srcY)
399  return;
400 
401  src_x = s->mb_x * 16 + (mx >> 2);
402  src_y = s->mb_y * 16 + (my >> 2);
403  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
404  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
405 
406  if (v->profile != PROFILE_ADVANCED) {
407  src_x = av_clip( src_x, -16, s->mb_width * 16);
408  src_y = av_clip( src_y, -16, s->mb_height * 16);
409  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
410  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
411  } else {
412  src_x = av_clip( src_x, -17, s->avctx->coded_width);
413  src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
414  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
415  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
416  }
417 
418  srcY += src_y * s->linesize + src_x;
419  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
420  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
421 
422  if (v->field_mode && v->ref_field_type[dir]) {
423  srcY += s->current_picture_ptr->f.linesize[0];
424  srcU += s->current_picture_ptr->f.linesize[1];
425  srcV += s->current_picture_ptr->f.linesize[2];
426  }
427 
428  /* for grayscale we should not try to read from unknown area */
429  if (s->flags & CODEC_FLAG_GRAY) {
430  srcU = s->edge_emu_buffer + 18 * s->linesize;
431  srcV = s->edge_emu_buffer + 18 * s->linesize;
432  }
433 
435  || s->h_edge_pos < 22 || v_edge_pos < 22
436  || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
437  || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
438  uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
439 
440  srcY -= s->mspel * (1 + s->linesize);
442  17 + s->mspel * 2, 17 + s->mspel * 2,
443  src_x - s->mspel, src_y - s->mspel,
444  s->h_edge_pos, v_edge_pos);
445  srcY = s->edge_emu_buffer;
446  s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
447  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
448  s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
449  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
450  srcU = uvbuf;
451  srcV = uvbuf + 16;
452  /* if we deal with range reduction we need to scale source blocks */
453  if (v->rangeredfrm) {
454  int i, j;
455  uint8_t *src, *src2;
456 
457  src = srcY;
458  for (j = 0; j < 17 + s->mspel * 2; j++) {
459  for (i = 0; i < 17 + s->mspel * 2; i++)
460  src[i] = ((src[i] - 128) >> 1) + 128;
461  src += s->linesize;
462  }
463  src = srcU;
464  src2 = srcV;
465  for (j = 0; j < 9; j++) {
466  for (i = 0; i < 9; i++) {
467  src[i] = ((src[i] - 128) >> 1) + 128;
468  src2[i] = ((src2[i] - 128) >> 1) + 128;
469  }
470  src += s->uvlinesize;
471  src2 += s->uvlinesize;
472  }
473  }
474  /* if we deal with intensity compensation we need to scale source blocks */
475  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
476  int i, j;
477  uint8_t *src, *src2;
478 
479  src = srcY;
480  for (j = 0; j < 17 + s->mspel * 2; j++) {
481  for (i = 0; i < 17 + s->mspel * 2; i++)
482  src[i] = v->luty[src[i]];
483  src += s->linesize;
484  }
485  src = srcU;
486  src2 = srcV;
487  for (j = 0; j < 9; j++) {
488  for (i = 0; i < 9; i++) {
489  src[i] = v->lutuv[src[i]];
490  src2[i] = v->lutuv[src2[i]];
491  }
492  src += s->uvlinesize;
493  src2 += s->uvlinesize;
494  }
495  }
496  srcY += s->mspel * (1 + s->linesize);
497  }
498 
499  if (v->field_mode && v->second_field) {
500  off = s->current_picture_ptr->f.linesize[0];
501  off_uv = s->current_picture_ptr->f.linesize[1];
502  } else {
503  off = 0;
504  off_uv = 0;
505  }
506  if (s->mspel) {
507  dxy = ((my & 3) << 2) | (mx & 3);
508  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
509  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
510  srcY += s->linesize * 8;
511  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
512  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
513  } else { // hpel mc - always used for luma
514  dxy = (my & 2) | ((mx & 2) >> 1);
515  if (!v->rnd)
516  dsp->put_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
517  else
518  dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
519  }
520 
521  if (s->flags & CODEC_FLAG_GRAY) return;
522  /* Chroma MC always uses qpel bilinear */
523  uvmx = (uvmx & 3) << 1;
524  uvmy = (uvmy & 3) << 1;
525  if (!v->rnd) {
526  dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
527  dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
528  } else {
529  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
530  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
531  }
532 }
533 
534 static inline int median4(int a, int b, int c, int d)
535 {
536  if (a < b) {
537  if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
538  else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
539  } else {
540  if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
541  else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
542  }
543 }
544 
545 /** Do motion compensation for 4-MV macroblock - luminance block
546  */
547 static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir)
548 {
549  MpegEncContext *s = &v->s;
550  DSPContext *dsp = &v->s.dsp;
551  uint8_t *srcY;
552  int dxy, mx, my, src_x, src_y;
553  int off;
554  int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
555  int v_edge_pos = s->v_edge_pos >> v->field_mode;
556 
557  if ((!v->field_mode ||
558  (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
559  !v->s.last_picture.f.data[0])
560  return;
561 
562  mx = s->mv[dir][n][0];
563  my = s->mv[dir][n][1];
564 
565  if (!dir) {
566  if (v->field_mode) {
567  if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field)
568  srcY = s->current_picture.f.data[0];
569  else
570  srcY = s->last_picture.f.data[0];
571  } else
572  srcY = s->last_picture.f.data[0];
573  } else
574  srcY = s->next_picture.f.data[0];
575 
576  if(!srcY)
577  return;
578 
579  if (v->field_mode) {
580  if (v->cur_field_type != v->ref_field_type[dir])
581  my = my - 2 + 4 * v->cur_field_type;
582  }
583 
584  if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
585  int same_count = 0, opp_count = 0, k;
586  int chosen_mv[2][4][2], f;
587  int tx, ty;
588  for (k = 0; k < 4; k++) {
589  f = v->mv_f[0][s->block_index[k] + v->blocks_off];
590  chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
591  chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
592  opp_count += f;
593  same_count += 1 - f;
594  }
595  f = opp_count > same_count;
596  switch (f ? opp_count : same_count) {
597  case 4:
598  tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
599  chosen_mv[f][2][0], chosen_mv[f][3][0]);
600  ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
601  chosen_mv[f][2][1], chosen_mv[f][3][1]);
602  break;
603  case 3:
604  tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
605  ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
606  break;
607  case 2:
608  tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
609  ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
610  break;
611  default:
612  av_assert2(0);
613  }
614  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
615  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
616  for (k = 0; k < 4; k++)
617  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
618  }
619 
620  if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
621  int qx, qy;
622  int width = s->avctx->coded_width;
623  int height = s->avctx->coded_height >> 1;
624  qx = (s->mb_x * 16) + (mx >> 2);
625  qy = (s->mb_y * 8) + (my >> 3);
626 
627  if (qx < -17)
628  mx -= 4 * (qx + 17);
629  else if (qx > width)
630  mx -= 4 * (qx - width);
631  if (qy < -18)
632  my -= 8 * (qy + 18);
633  else if (qy > height + 1)
634  my -= 8 * (qy - height - 1);
635  }
636 
637  if ((v->fcm == ILACE_FRAME) && fieldmv)
638  off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
639  else
640  off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
641  if (v->field_mode && v->second_field)
642  off += s->current_picture_ptr->f.linesize[0];
643 
644  src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
645  if (!fieldmv)
646  src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
647  else
648  src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
649 
650  if (v->profile != PROFILE_ADVANCED) {
651  src_x = av_clip(src_x, -16, s->mb_width * 16);
652  src_y = av_clip(src_y, -16, s->mb_height * 16);
653  } else {
654  src_x = av_clip(src_x, -17, s->avctx->coded_width);
655  if (v->fcm == ILACE_FRAME) {
656  if (src_y & 1)
657  src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
658  else
659  src_y = av_clip(src_y, -18, s->avctx->coded_height);
660  } else {
661  src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
662  }
663  }
664 
665  srcY += src_y * s->linesize + src_x;
666  if (v->field_mode && v->ref_field_type[dir])
667  srcY += s->current_picture_ptr->f.linesize[0];
668 
669  if (fieldmv && !(src_y & 1))
670  v_edge_pos--;
671  if (fieldmv && (src_y & 1) && src_y < 4)
672  src_y--;
674  || s->h_edge_pos < 13 || v_edge_pos < 23
675  || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
676  || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
677  srcY -= s->mspel * (1 + (s->linesize << fieldmv));
678  /* check emulate edge stride and offset */
680  9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
681  src_x - s->mspel, src_y - (s->mspel << fieldmv),
682  s->h_edge_pos, v_edge_pos);
683  srcY = s->edge_emu_buffer;
684  /* if we deal with range reduction we need to scale source blocks */
685  if (v->rangeredfrm) {
686  int i, j;
687  uint8_t *src;
688 
689  src = srcY;
690  for (j = 0; j < 9 + s->mspel * 2; j++) {
691  for (i = 0; i < 9 + s->mspel * 2; i++)
692  src[i] = ((src[i] - 128) >> 1) + 128;
693  src += s->linesize << fieldmv;
694  }
695  }
696  /* if we deal with intensity compensation we need to scale source blocks */
697  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
698  int i, j;
699  uint8_t *src;
700 
701  src = srcY;
702  for (j = 0; j < 9 + s->mspel * 2; j++) {
703  for (i = 0; i < 9 + s->mspel * 2; i++)
704  src[i] = v->luty[src[i]];
705  src += s->linesize << fieldmv;
706  }
707  }
708  srcY += s->mspel * (1 + (s->linesize << fieldmv));
709  }
710 
711  if (s->mspel) {
712  dxy = ((my & 3) << 2) | (mx & 3);
713  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
714  } else { // hpel mc - always used for luma
715  dxy = (my & 2) | ((mx & 2) >> 1);
716  if (!v->rnd)
717  dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
718  else
719  dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
720  }
721 }
722 
723 static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
724 {
725  int idx, i;
726  static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
727 
728  idx = ((a[3] != flag) << 3)
729  | ((a[2] != flag) << 2)
730  | ((a[1] != flag) << 1)
731  | (a[0] != flag);
732  if (!idx) {
733  *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
734  *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
735  return 4;
736  } else if (count[idx] == 1) {
737  switch (idx) {
738  case 0x1:
739  *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
740  *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
741  return 3;
742  case 0x2:
743  *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
744  *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
745  return 3;
746  case 0x4:
747  *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
748  *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
749  return 3;
750  case 0x8:
751  *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
752  *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
753  return 3;
754  }
755  } else if (count[idx] == 2) {
756  int t1 = 0, t2 = 0;
757  for (i = 0; i < 3; i++)
758  if (!a[i]) {
759  t1 = i;
760  break;
761  }
762  for (i = t1 + 1; i < 4; i++)
763  if (!a[i]) {
764  t2 = i;
765  break;
766  }
767  *tx = (mvx[t1] + mvx[t2]) / 2;
768  *ty = (mvy[t1] + mvy[t2]) / 2;
769  return 2;
770  } else {
771  return 0;
772  }
773  return -1;
774 }
775 
776 /** Do motion compensation for 4-MV macroblock - both chroma blocks
777  */
778 static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
779 {
780  MpegEncContext *s = &v->s;
781  DSPContext *dsp = &v->s.dsp;
782  uint8_t *srcU, *srcV;
783  int uvmx, uvmy, uvsrc_x, uvsrc_y;
784  int k, tx = 0, ty = 0;
785  int mvx[4], mvy[4], intra[4], mv_f[4];
786  int valid_count;
787  int chroma_ref_type = v->cur_field_type, off = 0;
788  int v_edge_pos = s->v_edge_pos >> v->field_mode;
789 
790  if (!v->field_mode && !v->s.last_picture.f.data[0])
791  return;
792  if (s->flags & CODEC_FLAG_GRAY)
793  return;
794 
795  for (k = 0; k < 4; k++) {
796  mvx[k] = s->mv[dir][k][0];
797  mvy[k] = s->mv[dir][k][1];
798  intra[k] = v->mb_type[0][s->block_index[k]];
799  if (v->field_mode)
800  mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
801  }
802 
803  /* calculate chroma MV vector from four luma MVs */
804  if (!v->field_mode || (v->field_mode && !v->numref)) {
805  valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
806  chroma_ref_type = v->reffield;
807  if (!valid_count) {
808  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
809  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
810  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
811  return; //no need to do MC for intra blocks
812  }
813  } else {
814  int dominant = 0;
815  if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
816  dominant = 1;
817  valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
818  if (dominant)
819  chroma_ref_type = !v->cur_field_type;
820  }
821  if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
822  return;
823  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
824  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
825  uvmx = (tx + ((tx & 3) == 3)) >> 1;
826  uvmy = (ty + ((ty & 3) == 3)) >> 1;
827 
828  v->luma_mv[s->mb_x][0] = uvmx;
829  v->luma_mv[s->mb_x][1] = uvmy;
830 
831  if (v->fastuvmc) {
832  uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
833  uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
834  }
835  // Field conversion bias
836  if (v->cur_field_type != chroma_ref_type)
837  uvmy += 2 - 4 * chroma_ref_type;
838 
839  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
840  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
841 
842  if (v->profile != PROFILE_ADVANCED) {
843  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
844  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
845  } else {
846  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
847  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
848  }
849 
850  if (!dir) {
851  if (v->field_mode) {
852  if ((v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
853  srcU = s->current_picture.f.data[1];
854  srcV = s->current_picture.f.data[2];
855  } else {
856  srcU = s->last_picture.f.data[1];
857  srcV = s->last_picture.f.data[2];
858  }
859  } else {
860  srcU = s->last_picture.f.data[1];
861  srcV = s->last_picture.f.data[2];
862  }
863  } else {
864  srcU = s->next_picture.f.data[1];
865  srcV = s->next_picture.f.data[2];
866  }
867 
868  if(!srcU)
869  return;
870 
871  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
872  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
873 
874  if (v->field_mode) {
875  if (chroma_ref_type) {
876  srcU += s->current_picture_ptr->f.linesize[1];
877  srcV += s->current_picture_ptr->f.linesize[2];
878  }
879  off = v->second_field ? s->current_picture_ptr->f.linesize[1] : 0;
880  }
881 
883  || s->h_edge_pos < 18 || v_edge_pos < 18
884  || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
885  || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
887  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
888  s->h_edge_pos >> 1, v_edge_pos >> 1);
889  s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
890  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
891  s->h_edge_pos >> 1, v_edge_pos >> 1);
892  srcU = s->edge_emu_buffer;
893  srcV = s->edge_emu_buffer + 16;
894 
895  /* if we deal with range reduction we need to scale source blocks */
896  if (v->rangeredfrm) {
897  int i, j;
898  uint8_t *src, *src2;
899 
900  src = srcU;
901  src2 = srcV;
902  for (j = 0; j < 9; j++) {
903  for (i = 0; i < 9; i++) {
904  src[i] = ((src[i] - 128) >> 1) + 128;
905  src2[i] = ((src2[i] - 128) >> 1) + 128;
906  }
907  src += s->uvlinesize;
908  src2 += s->uvlinesize;
909  }
910  }
911  /* if we deal with intensity compensation we need to scale source blocks */
912  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
913  int i, j;
914  uint8_t *src, *src2;
915 
916  src = srcU;
917  src2 = srcV;
918  for (j = 0; j < 9; j++) {
919  for (i = 0; i < 9; i++) {
920  src[i] = v->lutuv[src[i]];
921  src2[i] = v->lutuv[src2[i]];
922  }
923  src += s->uvlinesize;
924  src2 += s->uvlinesize;
925  }
926  }
927  }
928 
929  /* Chroma MC always uses qpel bilinear */
930  uvmx = (uvmx & 3) << 1;
931  uvmy = (uvmy & 3) << 1;
932  if (!v->rnd) {
933  dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
934  dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
935  } else {
936  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
937  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
938  }
939 }
940 
941 /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
942  */
944 {
945  MpegEncContext *s = &v->s;
946  DSPContext *dsp = &v->s.dsp;
947  uint8_t *srcU, *srcV;
948  int uvsrc_x, uvsrc_y;
949  int uvmx_field[4], uvmy_field[4];
950  int i, off, tx, ty;
951  int fieldmv = v->blk_mv_type[s->block_index[0]];
952  static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
953  int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
954  int v_edge_pos = s->v_edge_pos >> 1;
955 
956  if (!v->s.last_picture.f.data[0])
957  return;
958  if (s->flags & CODEC_FLAG_GRAY)
959  return;
960 
961  for (i = 0; i < 4; i++) {
962  tx = s->mv[0][i][0];
963  uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
964  ty = s->mv[0][i][1];
965  if (fieldmv)
966  uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
967  else
968  uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
969  }
970 
971  for (i = 0; i < 4; i++) {
972  off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
973  uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
974  uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
975  // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
976  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
977  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
978  srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
979  srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
980  uvmx_field[i] = (uvmx_field[i] & 3) << 1;
981  uvmy_field[i] = (uvmy_field[i] & 3) << 1;
982 
983  if (fieldmv && !(uvsrc_y & 1))
984  v_edge_pos = (s->v_edge_pos >> 1) - 1;
985 
986  if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
987  uvsrc_y--;
988  if ((v->mv_mode == MV_PMODE_INTENSITY_COMP)
989  || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
990  || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
991  || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
993  5, (5 << fieldmv), uvsrc_x, uvsrc_y,
994  s->h_edge_pos >> 1, v_edge_pos);
995  s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
996  5, (5 << fieldmv), uvsrc_x, uvsrc_y,
997  s->h_edge_pos >> 1, v_edge_pos);
998  srcU = s->edge_emu_buffer;
999  srcV = s->edge_emu_buffer + 16;
1000 
1001  /* if we deal with intensity compensation we need to scale source blocks */
1002  if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1003  int i, j;
1004  uint8_t *src, *src2;
1005 
1006  src = srcU;
1007  src2 = srcV;
1008  for (j = 0; j < 5; j++) {
1009  for (i = 0; i < 5; i++) {
1010  src[i] = v->lutuv[src[i]];
1011  src2[i] = v->lutuv[src2[i]];
1012  }
1013  src += s->uvlinesize << 1;
1014  src2 += s->uvlinesize << 1;
1015  }
1016  }
1017  }
1018  if (!v->rnd) {
1019  dsp->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1020  dsp->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1021  } else {
1022  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1023  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1024  }
1025  }
1026 }
1027 
1028 /***********************************************************************/
1029 /**
1030  * @name VC-1 Block-level functions
1031  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1032  * @{
1033  */
1034 
1035 /**
1036  * @def GET_MQUANT
1037  * @brief Get macroblock-level quantizer scale
1038  */
1039 #define GET_MQUANT() \
1040  if (v->dquantfrm) { \
1041  int edges = 0; \
1042  if (v->dqprofile == DQPROFILE_ALL_MBS) { \
1043  if (v->dqbilevel) { \
1044  mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1045  } else { \
1046  mqdiff = get_bits(gb, 3); \
1047  if (mqdiff != 7) \
1048  mquant = v->pq + mqdiff; \
1049  else \
1050  mquant = get_bits(gb, 5); \
1051  } \
1052  } \
1053  if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1054  edges = 1 << v->dqsbedge; \
1055  else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1056  edges = (3 << v->dqsbedge) % 15; \
1057  else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
1058  edges = 15; \
1059  if ((edges&1) && !s->mb_x) \
1060  mquant = v->altpq; \
1061  if ((edges&2) && s->first_slice_line) \
1062  mquant = v->altpq; \
1063  if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
1064  mquant = v->altpq; \
1065  if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
1066  mquant = v->altpq; \
1067  if (!mquant || mquant > 31) { \
1068  av_log(v->s.avctx, AV_LOG_ERROR, \
1069  "Overriding invalid mquant %d\n", mquant); \
1070  mquant = 1; \
1071  } \
1072  }
1073 
1074 /**
1075  * @def GET_MVDATA(_dmv_x, _dmv_y)
1076  * @brief Get MV differentials
1077  * @see MVDATA decoding from 8.3.5.2, p(1)20
1078  * @param _dmv_x Horizontal differential for decoded MV
1079  * @param _dmv_y Vertical differential for decoded MV
1080  */
1081 #define GET_MVDATA(_dmv_x, _dmv_y) \
1082  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
1083  VC1_MV_DIFF_VLC_BITS, 2); \
1084  if (index > 36) { \
1085  mb_has_coeffs = 1; \
1086  index -= 37; \
1087  } else \
1088  mb_has_coeffs = 0; \
1089  s->mb_intra = 0; \
1090  if (!index) { \
1091  _dmv_x = _dmv_y = 0; \
1092  } else if (index == 35) { \
1093  _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1094  _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1095  } else if (index == 36) { \
1096  _dmv_x = 0; \
1097  _dmv_y = 0; \
1098  s->mb_intra = 1; \
1099  } else { \
1100  index1 = index % 6; \
1101  if (!s->quarter_sample && index1 == 5) val = 1; \
1102  else val = 0; \
1103  if (size_table[index1] - val > 0) \
1104  val = get_bits(gb, size_table[index1] - val); \
1105  else val = 0; \
1106  sign = 0 - (val&1); \
1107  _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1108  \
1109  index1 = index / 6; \
1110  if (!s->quarter_sample && index1 == 5) val = 1; \
1111  else val = 0; \
1112  if (size_table[index1] - val > 0) \
1113  val = get_bits(gb, size_table[index1] - val); \
1114  else val = 0; \
1115  sign = 0 - (val & 1); \
1116  _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
1117  }
1118 
1120  int *dmv_y, int *pred_flag)
1121 {
1122  int index, index1;
1123  int extend_x = 0, extend_y = 0;
1124  GetBitContext *gb = &v->s.gb;
1125  int bits, esc;
1126  int val, sign;
1127  const int* offs_tab;
1128 
1129  if (v->numref) {
1130  bits = VC1_2REF_MVDATA_VLC_BITS;
1131  esc = 125;
1132  } else {
1133  bits = VC1_1REF_MVDATA_VLC_BITS;
1134  esc = 71;
1135  }
1136  switch (v->dmvrange) {
1137  case 1:
1138  extend_x = 1;
1139  break;
1140  case 2:
1141  extend_y = 1;
1142  break;
1143  case 3:
1144  extend_x = extend_y = 1;
1145  break;
1146  }
1147  index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
1148  if (index == esc) {
1149  *dmv_x = get_bits(gb, v->k_x);
1150  *dmv_y = get_bits(gb, v->k_y);
1151  if (v->numref) {
1152  if (pred_flag) {
1153  *pred_flag = *dmv_y & 1;
1154  *dmv_y = (*dmv_y + *pred_flag) >> 1;
1155  } else {
1156  *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
1157  }
1158  }
1159  }
1160  else {
1161  av_assert0(index < esc);
1162  if (extend_x)
1163  offs_tab = offset_table2;
1164  else
1165  offs_tab = offset_table1;
1166  index1 = (index + 1) % 9;
1167  if (index1 != 0) {
1168  val = get_bits(gb, index1 + extend_x);
1169  sign = 0 -(val & 1);
1170  *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
1171  } else
1172  *dmv_x = 0;
1173  if (extend_y)
1174  offs_tab = offset_table2;
1175  else
1176  offs_tab = offset_table1;
1177  index1 = (index + 1) / 9;
1178  if (index1 > v->numref) {
1179  val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
1180  sign = 0 - (val & 1);
1181  *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
1182  } else
1183  *dmv_y = 0;
1184  if (v->numref && pred_flag)
1185  *pred_flag = index1 & 1;
1186  }
1187 }
1188 
1189 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
1190 {
1191  int scaledvalue, refdist;
1192  int scalesame1, scalesame2;
1193  int scalezone1_x, zone1offset_x;
1194  int table_index = dir ^ v->second_field;
1195 
1196  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1197  refdist = v->refdist;
1198  else
1199  refdist = dir ? v->brfd : v->frfd;
1200  if (refdist > 3)
1201  refdist = 3;
1202  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1203  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1204  scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
1205  zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
1206 
1207  if (FFABS(n) > 255)
1208  scaledvalue = n;
1209  else {
1210  if (FFABS(n) < scalezone1_x)
1211  scaledvalue = (n * scalesame1) >> 8;
1212  else {
1213  if (n < 0)
1214  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
1215  else
1216  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
1217  }
1218  }
1219  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1220 }
1221 
1222 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
1223 {
1224  int scaledvalue, refdist;
1225  int scalesame1, scalesame2;
1226  int scalezone1_y, zone1offset_y;
1227  int table_index = dir ^ v->second_field;
1228 
1229  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1230  refdist = v->refdist;
1231  else
1232  refdist = dir ? v->brfd : v->frfd;
1233  if (refdist > 3)
1234  refdist = 3;
1235  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1236  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1237  scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
1238  zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
1239 
1240  if (FFABS(n) > 63)
1241  scaledvalue = n;
1242  else {
1243  if (FFABS(n) < scalezone1_y)
1244  scaledvalue = (n * scalesame1) >> 8;
1245  else {
1246  if (n < 0)
1247  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
1248  else
1249  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
1250  }
1251  }
1252 
1253  if (v->cur_field_type && !v->ref_field_type[dir])
1254  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1255  else
1256  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1257 }
1258 
1259 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
1260 {
1261  int scalezone1_x, zone1offset_x;
1262  int scaleopp1, scaleopp2, brfd;
1263  int scaledvalue;
1264 
1265  brfd = FFMIN(v->brfd, 3);
1266  scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
1267  zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
1268  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1269  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1270 
1271  if (FFABS(n) > 255)
1272  scaledvalue = n;
1273  else {
1274  if (FFABS(n) < scalezone1_x)
1275  scaledvalue = (n * scaleopp1) >> 8;
1276  else {
1277  if (n < 0)
1278  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
1279  else
1280  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
1281  }
1282  }
1283  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1284 }
1285 
1286 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
1287 {
1288  int scalezone1_y, zone1offset_y;
1289  int scaleopp1, scaleopp2, brfd;
1290  int scaledvalue;
1291 
1292  brfd = FFMIN(v->brfd, 3);
1293  scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
1294  zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
1295  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1296  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1297 
1298  if (FFABS(n) > 63)
1299  scaledvalue = n;
1300  else {
1301  if (FFABS(n) < scalezone1_y)
1302  scaledvalue = (n * scaleopp1) >> 8;
1303  else {
1304  if (n < 0)
1305  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
1306  else
1307  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
1308  }
1309  }
1310  if (v->cur_field_type && !v->ref_field_type[dir]) {
1311  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1312  } else {
1313  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1314  }
1315 }
1316 
1317 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
1318  int dim, int dir)
1319 {
1320  int brfd, scalesame;
1321  int hpel = 1 - v->s.quarter_sample;
1322 
1323  n >>= hpel;
1324  if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
1325  if (dim)
1326  n = scaleforsame_y(v, i, n, dir) << hpel;
1327  else
1328  n = scaleforsame_x(v, n, dir) << hpel;
1329  return n;
1330  }
1331  brfd = FFMIN(v->brfd, 3);
1332  scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
1333 
1334  n = (n * scalesame >> 8) << hpel;
1335  return n;
1336 }
1337 
1338 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
1339  int dim, int dir)
1340 {
1341  int refdist, scaleopp;
1342  int hpel = 1 - v->s.quarter_sample;
1343 
1344  n >>= hpel;
1345  if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
1346  if (dim)
1347  n = scaleforopp_y(v, n, dir) << hpel;
1348  else
1349  n = scaleforopp_x(v, n) << hpel;
1350  return n;
1351  }
1352  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1353  refdist = FFMIN(v->refdist, 3);
1354  else
1355  refdist = dir ? v->brfd : v->frfd;
1356  scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
1357 
1358  n = (n * scaleopp >> 8) << hpel;
1359  return n;
1360 }
1361 
1362 /** Predict and set motion vector
1363  */
1364 static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
1365  int mv1, int r_x, int r_y, uint8_t* is_intra,
1366  int pred_flag, int dir)
1367 {
1368  MpegEncContext *s = &v->s;
1369  int xy, wrap, off = 0;
1370  int16_t *A, *B, *C;
1371  int px, py;
1372  int sum;
1373  int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
1374  int opposite, a_f, b_f, c_f;
1375  int16_t field_predA[2];
1376  int16_t field_predB[2];
1377  int16_t field_predC[2];
1378  int a_valid, b_valid, c_valid;
1379  int hybridmv_thresh, y_bias = 0;
1380 
1381  if (v->mv_mode == MV_PMODE_MIXED_MV ||
1383  mixedmv_pic = 1;
1384  else
1385  mixedmv_pic = 0;
1386  /* scale MV difference to be quad-pel */
1387  dmv_x <<= 1 - s->quarter_sample;
1388  dmv_y <<= 1 - s->quarter_sample;
1389 
1390  wrap = s->b8_stride;
1391  xy = s->block_index[n];
1392 
1393  if (s->mb_intra) {
1394  s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = 0;
1395  s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = 0;
1396  s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = 0;
1397  s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
1398  if (mv1) { /* duplicate motion data for 1-MV block */
1399  s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
1400  s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
1401  s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
1402  s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
1403  s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
1404  s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
1405  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1406  s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
1407  s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
1408  s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1409  s->current_picture.f.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
1410  s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
1411  s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
1412  }
1413  return;
1414  }
1415 
1416  C = s->current_picture.f.motion_val[dir][xy - 1 + v->blocks_off];
1417  A = s->current_picture.f.motion_val[dir][xy - wrap + v->blocks_off];
1418  if (mv1) {
1419  if (v->field_mode && mixedmv_pic)
1420  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1421  else
1422  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1423  } else {
1424  //in 4-MV mode different blocks have different B predictor position
1425  switch (n) {
1426  case 0:
1427  off = (s->mb_x > 0) ? -1 : 1;
1428  break;
1429  case 1:
1430  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1431  break;
1432  case 2:
1433  off = 1;
1434  break;
1435  case 3:
1436  off = -1;
1437  }
1438  }
1439  B = s->current_picture.f.motion_val[dir][xy - wrap + off + v->blocks_off];
1440 
1441  a_valid = !s->first_slice_line || (n == 2 || n == 3);
1442  b_valid = a_valid && (s->mb_width > 1);
1443  c_valid = s->mb_x || (n == 1 || n == 3);
1444  if (v->field_mode) {
1445  a_valid = a_valid && !is_intra[xy - wrap];
1446  b_valid = b_valid && !is_intra[xy - wrap + off];
1447  c_valid = c_valid && !is_intra[xy - 1];
1448  }
1449 
1450  if (a_valid) {
1451  a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
1452  num_oppfield += a_f;
1453  num_samefield += 1 - a_f;
1454  field_predA[0] = A[0];
1455  field_predA[1] = A[1];
1456  } else {
1457  field_predA[0] = field_predA[1] = 0;
1458  a_f = 0;
1459  }
1460  if (b_valid) {
1461  b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
1462  num_oppfield += b_f;
1463  num_samefield += 1 - b_f;
1464  field_predB[0] = B[0];
1465  field_predB[1] = B[1];
1466  } else {
1467  field_predB[0] = field_predB[1] = 0;
1468  b_f = 0;
1469  }
1470  if (c_valid) {
1471  c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
1472  num_oppfield += c_f;
1473  num_samefield += 1 - c_f;
1474  field_predC[0] = C[0];
1475  field_predC[1] = C[1];
1476  } else {
1477  field_predC[0] = field_predC[1] = 0;
1478  c_f = 0;
1479  }
1480 
1481  if (v->field_mode) {
1482  if (!v->numref)
1483  // REFFIELD determines if the last field or the second-last field is
1484  // to be used as reference
1485  opposite = 1 - v->reffield;
1486  else {
1487  if (num_samefield <= num_oppfield)
1488  opposite = 1 - pred_flag;
1489  else
1490  opposite = pred_flag;
1491  }
1492  } else
1493  opposite = 0;
1494  if (opposite) {
1495  if (a_valid && !a_f) {
1496  field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
1497  field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
1498  }
1499  if (b_valid && !b_f) {
1500  field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
1501  field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
1502  }
1503  if (c_valid && !c_f) {
1504  field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
1505  field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
1506  }
1507  v->mv_f[dir][xy + v->blocks_off] = 1;
1508  v->ref_field_type[dir] = !v->cur_field_type;
1509  } else {
1510  if (a_valid && a_f) {
1511  field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
1512  field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
1513  }
1514  if (b_valid && b_f) {
1515  field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
1516  field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
1517  }
1518  if (c_valid && c_f) {
1519  field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
1520  field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
1521  }
1522  v->mv_f[dir][xy + v->blocks_off] = 0;
1523  v->ref_field_type[dir] = v->cur_field_type;
1524  }
1525 
1526  if (a_valid) {
1527  px = field_predA[0];
1528  py = field_predA[1];
1529  } else if (c_valid) {
1530  px = field_predC[0];
1531  py = field_predC[1];
1532  } else if (b_valid) {
1533  px = field_predB[0];
1534  py = field_predB[1];
1535  } else {
1536  px = 0;
1537  py = 0;
1538  }
1539 
1540  if (num_samefield + num_oppfield > 1) {
1541  px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
1542  py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
1543  }
1544 
1545  /* Pullback MV as specified in 8.3.5.3.4 */
1546  if (!v->field_mode) {
1547  int qx, qy, X, Y;
1548  qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
1549  qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
1550  X = (s->mb_width << 6) - 4;
1551  Y = (s->mb_height << 6) - 4;
1552  if (mv1) {
1553  if (qx + px < -60) px = -60 - qx;
1554  if (qy + py < -60) py = -60 - qy;
1555  } else {
1556  if (qx + px < -28) px = -28 - qx;
1557  if (qy + py < -28) py = -28 - qy;
1558  }
1559  if (qx + px > X) px = X - qx;
1560  if (qy + py > Y) py = Y - qy;
1561  }
1562 
1563  if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
1564  /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
1565  hybridmv_thresh = 32;
1566  if (a_valid && c_valid) {
1567  if (is_intra[xy - wrap])
1568  sum = FFABS(px) + FFABS(py);
1569  else
1570  sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
1571  if (sum > hybridmv_thresh) {
1572  if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
1573  px = field_predA[0];
1574  py = field_predA[1];
1575  } else {
1576  px = field_predC[0];
1577  py = field_predC[1];
1578  }
1579  } else {
1580  if (is_intra[xy - 1])
1581  sum = FFABS(px) + FFABS(py);
1582  else
1583  sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
1584  if (sum > hybridmv_thresh) {
1585  if (get_bits1(&s->gb)) {
1586  px = field_predA[0];
1587  py = field_predA[1];
1588  } else {
1589  px = field_predC[0];
1590  py = field_predC[1];
1591  }
1592  }
1593  }
1594  }
1595  }
1596 
1597  if (v->field_mode && v->numref)
1598  r_y >>= 1;
1599  if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
1600  y_bias = 1;
1601  /* store MV using signed modulus of MV range defined in 4.11 */
1602  s->mv[dir][n][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1603  s->mv[dir][n][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
1604  if (mv1) { /* duplicate motion data for 1-MV block */
1605  s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1606  s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1607  s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1608  s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1609  s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1610  s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1611  v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1612  v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1613  }
1614 }
1615 
1616 /** Predict and set motion vector for interlaced frame picture MBs
1617  */
1618 static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
1619  int mvn, int r_x, int r_y, uint8_t* is_intra)
1620 {
1621  MpegEncContext *s = &v->s;
1622  int xy, wrap, off = 0;
1623  int A[2], B[2], C[2];
1624  int px, py;
1625  int a_valid = 0, b_valid = 0, c_valid = 0;
1626  int field_a, field_b, field_c; // 0: same, 1: opposit
1627  int total_valid, num_samefield, num_oppfield;
1628  int pos_c, pos_b, n_adj;
1629 
1630  wrap = s->b8_stride;
1631  xy = s->block_index[n];
1632 
1633  if (s->mb_intra) {
1634  s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = 0;
1635  s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = 0;
1636  s->current_picture.f.motion_val[1][xy][0] = 0;
1637  s->current_picture.f.motion_val[1][xy][1] = 0;
1638  if (mvn == 1) { /* duplicate motion data for 1-MV block */
1639  s->current_picture.f.motion_val[0][xy + 1][0] = 0;
1640  s->current_picture.f.motion_val[0][xy + 1][1] = 0;
1641  s->current_picture.f.motion_val[0][xy + wrap][0] = 0;
1642  s->current_picture.f.motion_val[0][xy + wrap][1] = 0;
1643  s->current_picture.f.motion_val[0][xy + wrap + 1][0] = 0;
1644  s->current_picture.f.motion_val[0][xy + wrap + 1][1] = 0;
1645  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1646  s->current_picture.f.motion_val[1][xy + 1][0] = 0;
1647  s->current_picture.f.motion_val[1][xy + 1][1] = 0;
1648  s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1649  s->current_picture.f.motion_val[1][xy + wrap][1] = 0;
1650  s->current_picture.f.motion_val[1][xy + wrap + 1][0] = 0;
1651  s->current_picture.f.motion_val[1][xy + wrap + 1][1] = 0;
1652  }
1653  return;
1654  }
1655 
1656  off = ((n == 0) || (n == 1)) ? 1 : -1;
1657  /* predict A */
1658  if (s->mb_x || (n == 1) || (n == 3)) {
1659  if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
1660  || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
1661  A[0] = s->current_picture.f.motion_val[0][xy - 1][0];
1662  A[1] = s->current_picture.f.motion_val[0][xy - 1][1];
1663  a_valid = 1;
1664  } else { // current block has frame mv and cand. has field MV (so average)
1665  A[0] = (s->current_picture.f.motion_val[0][xy - 1][0]
1666  + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][0] + 1) >> 1;
1667  A[1] = (s->current_picture.f.motion_val[0][xy - 1][1]
1668  + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][1] + 1) >> 1;
1669  a_valid = 1;
1670  }
1671  if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
1672  a_valid = 0;
1673  A[0] = A[1] = 0;
1674  }
1675  } else
1676  A[0] = A[1] = 0;
1677  /* Predict B and C */
1678  B[0] = B[1] = C[0] = C[1] = 0;
1679  if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
1680  if (!s->first_slice_line) {
1681  if (!v->is_intra[s->mb_x - s->mb_stride]) {
1682  b_valid = 1;
1683  n_adj = n | 2;
1684  pos_b = s->block_index[n_adj] - 2 * wrap;
1685  if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
1686  n_adj = (n & 2) | (n & 1);
1687  }
1688  B[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][0];
1689  B[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][1];
1690  if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
1691  B[0] = (B[0] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
1692  B[1] = (B[1] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
1693  }
1694  }
1695  if (s->mb_width > 1) {
1696  if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
1697  c_valid = 1;
1698  n_adj = 2;
1699  pos_c = s->block_index[2] - 2 * wrap + 2;
1700  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1701  n_adj = n & 2;
1702  }
1703  C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][0];
1704  C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][1];
1705  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1706  C[0] = (1 + C[0] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
1707  C[1] = (1 + C[1] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
1708  }
1709  if (s->mb_x == s->mb_width - 1) {
1710  if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
1711  c_valid = 1;
1712  n_adj = 3;
1713  pos_c = s->block_index[3] - 2 * wrap - 2;
1714  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1715  n_adj = n | 1;
1716  }
1717  C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][0];
1718  C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][1];
1719  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1720  C[0] = (1 + C[0] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
1721  C[1] = (1 + C[1] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
1722  }
1723  } else
1724  c_valid = 0;
1725  }
1726  }
1727  }
1728  }
1729  } else {
1730  pos_b = s->block_index[1];
1731  b_valid = 1;
1732  B[0] = s->current_picture.f.motion_val[0][pos_b][0];
1733  B[1] = s->current_picture.f.motion_val[0][pos_b][1];
1734  pos_c = s->block_index[0];
1735  c_valid = 1;
1736  C[0] = s->current_picture.f.motion_val[0][pos_c][0];
1737  C[1] = s->current_picture.f.motion_val[0][pos_c][1];
1738  }
1739 
1740  total_valid = a_valid + b_valid + c_valid;
1741  // check if predictor A is out of bounds
1742  if (!s->mb_x && !(n == 1 || n == 3)) {
1743  A[0] = A[1] = 0;
1744  }
1745  // check if predictor B is out of bounds
1746  if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
1747  B[0] = B[1] = C[0] = C[1] = 0;
1748  }
1749  if (!v->blk_mv_type[xy]) {
1750  if (s->mb_width == 1) {
1751  px = B[0];
1752  py = B[1];
1753  } else {
1754  if (total_valid >= 2) {
1755  px = mid_pred(A[0], B[0], C[0]);
1756  py = mid_pred(A[1], B[1], C[1]);
1757  } else if (total_valid) {
1758  if (a_valid) { px = A[0]; py = A[1]; }
1759  if (b_valid) { px = B[0]; py = B[1]; }
1760  if (c_valid) { px = C[0]; py = C[1]; }
1761  } else
1762  px = py = 0;
1763  }
1764  } else {
1765  if (a_valid)
1766  field_a = (A[1] & 4) ? 1 : 0;
1767  else
1768  field_a = 0;
1769  if (b_valid)
1770  field_b = (B[1] & 4) ? 1 : 0;
1771  else
1772  field_b = 0;
1773  if (c_valid)
1774  field_c = (C[1] & 4) ? 1 : 0;
1775  else
1776  field_c = 0;
1777 
1778  num_oppfield = field_a + field_b + field_c;
1779  num_samefield = total_valid - num_oppfield;
1780  if (total_valid == 3) {
1781  if ((num_samefield == 3) || (num_oppfield == 3)) {
1782  px = mid_pred(A[0], B[0], C[0]);
1783  py = mid_pred(A[1], B[1], C[1]);
1784  } else if (num_samefield >= num_oppfield) {
1785  /* take one MV from same field set depending on priority
1786  the check for B may not be necessary */
1787  px = !field_a ? A[0] : B[0];
1788  py = !field_a ? A[1] : B[1];
1789  } else {
1790  px = field_a ? A[0] : B[0];
1791  py = field_a ? A[1] : B[1];
1792  }
1793  } else if (total_valid == 2) {
1794  if (num_samefield >= num_oppfield) {
1795  if (!field_a && a_valid) {
1796  px = A[0];
1797  py = A[1];
1798  } else if (!field_b && b_valid) {
1799  px = B[0];
1800  py = B[1];
1801  } else if (c_valid) {
1802  px = C[0];
1803  py = C[1];
1804  } else px = py = 0;
1805  } else {
1806  if (field_a && a_valid) {
1807  px = A[0];
1808  py = A[1];
1809  } else if (field_b && b_valid) {
1810  px = B[0];
1811  py = B[1];
1812  } else if (c_valid) {
1813  px = C[0];
1814  py = C[1];
1815  } else px = py = 0;
1816  }
1817  } else if (total_valid == 1) {
1818  px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
1819  py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
1820  } else
1821  px = py = 0;
1822  }
1823 
1824  /* store MV using signed modulus of MV range defined in 4.11 */
1825  s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1826  s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1827  if (mvn == 1) { /* duplicate motion data for 1-MV block */
1828  s->current_picture.f.motion_val[0][xy + 1 ][0] = s->current_picture.f.motion_val[0][xy][0];
1829  s->current_picture.f.motion_val[0][xy + 1 ][1] = s->current_picture.f.motion_val[0][xy][1];
1830  s->current_picture.f.motion_val[0][xy + wrap ][0] = s->current_picture.f.motion_val[0][xy][0];
1831  s->current_picture.f.motion_val[0][xy + wrap ][1] = s->current_picture.f.motion_val[0][xy][1];
1832  s->current_picture.f.motion_val[0][xy + wrap + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1833  s->current_picture.f.motion_val[0][xy + wrap + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1834  } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
1835  s->current_picture.f.motion_val[0][xy + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1836  s->current_picture.f.motion_val[0][xy + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1837  s->mv[0][n + 1][0] = s->mv[0][n][0];
1838  s->mv[0][n + 1][1] = s->mv[0][n][1];
1839  }
1840 }
1841 
1842 /** Motion compensation for direct or interpolated blocks in B-frames
1843  */
1844 static void vc1_interp_mc(VC1Context *v)
1845 {
1846  MpegEncContext *s = &v->s;
1847  DSPContext *dsp = &v->s.dsp;
1848  uint8_t *srcY, *srcU, *srcV;
1849  int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1850  int off, off_uv;
1851  int v_edge_pos = s->v_edge_pos >> v->field_mode;
1852 
1853  if (!v->field_mode && !v->s.next_picture.f.data[0])
1854  return;
1855 
1856  mx = s->mv[1][0][0];
1857  my = s->mv[1][0][1];
1858  uvmx = (mx + ((mx & 3) == 3)) >> 1;
1859  uvmy = (my + ((my & 3) == 3)) >> 1;
1860  if (v->field_mode) {
1861  if (v->cur_field_type != v->ref_field_type[1])
1862  my = my - 2 + 4 * v->cur_field_type;
1863  uvmy = uvmy - 2 + 4 * v->cur_field_type;
1864  }
1865  if (v->fastuvmc) {
1866  uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
1867  uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
1868  }
1869  srcY = s->next_picture.f.data[0];
1870  srcU = s->next_picture.f.data[1];
1871  srcV = s->next_picture.f.data[2];
1872 
1873  src_x = s->mb_x * 16 + (mx >> 2);
1874  src_y = s->mb_y * 16 + (my >> 2);
1875  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1876  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1877 
1878  if (v->profile != PROFILE_ADVANCED) {
1879  src_x = av_clip( src_x, -16, s->mb_width * 16);
1880  src_y = av_clip( src_y, -16, s->mb_height * 16);
1881  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1882  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1883  } else {
1884  src_x = av_clip( src_x, -17, s->avctx->coded_width);
1885  src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1886  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1887  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1888  }
1889 
1890  srcY += src_y * s->linesize + src_x;
1891  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1892  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1893 
1894  if (v->field_mode && v->ref_field_type[1]) {
1895  srcY += s->current_picture_ptr->f.linesize[0];
1896  srcU += s->current_picture_ptr->f.linesize[1];
1897  srcV += s->current_picture_ptr->f.linesize[2];
1898  }
1899 
1900  /* for grayscale we should not try to read from unknown area */
1901  if (s->flags & CODEC_FLAG_GRAY) {
1902  srcU = s->edge_emu_buffer + 18 * s->linesize;
1903  srcV = s->edge_emu_buffer + 18 * s->linesize;
1904  }
1905 
1906  if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22
1907  || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
1908  || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
1909  uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
1910 
1911  srcY -= s->mspel * (1 + s->linesize);
1913  17 + s->mspel * 2, 17 + s->mspel * 2,
1914  src_x - s->mspel, src_y - s->mspel,
1915  s->h_edge_pos, v_edge_pos);
1916  srcY = s->edge_emu_buffer;
1917  s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
1918  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
1919  s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
1920  uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
1921  srcU = uvbuf;
1922  srcV = uvbuf + 16;
1923  /* if we deal with range reduction we need to scale source blocks */
1924  if (v->rangeredfrm) {
1925  int i, j;
1926  uint8_t *src, *src2;
1927 
1928  src = srcY;
1929  for (j = 0; j < 17 + s->mspel * 2; j++) {
1930  for (i = 0; i < 17 + s->mspel * 2; i++)
1931  src[i] = ((src[i] - 128) >> 1) + 128;
1932  src += s->linesize;
1933  }
1934  src = srcU;
1935  src2 = srcV;
1936  for (j = 0; j < 9; j++) {
1937  for (i = 0; i < 9; i++) {
1938  src[i] = ((src[i] - 128) >> 1) + 128;
1939  src2[i] = ((src2[i] - 128) >> 1) + 128;
1940  }
1941  src += s->uvlinesize;
1942  src2 += s->uvlinesize;
1943  }
1944  }
1945  srcY += s->mspel * (1 + s->linesize);
1946  }
1947 
1948  if (v->field_mode && v->second_field) {
1949  off = s->current_picture_ptr->f.linesize[0];
1950  off_uv = s->current_picture_ptr->f.linesize[1];
1951  } else {
1952  off = 0;
1953  off_uv = 0;
1954  }
1955 
1956  if (s->mspel) {
1957  dxy = ((my & 3) << 2) | (mx & 3);
1958  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
1959  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
1960  srcY += s->linesize * 8;
1961  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
1962  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
1963  } else { // hpel mc
1964  dxy = (my & 2) | ((mx & 2) >> 1);
1965 
1966  if (!v->rnd)
1967  dsp->avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
1968  else
1969  dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
1970  }
1971 
1972  if (s->flags & CODEC_FLAG_GRAY) return;
1973  /* Chroma MC always uses qpel blilinear */
1974  uvmx = (uvmx & 3) << 1;
1975  uvmy = (uvmy & 3) << 1;
1976  if (!v->rnd) {
1977  dsp->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
1978  dsp->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
1979  } else {
1980  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
1981  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
1982  }
1983 }
1984 
1985 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1986 {
1987  int n = bfrac;
1988 
1989 #if B_FRACTION_DEN==256
1990  if (inv)
1991  n -= 256;
1992  if (!qs)
1993  return 2 * ((value * n + 255) >> 9);
1994  return (value * n + 128) >> 8;
1995 #else
1996  if (inv)
1997  n -= B_FRACTION_DEN;
1998  if (!qs)
1999  return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
2000  return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
2001 #endif
2002 }
2003 
2004 /** Reconstruct motion vector for B-frame and do motion compensation
2005  */
2006 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
2007  int direct, int mode)
2008 {
2009  if (v->use_ic) {
2010  v->mv_mode2 = v->mv_mode;
2012  }
2013  if (direct) {
2014  vc1_mc_1mv(v, 0);
2015  vc1_interp_mc(v);
2016  if (v->use_ic)
2017  v->mv_mode = v->mv_mode2;
2018  return;
2019  }
2020  if (mode == BMV_TYPE_INTERPOLATED) {
2021  vc1_mc_1mv(v, 0);
2022  vc1_interp_mc(v);
2023  if (v->use_ic)
2024  v->mv_mode = v->mv_mode2;
2025  return;
2026  }
2027 
2028  if (v->use_ic && (mode == BMV_TYPE_BACKWARD))
2029  v->mv_mode = v->mv_mode2;
2030  vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
2031  if (v->use_ic)
2032  v->mv_mode = v->mv_mode2;
2033 }
2034 
2035 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
2036  int direct, int mvtype)
2037 {
2038  MpegEncContext *s = &v->s;
2039  int xy, wrap, off = 0;
2040  int16_t *A, *B, *C;
2041  int px, py;
2042  int sum;
2043  int r_x, r_y;
2044  const uint8_t *is_intra = v->mb_type[0];
2045 
2046  r_x = v->range_x;
2047  r_y = v->range_y;
2048  /* scale MV difference to be quad-pel */
2049  dmv_x[0] <<= 1 - s->quarter_sample;
2050  dmv_y[0] <<= 1 - s->quarter_sample;
2051  dmv_x[1] <<= 1 - s->quarter_sample;
2052  dmv_y[1] <<= 1 - s->quarter_sample;
2053 
2054  wrap = s->b8_stride;
2055  xy = s->block_index[0];
2056 
2057  if (s->mb_intra) {
2058  s->current_picture.f.motion_val[0][xy + v->blocks_off][0] =
2059  s->current_picture.f.motion_val[0][xy + v->blocks_off][1] =
2060  s->current_picture.f.motion_val[1][xy + v->blocks_off][0] =
2061  s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
2062  return;
2063  }
2064  if (!v->field_mode) {
2065  s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
2066  s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
2067  s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
2068  s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
2069 
2070  /* Pullback predicted motion vectors as specified in 8.4.5.4 */
2071  s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2072  s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2073  s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2074  s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2075  }
2076  if (direct) {
2077  s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
2078  s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
2079  s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
2080  s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
2081  return;
2082  }
2083 
2084  if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2085  C = s->current_picture.f.motion_val[0][xy - 2];
2086  A = s->current_picture.f.motion_val[0][xy - wrap * 2];
2087  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2088  B = s->current_picture.f.motion_val[0][xy - wrap * 2 + off];
2089 
2090  if (!s->mb_x) C[0] = C[1] = 0;
2091  if (!s->first_slice_line) { // predictor A is not out of bounds
2092  if (s->mb_width == 1) {
2093  px = A[0];
2094  py = A[1];
2095  } else {
2096  px = mid_pred(A[0], B[0], C[0]);
2097  py = mid_pred(A[1], B[1], C[1]);
2098  }
2099  } else if (s->mb_x) { // predictor C is not out of bounds
2100  px = C[0];
2101  py = C[1];
2102  } else {
2103  px = py = 0;
2104  }
2105  /* Pullback MV as specified in 8.3.5.3.4 */
2106  {
2107  int qx, qy, X, Y;
2108  if (v->profile < PROFILE_ADVANCED) {
2109  qx = (s->mb_x << 5);
2110  qy = (s->mb_y << 5);
2111  X = (s->mb_width << 5) - 4;
2112  Y = (s->mb_height << 5) - 4;
2113  if (qx + px < -28) px = -28 - qx;
2114  if (qy + py < -28) py = -28 - qy;
2115  if (qx + px > X) px = X - qx;
2116  if (qy + py > Y) py = Y - qy;
2117  } else {
2118  qx = (s->mb_x << 6);
2119  qy = (s->mb_y << 6);
2120  X = (s->mb_width << 6) - 4;
2121  Y = (s->mb_height << 6) - 4;
2122  if (qx + px < -60) px = -60 - qx;
2123  if (qy + py < -60) py = -60 - qy;
2124  if (qx + px > X) px = X - qx;
2125  if (qy + py > Y) py = Y - qy;
2126  }
2127  }
2128  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2129  if (0 && !s->first_slice_line && s->mb_x) {
2130  if (is_intra[xy - wrap])
2131  sum = FFABS(px) + FFABS(py);
2132  else
2133  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2134  if (sum > 32) {
2135  if (get_bits1(&s->gb)) {
2136  px = A[0];
2137  py = A[1];
2138  } else {
2139  px = C[0];
2140  py = C[1];
2141  }
2142  } else {
2143  if (is_intra[xy - 2])
2144  sum = FFABS(px) + FFABS(py);
2145  else
2146  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2147  if (sum > 32) {
2148  if (get_bits1(&s->gb)) {
2149  px = A[0];
2150  py = A[1];
2151  } else {
2152  px = C[0];
2153  py = C[1];
2154  }
2155  }
2156  }
2157  }
2158  /* store MV using signed modulus of MV range defined in 4.11 */
2159  s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2160  s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2161  }
2162  if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2163  C = s->current_picture.f.motion_val[1][xy - 2];
2164  A = s->current_picture.f.motion_val[1][xy - wrap * 2];
2165  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2166  B = s->current_picture.f.motion_val[1][xy - wrap * 2 + off];
2167 
2168  if (!s->mb_x)
2169  C[0] = C[1] = 0;
2170  if (!s->first_slice_line) { // predictor A is not out of bounds
2171  if (s->mb_width == 1) {
2172  px = A[0];
2173  py = A[1];
2174  } else {
2175  px = mid_pred(A[0], B[0], C[0]);
2176  py = mid_pred(A[1], B[1], C[1]);
2177  }
2178  } else if (s->mb_x) { // predictor C is not out of bounds
2179  px = C[0];
2180  py = C[1];
2181  } else {
2182  px = py = 0;
2183  }
2184  /* Pullback MV as specified in 8.3.5.3.4 */
2185  {
2186  int qx, qy, X, Y;
2187  if (v->profile < PROFILE_ADVANCED) {
2188  qx = (s->mb_x << 5);
2189  qy = (s->mb_y << 5);
2190  X = (s->mb_width << 5) - 4;
2191  Y = (s->mb_height << 5) - 4;
2192  if (qx + px < -28) px = -28 - qx;
2193  if (qy + py < -28) py = -28 - qy;
2194  if (qx + px > X) px = X - qx;
2195  if (qy + py > Y) py = Y - qy;
2196  } else {
2197  qx = (s->mb_x << 6);
2198  qy = (s->mb_y << 6);
2199  X = (s->mb_width << 6) - 4;
2200  Y = (s->mb_height << 6) - 4;
2201  if (qx + px < -60) px = -60 - qx;
2202  if (qy + py < -60) py = -60 - qy;
2203  if (qx + px > X) px = X - qx;
2204  if (qy + py > Y) py = Y - qy;
2205  }
2206  }
2207  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2208  if (0 && !s->first_slice_line && s->mb_x) {
2209  if (is_intra[xy - wrap])
2210  sum = FFABS(px) + FFABS(py);
2211  else
2212  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2213  if (sum > 32) {
2214  if (get_bits1(&s->gb)) {
2215  px = A[0];
2216  py = A[1];
2217  } else {
2218  px = C[0];
2219  py = C[1];
2220  }
2221  } else {
2222  if (is_intra[xy - 2])
2223  sum = FFABS(px) + FFABS(py);
2224  else
2225  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2226  if (sum > 32) {
2227  if (get_bits1(&s->gb)) {
2228  px = A[0];
2229  py = A[1];
2230  } else {
2231  px = C[0];
2232  py = C[1];
2233  }
2234  }
2235  }
2236  }
2237  /* store MV using signed modulus of MV range defined in 4.11 */
2238 
2239  s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2240  s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2241  }
2242  s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
2243  s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
2244  s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
2245  s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
2246 }
2247 
2248 static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
2249 {
2250  int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
2251  MpegEncContext *s = &v->s;
2252  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2253 
2254  if (v->bmvtype == BMV_TYPE_DIRECT) {
2255  int total_opp, k, f;
2256  if (s->next_picture.f.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
2257  s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2258  v->bfraction, 0, s->quarter_sample);
2259  s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2260  v->bfraction, 0, s->quarter_sample);
2261  s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2262  v->bfraction, 1, s->quarter_sample);
2263  s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2264  v->bfraction, 1, s->quarter_sample);
2265 
2266  total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
2267  + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
2268  + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
2269  + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
2270  f = (total_opp > 2) ? 1 : 0;
2271  } else {
2272  s->mv[0][0][0] = s->mv[0][0][1] = 0;
2273  s->mv[1][0][0] = s->mv[1][0][1] = 0;
2274  f = 0;
2275  }
2276  v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
2277  for (k = 0; k < 4; k++) {
2278  s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
2279  s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
2280  s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
2281  s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
2282  v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
2283  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
2284  }
2285  return;
2286  }
2287  if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
2288  vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2289  vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2290  return;
2291  }
2292  if (dir) { // backward
2293  vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2294  if (n == 3 || mv1) {
2295  vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
2296  }
2297  } else { // forward
2298  vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2299  if (n == 3 || mv1) {
2300  vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
2301  }
2302  }
2303 }
2304 
2305 /** Get predicted DC value for I-frames only
2306  * prediction dir: left=0, top=1
2307  * @param s MpegEncContext
2308  * @param overlap flag indicating that overlap filtering is used
2309  * @param pq integer part of picture quantizer
2310  * @param[in] n block index in the current MB
2311  * @param dc_val_ptr Pointer to DC predictor
2312  * @param dir_ptr Prediction direction for use in AC prediction
2313  */
2314 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2315  int16_t **dc_val_ptr, int *dir_ptr)
2316 {
2317  int a, b, c, wrap, pred, scale;
2318  int16_t *dc_val;
2319  static const uint16_t dcpred[32] = {
2320  -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2321  114, 102, 93, 85, 79, 73, 68, 64,
2322  60, 57, 54, 51, 49, 47, 45, 43,
2323  41, 39, 38, 37, 35, 34, 33
2324  };
2325 
2326  /* find prediction - wmv3_dc_scale always used here in fact */
2327  if (n < 4) scale = s->y_dc_scale;
2328  else scale = s->c_dc_scale;
2329 
2330  wrap = s->block_wrap[n];
2331  dc_val = s->dc_val[0] + s->block_index[n];
2332 
2333  /* B A
2334  * C X
2335  */
2336  c = dc_val[ - 1];
2337  b = dc_val[ - 1 - wrap];
2338  a = dc_val[ - wrap];
2339 
2340  if (pq < 9 || !overlap) {
2341  /* Set outer values */
2342  if (s->first_slice_line && (n != 2 && n != 3))
2343  b = a = dcpred[scale];
2344  if (s->mb_x == 0 && (n != 1 && n != 3))
2345  b = c = dcpred[scale];
2346  } else {
2347  /* Set outer values */
2348  if (s->first_slice_line && (n != 2 && n != 3))
2349  b = a = 0;
2350  if (s->mb_x == 0 && (n != 1 && n != 3))
2351  b = c = 0;
2352  }
2353 
2354  if (abs(a - b) <= abs(b - c)) {
2355  pred = c;
2356  *dir_ptr = 1; // left
2357  } else {
2358  pred = a;
2359  *dir_ptr = 0; // top
2360  }
2361 
2362  /* update predictor */
2363  *dc_val_ptr = &dc_val[0];
2364  return pred;
2365 }
2366 
2367 
2368 /** Get predicted DC value
2369  * prediction dir: left=0, top=1
2370  * @param s MpegEncContext
2371  * @param overlap flag indicating that overlap filtering is used
2372  * @param pq integer part of picture quantizer
2373  * @param[in] n block index in the current MB
2374  * @param a_avail flag indicating top block availability
2375  * @param c_avail flag indicating left block availability
2376  * @param dc_val_ptr Pointer to DC predictor
2377  * @param dir_ptr Prediction direction for use in AC prediction
2378  */
2379 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2380  int a_avail, int c_avail,
2381  int16_t **dc_val_ptr, int *dir_ptr)
2382 {
2383  int a, b, c, wrap, pred;
2384  int16_t *dc_val;
2385  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2386  int q1, q2 = 0;
2387  int dqscale_index;
2388 
2389  wrap = s->block_wrap[n];
2390  dc_val = s->dc_val[0] + s->block_index[n];
2391 
2392  /* B A
2393  * C X
2394  */
2395  c = dc_val[ - 1];
2396  b = dc_val[ - 1 - wrap];
2397  a = dc_val[ - wrap];
2398  /* scale predictors if needed */
2399  q1 = s->current_picture.f.qscale_table[mb_pos];
2400  dqscale_index = s->y_dc_scale_table[q1] - 1;
2401  if (dqscale_index < 0)
2402  return 0;
2403  if (c_avail && (n != 1 && n != 3)) {
2404  q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2405  if (q2 && q2 != q1)
2406  c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2407  }
2408  if (a_avail && (n != 2 && n != 3)) {
2409  q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2410  if (q2 && q2 != q1)
2411  a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2412  }
2413  if (a_avail && c_avail && (n != 3)) {
2414  int off = mb_pos;
2415  if (n != 1)
2416  off--;
2417  if (n != 2)
2418  off -= s->mb_stride;
2419  q2 = s->current_picture.f.qscale_table[off];
2420  if (q2 && q2 != q1)
2421  b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2422  }
2423 
2424  if (a_avail && c_avail) {
2425  if (abs(a - b) <= abs(b - c)) {
2426  pred = c;
2427  *dir_ptr = 1; // left
2428  } else {
2429  pred = a;
2430  *dir_ptr = 0; // top
2431  }
2432  } else if (a_avail) {
2433  pred = a;
2434  *dir_ptr = 0; // top
2435  } else if (c_avail) {
2436  pred = c;
2437  *dir_ptr = 1; // left
2438  } else {
2439  pred = 0;
2440  *dir_ptr = 1; // left
2441  }
2442 
2443  /* update predictor */
2444  *dc_val_ptr = &dc_val[0];
2445  return pred;
2446 }
2447 
2448 /** @} */ // Block group
2449 
2450 /**
2451  * @name VC1 Macroblock-level functions in Simple/Main Profiles
2452  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2453  * @{
2454  */
2455 
2456 static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
2457  uint8_t **coded_block_ptr)
2458 {
2459  int xy, wrap, pred, a, b, c;
2460 
2461  xy = s->block_index[n];
2462  wrap = s->b8_stride;
2463 
2464  /* B C
2465  * A X
2466  */
2467  a = s->coded_block[xy - 1 ];
2468  b = s->coded_block[xy - 1 - wrap];
2469  c = s->coded_block[xy - wrap];
2470 
2471  if (b == c) {
2472  pred = a;
2473  } else {
2474  pred = c;
2475  }
2476 
2477  /* store value */
2478  *coded_block_ptr = &s->coded_block[xy];
2479 
2480  return pred;
2481 }
2482 
2483 /**
2484  * Decode one AC coefficient
2485  * @param v The VC1 context
2486  * @param last Last coefficient
2487  * @param skip How much zero coefficients to skip
2488  * @param value Decoded AC coefficient value
2489  * @param codingset set of VLC to decode data
2490  * @see 8.1.3.4
2491  */
2492 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
2493  int *value, int codingset)
2494 {
2495  GetBitContext *gb = &v->s.gb;
2496  int index, escape, run = 0, level = 0, lst = 0;
2497 
2498  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2499  if (index != ff_vc1_ac_sizes[codingset] - 1) {
2500  run = vc1_index_decode_table[codingset][index][0];
2501  level = vc1_index_decode_table[codingset][index][1];
2502  lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
2503  if (get_bits1(gb))
2504  level = -level;
2505  } else {
2506  escape = decode210(gb);
2507  if (escape != 2) {
2508  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2509  run = vc1_index_decode_table[codingset][index][0];
2510  level = vc1_index_decode_table[codingset][index][1];
2511  lst = index >= vc1_last_decode_table[codingset];
2512  if (escape == 0) {
2513  if (lst)
2514  level += vc1_last_delta_level_table[codingset][run];
2515  else
2516  level += vc1_delta_level_table[codingset][run];
2517  } else {
2518  if (lst)
2519  run += vc1_last_delta_run_table[codingset][level] + 1;
2520  else
2521  run += vc1_delta_run_table[codingset][level] + 1;
2522  }
2523  if (get_bits1(gb))
2524  level = -level;
2525  } else {
2526  int sign;
2527  lst = get_bits1(gb);
2528  if (v->s.esc3_level_length == 0) {
2529  if (v->pq < 8 || v->dquantfrm) { // table 59
2530  v->s.esc3_level_length = get_bits(gb, 3);
2531  if (!v->s.esc3_level_length)
2532  v->s.esc3_level_length = get_bits(gb, 2) + 8;
2533  } else { // table 60
2534  v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2535  }
2536  v->s.esc3_run_length = 3 + get_bits(gb, 2);
2537  }
2538  run = get_bits(gb, v->s.esc3_run_length);
2539  sign = get_bits1(gb);
2540  level = get_bits(gb, v->s.esc3_level_length);
2541  if (sign)
2542  level = -level;
2543  }
2544  }
2545 
2546  *last = lst;
2547  *skip = run;
2548  *value = level;
2549 }
2550 
2551 /** Decode intra block in intra frames - should be faster than decode_intra_block
2552  * @param v VC1Context
2553  * @param block block to decode
2554  * @param[in] n subblock index
2555  * @param coded are AC coeffs present or not
2556  * @param codingset set of VLC to decode data
2557  */
2558 static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n,
2559  int coded, int codingset)
2560 {
2561  GetBitContext *gb = &v->s.gb;
2562  MpegEncContext *s = &v->s;
2563  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2564  int i;
2565  int16_t *dc_val;
2566  int16_t *ac_val, *ac_val2;
2567  int dcdiff;
2568 
2569  /* Get DC differential */
2570  if (n < 4) {
2572  } else {
2574  }
2575  if (dcdiff < 0) {
2576  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2577  return -1;
2578  }
2579  if (dcdiff) {
2580  if (dcdiff == 119 /* ESC index value */) {
2581  /* TODO: Optimize */
2582  if (v->pq == 1) dcdiff = get_bits(gb, 10);
2583  else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2584  else dcdiff = get_bits(gb, 8);
2585  } else {
2586  if (v->pq == 1)
2587  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2588  else if (v->pq == 2)
2589  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2590  }
2591  if (get_bits1(gb))
2592  dcdiff = -dcdiff;
2593  }
2594 
2595  /* Prediction */
2596  dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2597  *dc_val = dcdiff;
2598 
2599  /* Store the quantized DC coeff, used for prediction */
2600  if (n < 4) {
2601  block[0] = dcdiff * s->y_dc_scale;
2602  } else {
2603  block[0] = dcdiff * s->c_dc_scale;
2604  }
2605  /* Skip ? */
2606  if (!coded) {
2607  goto not_coded;
2608  }
2609 
2610  // AC Decoding
2611  i = 1;
2612 
2613  {
2614  int last = 0, skip, value;
2615  const uint8_t *zz_table;
2616  int scale;
2617  int k;
2618 
2619  scale = v->pq * 2 + v->halfpq;
2620 
2621  if (v->s.ac_pred) {
2622  if (!dc_pred_dir)
2623  zz_table = v->zz_8x8[2];
2624  else
2625  zz_table = v->zz_8x8[3];
2626  } else
2627  zz_table = v->zz_8x8[1];
2628 
2629  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2630  ac_val2 = ac_val;
2631  if (dc_pred_dir) // left
2632  ac_val -= 16;
2633  else // top
2634  ac_val -= 16 * s->block_wrap[n];
2635 
2636  while (!last) {
2637  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2638  i += skip;
2639  if (i > 63)
2640  break;
2641  block[zz_table[i++]] = value;
2642  }
2643 
2644  /* apply AC prediction if needed */
2645  if (s->ac_pred) {
2646  if (dc_pred_dir) { // left
2647  for (k = 1; k < 8; k++)
2648  block[k << v->left_blk_sh] += ac_val[k];
2649  } else { // top
2650  for (k = 1; k < 8; k++)
2651  block[k << v->top_blk_sh] += ac_val[k + 8];
2652  }
2653  }
2654  /* save AC coeffs for further prediction */
2655  for (k = 1; k < 8; k++) {
2656  ac_val2[k] = block[k << v->left_blk_sh];
2657  ac_val2[k + 8] = block[k << v->top_blk_sh];
2658  }
2659 
2660  /* scale AC coeffs */
2661  for (k = 1; k < 64; k++)
2662  if (block[k]) {
2663  block[k] *= scale;
2664  if (!v->pquantizer)
2665  block[k] += (block[k] < 0) ? -v->pq : v->pq;
2666  }
2667 
2668  if (s->ac_pred) i = 63;
2669  }
2670 
2671 not_coded:
2672  if (!coded) {
2673  int k, scale;
2674  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2675  ac_val2 = ac_val;
2676 
2677  i = 0;
2678  scale = v->pq * 2 + v->halfpq;
2679  memset(ac_val2, 0, 16 * 2);
2680  if (dc_pred_dir) { // left
2681  ac_val -= 16;
2682  if (s->ac_pred)
2683  memcpy(ac_val2, ac_val, 8 * 2);
2684  } else { // top
2685  ac_val -= 16 * s->block_wrap[n];
2686  if (s->ac_pred)
2687  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2688  }
2689 
2690  /* apply AC prediction if needed */
2691  if (s->ac_pred) {
2692  if (dc_pred_dir) { //left
2693  for (k = 1; k < 8; k++) {
2694  block[k << v->left_blk_sh] = ac_val[k] * scale;
2695  if (!v->pquantizer && block[k << v->left_blk_sh])
2696  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
2697  }
2698  } else { // top
2699  for (k = 1; k < 8; k++) {
2700  block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
2701  if (!v->pquantizer && block[k << v->top_blk_sh])
2702  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
2703  }
2704  }
2705  i = 63;
2706  }
2707  }
2708  s->block_last_index[n] = i;
2709 
2710  return 0;
2711 }
2712 
2713 /** Decode intra block in intra frames - should be faster than decode_intra_block
2714  * @param v VC1Context
2715  * @param block block to decode
2716  * @param[in] n subblock number
2717  * @param coded are AC coeffs present or not
2718  * @param codingset set of VLC to decode data
2719  * @param mquant quantizer value for this macroblock
2720  */
2722  int coded, int codingset, int mquant)
2723 {
2724  GetBitContext *gb = &v->s.gb;
2725  MpegEncContext *s = &v->s;
2726  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2727  int i;
2728  int16_t *dc_val;
2729  int16_t *ac_val, *ac_val2;
2730  int dcdiff;
2731  int a_avail = v->a_avail, c_avail = v->c_avail;
2732  int use_pred = s->ac_pred;
2733  int scale;
2734  int q1, q2 = 0;
2735  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2736 
2737  /* Get DC differential */
2738  if (n < 4) {
2740  } else {
2742  }
2743  if (dcdiff < 0) {
2744  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2745  return -1;
2746  }
2747  if (dcdiff) {
2748  if (dcdiff == 119 /* ESC index value */) {
2749  /* TODO: Optimize */
2750  if (mquant == 1) dcdiff = get_bits(gb, 10);
2751  else if (mquant == 2) dcdiff = get_bits(gb, 9);
2752  else dcdiff = get_bits(gb, 8);
2753  } else {
2754  if (mquant == 1)
2755  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2756  else if (mquant == 2)
2757  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2758  }
2759  if (get_bits1(gb))
2760  dcdiff = -dcdiff;
2761  }
2762 
2763  /* Prediction */
2764  dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2765  *dc_val = dcdiff;
2766 
2767  /* Store the quantized DC coeff, used for prediction */
2768  if (n < 4) {
2769  block[0] = dcdiff * s->y_dc_scale;
2770  } else {
2771  block[0] = dcdiff * s->c_dc_scale;
2772  }
2773 
2774  //AC Decoding
2775  i = 1;
2776 
2777  /* check if AC is needed at all */
2778  if (!a_avail && !c_avail)
2779  use_pred = 0;
2780  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2781  ac_val2 = ac_val;
2782 
2783  scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2784 
2785  if (dc_pred_dir) // left
2786  ac_val -= 16;
2787  else // top
2788  ac_val -= 16 * s->block_wrap[n];
2789 
2790  q1 = s->current_picture.f.qscale_table[mb_pos];
2791  if ( dc_pred_dir && c_avail && mb_pos)
2792  q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2793  if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
2794  q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2795  if ( dc_pred_dir && n == 1)
2796  q2 = q1;
2797  if (!dc_pred_dir && n == 2)
2798  q2 = q1;
2799  if (n == 3)
2800  q2 = q1;
2801 
2802  if (coded) {
2803  int last = 0, skip, value;
2804  const uint8_t *zz_table;
2805  int k;
2806 
2807  if (v->s.ac_pred) {
2808  if (!use_pred && v->fcm == ILACE_FRAME) {
2809  zz_table = v->zzi_8x8;
2810  } else {
2811  if (!dc_pred_dir) // top
2812  zz_table = v->zz_8x8[2];
2813  else // left
2814  zz_table = v->zz_8x8[3];
2815  }
2816  } else {
2817  if (v->fcm != ILACE_FRAME)
2818  zz_table = v->zz_8x8[1];
2819  else
2820  zz_table = v->zzi_8x8;
2821  }
2822 
2823  while (!last) {
2824  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2825  i += skip;
2826  if (i > 63)
2827  break;
2828  block[zz_table[i++]] = value;
2829  }
2830 
2831  /* apply AC prediction if needed */
2832  if (use_pred) {
2833  /* scale predictors if needed*/
2834  if (q2 && q1 != q2) {
2835  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2836  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2837 
2838  if (q1 < 1)
2839  return AVERROR_INVALIDDATA;
2840  if (dc_pred_dir) { // left
2841  for (k = 1; k < 8; k++)
2842  block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2843  } else { // top
2844  for (k = 1; k < 8; k++)
2845  block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2846  }
2847  } else {
2848  if (dc_pred_dir) { //left
2849  for (k = 1; k < 8; k++)
2850  block[k << v->left_blk_sh] += ac_val[k];
2851  } else { //top
2852  for (k = 1; k < 8; k++)
2853  block[k << v->top_blk_sh] += ac_val[k + 8];
2854  }
2855  }
2856  }
2857  /* save AC coeffs for further prediction */
2858  for (k = 1; k < 8; k++) {
2859  ac_val2[k ] = block[k << v->left_blk_sh];
2860  ac_val2[k + 8] = block[k << v->top_blk_sh];
2861  }
2862 
2863  /* scale AC coeffs */
2864  for (k = 1; k < 64; k++)
2865  if (block[k]) {
2866  block[k] *= scale;
2867  if (!v->pquantizer)
2868  block[k] += (block[k] < 0) ? -mquant : mquant;
2869  }
2870 
2871  if (use_pred) i = 63;
2872  } else { // no AC coeffs
2873  int k;
2874 
2875  memset(ac_val2, 0, 16 * 2);
2876  if (dc_pred_dir) { // left
2877  if (use_pred) {
2878  memcpy(ac_val2, ac_val, 8 * 2);
2879  if (q2 && q1 != q2) {
2880  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2881  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2882  if (q1 < 1)
2883  return AVERROR_INVALIDDATA;
2884  for (k = 1; k < 8; k++)
2885  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2886  }
2887  }
2888  } else { // top
2889  if (use_pred) {
2890  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2891  if (q2 && q1 != q2) {
2892  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2893  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2894  if (q1 < 1)
2895  return AVERROR_INVALIDDATA;
2896  for (k = 1; k < 8; k++)
2897  ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2898  }
2899  }
2900  }
2901 
2902  /* apply AC prediction if needed */
2903  if (use_pred) {
2904  if (dc_pred_dir) { // left
2905  for (k = 1; k < 8; k++) {
2906  block[k << v->left_blk_sh] = ac_val2[k] * scale;
2907  if (!v->pquantizer && block[k << v->left_blk_sh])
2908  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
2909  }
2910  } else { // top
2911  for (k = 1; k < 8; k++) {
2912  block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
2913  if (!v->pquantizer && block[k << v->top_blk_sh])
2914  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
2915  }
2916  }
2917  i = 63;
2918  }
2919  }
2920  s->block_last_index[n] = i;
2921 
2922  return 0;
2923 }
2924 
2925 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2926  * @param v VC1Context
2927  * @param block block to decode
2928  * @param[in] n subblock index
2929  * @param coded are AC coeffs present or not
2930  * @param mquant block quantizer
2931  * @param codingset set of VLC to decode data
2932  */
2934  int coded, int mquant, int codingset)
2935 {
2936  GetBitContext *gb = &v->s.gb;
2937  MpegEncContext *s = &v->s;
2938  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2939  int i;
2940  int16_t *dc_val;
2941  int16_t *ac_val, *ac_val2;
2942  int dcdiff;
2943  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2944  int a_avail = v->a_avail, c_avail = v->c_avail;
2945  int use_pred = s->ac_pred;
2946  int scale;
2947  int q1, q2 = 0;
2948 
2949  s->dsp.clear_block(block);
2950 
2951  /* XXX: Guard against dumb values of mquant */
2952  mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
2953 
2954  /* Set DC scale - y and c use the same */
2955  s->y_dc_scale = s->y_dc_scale_table[mquant];
2956  s->c_dc_scale = s->c_dc_scale_table[mquant];
2957 
2958  /* Get DC differential */
2959  if (n < 4) {
2961  } else {
2963  }
2964  if (dcdiff < 0) {
2965  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2966  return -1;
2967  }
2968  if (dcdiff) {
2969  if (dcdiff == 119 /* ESC index value */) {
2970  /* TODO: Optimize */
2971  if (mquant == 1) dcdiff = get_bits(gb, 10);
2972  else if (mquant == 2) dcdiff = get_bits(gb, 9);
2973  else dcdiff = get_bits(gb, 8);
2974  } else {
2975  if (mquant == 1)
2976  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2977  else if (mquant == 2)
2978  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2979  }
2980  if (get_bits1(gb))
2981  dcdiff = -dcdiff;
2982  }
2983 
2984  /* Prediction */
2985  dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2986  *dc_val = dcdiff;
2987 
2988  /* Store the quantized DC coeff, used for prediction */
2989 
2990  if (n < 4) {
2991  block[0] = dcdiff * s->y_dc_scale;
2992  } else {
2993  block[0] = dcdiff * s->c_dc_scale;
2994  }
2995 
2996  //AC Decoding
2997  i = 1;
2998 
2999  /* check if AC is needed at all and adjust direction if needed */
3000  if (!a_avail) dc_pred_dir = 1;
3001  if (!c_avail) dc_pred_dir = 0;
3002  if (!a_avail && !c_avail) use_pred = 0;
3003  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
3004  ac_val2 = ac_val;
3005 
3006  scale = mquant * 2 + v->halfpq;
3007 
3008  if (dc_pred_dir) //left
3009  ac_val -= 16;
3010  else //top
3011  ac_val -= 16 * s->block_wrap[n];
3012 
3013  q1 = s->current_picture.f.qscale_table[mb_pos];
3014  if (dc_pred_dir && c_avail && mb_pos)
3015  q2 = s->current_picture.f.qscale_table[mb_pos - 1];
3016  if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
3017  q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
3018  if ( dc_pred_dir && n == 1)
3019  q2 = q1;
3020  if (!dc_pred_dir && n == 2)
3021  q2 = q1;
3022  if (n == 3) q2 = q1;
3023 
3024  if (coded) {
3025  int last = 0, skip, value;
3026  int k;
3027 
3028  while (!last) {
3029  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
3030  i += skip;
3031  if (i > 63)
3032  break;
3033  if (v->fcm == PROGRESSIVE)
3034  block[v->zz_8x8[0][i++]] = value;
3035  else {
3036  if (use_pred && (v->fcm == ILACE_FRAME)) {
3037  if (!dc_pred_dir) // top
3038  block[v->zz_8x8[2][i++]] = value;
3039  else // left
3040  block[v->zz_8x8[3][i++]] = value;
3041  } else {
3042  block[v->zzi_8x8[i++]] = value;
3043  }
3044  }
3045  }
3046 
3047  /* apply AC prediction if needed */
3048  if (use_pred) {
3049  /* scale predictors if needed*/
3050  if (q2 && q1 != q2) {
3051  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3052  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3053 
3054  if (q1 < 1)
3055  return AVERROR_INVALIDDATA;
3056  if (dc_pred_dir) { // left
3057  for (k = 1; k < 8; k++)
3058  block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3059  } else { //top
3060  for (k = 1; k < 8; k++)
3061  block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3062  }
3063  } else {
3064  if (dc_pred_dir) { // left
3065  for (k = 1; k < 8; k++)
3066  block[k << v->left_blk_sh] += ac_val[k];
3067  } else { // top
3068  for (k = 1; k < 8; k++)
3069  block[k << v->top_blk_sh] += ac_val[k + 8];
3070  }
3071  }
3072  }
3073  /* save AC coeffs for further prediction */
3074  for (k = 1; k < 8; k++) {
3075  ac_val2[k ] = block[k << v->left_blk_sh];
3076  ac_val2[k + 8] = block[k << v->top_blk_sh];
3077  }
3078 
3079  /* scale AC coeffs */
3080  for (k = 1; k < 64; k++)
3081  if (block[k]) {
3082  block[k] *= scale;
3083  if (!v->pquantizer)
3084  block[k] += (block[k] < 0) ? -mquant : mquant;
3085  }
3086 
3087  if (use_pred) i = 63;
3088  } else { // no AC coeffs
3089  int k;
3090 
3091  memset(ac_val2, 0, 16 * 2);
3092  if (dc_pred_dir) { // left
3093  if (use_pred) {
3094  memcpy(ac_val2, ac_val, 8 * 2);
3095  if (q2 && q1 != q2) {
3096  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3097  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3098  if (q1 < 1)
3099  return AVERROR_INVALIDDATA;
3100  for (k = 1; k < 8; k++)
3101  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3102  }
3103  }
3104  } else { // top
3105  if (use_pred) {
3106  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
3107  if (q2 && q1 != q2) {
3108  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3109  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3110  if (q1 < 1)
3111  return AVERROR_INVALIDDATA;
3112  for (k = 1; k < 8; k++)
3113  ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3114  }
3115  }
3116  }
3117 
3118  /* apply AC prediction if needed */
3119  if (use_pred) {
3120  if (dc_pred_dir) { // left
3121  for (k = 1; k < 8; k++) {
3122  block[k << v->left_blk_sh] = ac_val2[k] * scale;
3123  if (!v->pquantizer && block[k << v->left_blk_sh])
3124  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
3125  }
3126  } else { // top
3127  for (k = 1; k < 8; k++) {
3128  block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
3129  if (!v->pquantizer && block[k << v->top_blk_sh])
3130  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
3131  }
3132  }
3133  i = 63;
3134  }
3135  }
3136  s->block_last_index[n] = i;
3137 
3138  return 0;
3139 }
3140 
3141 /** Decode P block
3142  */
3143 static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n,
3144  int mquant, int ttmb, int first_block,
3145  uint8_t *dst, int linesize, int skip_block,
3146  int *ttmb_out)
3147 {
3148  MpegEncContext *s = &v->s;
3149  GetBitContext *gb = &s->gb;
3150  int i, j;
3151  int subblkpat = 0;
3152  int scale, off, idx, last, skip, value;
3153  int ttblk = ttmb & 7;
3154  int pat = 0;
3155 
3156  s->dsp.clear_block(block);
3157 
3158  if (ttmb == -1) {
3160  }
3161  if (ttblk == TT_4X4) {
3162  subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
3163  }
3164  if ((ttblk != TT_8X8 && ttblk != TT_4X4)
3165  && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
3166  || (!v->res_rtm_flag && !first_block))) {
3167  subblkpat = decode012(gb);
3168  if (subblkpat)
3169  subblkpat ^= 3; // swap decoded pattern bits
3170  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
3171  ttblk = TT_8X4;
3172  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
3173  ttblk = TT_4X8;
3174  }
3175  scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
3176 
3177  // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
3178  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
3179  subblkpat = 2 - (ttblk == TT_8X4_TOP);
3180  ttblk = TT_8X4;
3181  }
3182  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
3183  subblkpat = 2 - (ttblk == TT_4X8_LEFT);
3184  ttblk = TT_4X8;
3185  }
3186  switch (ttblk) {
3187  case TT_8X8:
3188  pat = 0xF;
3189  i = 0;
3190  last = 0;
3191  while (!last) {
3192  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3193  i += skip;
3194  if (i > 63)
3195  break;
3196  if (!v->fcm)
3197  idx = v->zz_8x8[0][i++];
3198  else
3199  idx = v->zzi_8x8[i++];
3200  block[idx] = value * scale;
3201  if (!v->pquantizer)
3202  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3203  }
3204  if (!skip_block) {
3205  if (i == 1)
3206  v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
3207  else {
3208  v->vc1dsp.vc1_inv_trans_8x8(block);
3209  s->dsp.add_pixels_clamped(block, dst, linesize);
3210  }
3211  }
3212  break;
3213  case TT_4X4:
3214  pat = ~subblkpat & 0xF;
3215  for (j = 0; j < 4; j++) {
3216  last = subblkpat & (1 << (3 - j));
3217  i = 0;
3218  off = (j & 1) * 4 + (j & 2) * 16;
3219  while (!last) {
3220  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3221  i += skip;
3222  if (i > 15)
3223  break;
3224  if (!v->fcm)
3226  else
3227  idx = ff_vc1_adv_interlaced_4x4_zz[i++];
3228  block[idx + off] = value * scale;
3229  if (!v->pquantizer)
3230  block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3231  }
3232  if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
3233  if (i == 1)
3234  v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3235  else
3236  v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3237  }
3238  }
3239  break;
3240  case TT_8X4:
3241  pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
3242  for (j = 0; j < 2; j++) {
3243  last = subblkpat & (1 << (1 - j));
3244  i = 0;
3245  off = j * 32;
3246  while (!last) {
3247  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3248  i += skip;
3249  if (i > 31)
3250  break;
3251  if (!v->fcm)
3252  idx = v->zz_8x4[i++] + off;
3253  else
3254  idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
3255  block[idx] = value * scale;
3256  if (!v->pquantizer)
3257  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3258  }
3259  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3260  if (i == 1)
3261  v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
3262  else
3263  v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
3264  }
3265  }
3266  break;
3267  case TT_4X8:
3268  pat = ~(subblkpat * 5) & 0xF;
3269  for (j = 0; j < 2; j++) {
3270  last = subblkpat & (1 << (1 - j));
3271  i = 0;
3272  off = j * 4;
3273  while (!last) {
3274  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3275  i += skip;
3276  if (i > 31)
3277  break;
3278  if (!v->fcm)
3279  idx = v->zz_4x8[i++] + off;
3280  else
3281  idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
3282  block[idx] = value * scale;
3283  if (!v->pquantizer)
3284  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3285  }
3286  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3287  if (i == 1)
3288  v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
3289  else
3290  v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
3291  }
3292  }
3293  break;
3294  }
3295  if (ttmb_out)
3296  *ttmb_out |= ttblk << (n * 4);
3297  return pat;
3298 }
3299 
3300 /** @} */ // Macroblock group
3301 
3302 static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
3303 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3304 
3306 {
3307  MpegEncContext *s = &v->s;
3308  int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
3309  block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
3310  mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
3311  block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
3312  int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3313  uint8_t *dst;
3314 
3315  if (block_num > 3) {
3316  dst = s->dest[block_num - 3];
3317  } else {
3318  dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
3319  }
3320  if (s->mb_y != s->end_mb_y || block_num < 2) {
3321  int16_t (*mv)[2];
3322  int mv_stride;
3323 
3324  if (block_num > 3) {
3325  bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
3326  bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
3327  mv = &v->luma_mv[s->mb_x - s->mb_stride];
3328  mv_stride = s->mb_stride;
3329  } else {
3330  bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
3331  : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
3332  bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
3333  : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
3334  mv_stride = s->b8_stride;
3335  mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
3336  }
3337 
3338  if (bottom_is_intra & 1 || block_is_intra & 1 ||
3339  mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
3340  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3341  } else {
3342  idx = ((bottom_cbp >> 2) | block_cbp) & 3;
3343  if (idx == 3) {
3344  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3345  } else if (idx) {
3346  if (idx == 1)
3347  v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3348  else
3349  v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3350  }
3351  }
3352  }
3353 
3354  dst -= 4 * linesize;
3355  ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
3356  if (ttblk == TT_4X4 || ttblk == TT_8X4) {
3357  idx = (block_cbp | (block_cbp >> 2)) & 3;
3358  if (idx == 3) {
3359  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3360  } else if (idx) {
3361  if (idx == 1)
3362  v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3363  else
3364  v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3365  }
3366  }
3367 }
3368 
3370 {
3371  MpegEncContext *s = &v->s;
3372  int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
3373  block_cbp = mb_cbp >> (block_num * 4), right_cbp,
3374  mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
3375  block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
3376  int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3377  uint8_t *dst;
3378 
3379  if (block_num > 3) {
3380  dst = s->dest[block_num - 3] - 8 * linesize;
3381  } else {
3382  dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
3383  }
3384 
3385  if (s->mb_x != s->mb_width || !(block_num & 5)) {
3386  int16_t (*mv)[2];
3387 
3388  if (block_num > 3) {
3389  right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
3390  right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
3391  mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
3392  } else {
3393  right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3394  : (mb_cbp >> ((block_num + 1) * 4));
3395  right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3396  : (mb_is_intra >> ((block_num + 1) * 4));
3397  mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
3398  }
3399  if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
3400  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3401  } else {
3402  idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
3403  if (idx == 5) {
3404  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3405  } else if (idx) {
3406  if (idx == 1)
3407  v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
3408  else
3409  v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3410  }
3411  }
3412  }
3413 
3414  dst -= 4;
3415  ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
3416  if (ttblk == TT_4X4 || ttblk == TT_4X8) {
3417  idx = (block_cbp | (block_cbp >> 1)) & 5;
3418  if (idx == 5) {
3419  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3420  } else if (idx) {
3421  if (idx == 1)
3422  v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
3423  else
3424  v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3425  }
3426  }
3427 }
3428 
3430 {
3431  MpegEncContext *s = &v->s;
3432  int i;
3433 
3434  for (i = 0; i < 6; i++) {
3436  }
3437 
3438  /* V always precedes H, therefore we run H one MB before V;
3439  * at the end of a row, we catch up to complete the row */
3440  if (s->mb_x) {
3441  for (i = 0; i < 6; i++) {
3443  }
3444  if (s->mb_x == s->mb_width - 1) {
3445  s->mb_x++;
3447  for (i = 0; i < 6; i++) {
3449  }
3450  }
3451  }
3452 }
3453 
3454 /** Decode one P-frame MB
3455  */
3457 {
3458  MpegEncContext *s = &v->s;
3459  GetBitContext *gb = &s->gb;
3460  int i, j;
3461  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3462  int cbp; /* cbp decoding stuff */
3463  int mqdiff, mquant; /* MB quantization */
3464  int ttmb = v->ttfrm; /* MB Transform type */
3465 
3466  int mb_has_coeffs = 1; /* last_flag */
3467  int dmv_x, dmv_y; /* Differential MV components */
3468  int index, index1; /* LUT indexes */
3469  int val, sign; /* temp values */
3470  int first_block = 1;
3471  int dst_idx, off;
3472  int skipped, fourmv;
3473  int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
3474 
3475  mquant = v->pq; /* lossy initialization */
3476 
3477  if (v->mv_type_is_raw)
3478  fourmv = get_bits1(gb);
3479  else
3480  fourmv = v->mv_type_mb_plane[mb_pos];
3481  if (v->skip_is_raw)
3482  skipped = get_bits1(gb);
3483  else
3484  skipped = v->s.mbskip_table[mb_pos];
3485 
3486  if (!fourmv) { /* 1MV mode */
3487  if (!skipped) {
3488  GET_MVDATA(dmv_x, dmv_y);
3489 
3490  if (s->mb_intra) {
3491  s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
3492  s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
3493  }
3495  vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3496 
3497  /* FIXME Set DC val for inter block ? */
3498  if (s->mb_intra && !mb_has_coeffs) {
3499  GET_MQUANT();
3500  s->ac_pred = get_bits1(gb);
3501  cbp = 0;
3502  } else if (mb_has_coeffs) {
3503  if (s->mb_intra)
3504  s->ac_pred = get_bits1(gb);
3505  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3506  GET_MQUANT();
3507  } else {
3508  mquant = v->pq;
3509  cbp = 0;
3510  }
3511  s->current_picture.f.qscale_table[mb_pos] = mquant;
3512 
3513  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3514  ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3515  VC1_TTMB_VLC_BITS, 2);
3516  if (!s->mb_intra) vc1_mc_1mv(v, 0);
3517  dst_idx = 0;
3518  for (i = 0; i < 6; i++) {
3519  s->dc_val[0][s->block_index[i]] = 0;
3520  dst_idx += i >> 2;
3521  val = ((cbp >> (5 - i)) & 1);
3522  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3523  v->mb_type[0][s->block_index[i]] = s->mb_intra;
3524  if (s->mb_intra) {
3525  /* check if prediction blocks A and C are available */
3526  v->a_avail = v->c_avail = 0;
3527  if (i == 2 || i == 3 || !s->first_slice_line)
3528  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3529  if (i == 1 || i == 3 || s->mb_x)
3530  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3531 
3532  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3533  (i & 4) ? v->codingset2 : v->codingset);
3534  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3535  continue;
3536  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3537  if (v->rangeredfrm)
3538  for (j = 0; j < 64; j++)
3539  s->block[i][j] <<= 1;
3540  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3541  if (v->pq >= 9 && v->overlap) {
3542  if (v->c_avail)
3543  v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3544  if (v->a_avail)
3545  v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3546  }
3547  block_cbp |= 0xF << (i << 2);
3548  block_intra |= 1 << i;
3549  } else if (val) {
3550  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
3551  s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
3552  (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
3553  block_cbp |= pat << (i << 2);
3554  if (!v->ttmbf && ttmb < 8)
3555  ttmb = -1;
3556  first_block = 0;
3557  }
3558  }
3559  } else { // skipped
3560  s->mb_intra = 0;
3561  for (i = 0; i < 6; i++) {
3562  v->mb_type[0][s->block_index[i]] = 0;
3563  s->dc_val[0][s->block_index[i]] = 0;
3564  }
3565  s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
3566  s->current_picture.f.qscale_table[mb_pos] = 0;
3567  vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3568  vc1_mc_1mv(v, 0);
3569  }
3570  } else { // 4MV mode
3571  if (!skipped /* unskipped MB */) {
3572  int intra_count = 0, coded_inter = 0;
3573  int is_intra[6], is_coded[6];
3574  /* Get CBPCY */
3575  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3576  for (i = 0; i < 6; i++) {
3577  val = ((cbp >> (5 - i)) & 1);
3578  s->dc_val[0][s->block_index[i]] = 0;
3579  s->mb_intra = 0;
3580  if (i < 4) {
3581  dmv_x = dmv_y = 0;
3582  s->mb_intra = 0;
3583  mb_has_coeffs = 0;
3584  if (val) {
3585  GET_MVDATA(dmv_x, dmv_y);
3586  }
3587  vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3588  if (!s->mb_intra)
3589  vc1_mc_4mv_luma(v, i, 0);
3590  intra_count += s->mb_intra;
3591  is_intra[i] = s->mb_intra;
3592  is_coded[i] = mb_has_coeffs;
3593  }
3594  if (i & 4) {
3595  is_intra[i] = (intra_count >= 3);
3596  is_coded[i] = val;
3597  }
3598  if (i == 4)
3599  vc1_mc_4mv_chroma(v, 0);
3600  v->mb_type[0][s->block_index[i]] = is_intra[i];
3601  if (!coded_inter)
3602  coded_inter = !is_intra[i] & is_coded[i];
3603  }
3604  // if there are no coded blocks then don't do anything more
3605  dst_idx = 0;
3606  if (!intra_count && !coded_inter)
3607  goto end;
3608  GET_MQUANT();
3609  s->current_picture.f.qscale_table[mb_pos] = mquant;
3610  /* test if block is intra and has pred */
3611  {
3612  int intrapred = 0;
3613  for (i = 0; i < 6; i++)
3614  if (is_intra[i]) {
3615  if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3616  || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
3617  intrapred = 1;
3618  break;
3619  }
3620  }
3621  if (intrapred)
3622  s->ac_pred = get_bits1(gb);
3623  else
3624  s->ac_pred = 0;
3625  }
3626  if (!v->ttmbf && coded_inter)
3628  for (i = 0; i < 6; i++) {
3629  dst_idx += i >> 2;
3630  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3631  s->mb_intra = is_intra[i];
3632  if (is_intra[i]) {
3633  /* check if prediction blocks A and C are available */
3634  v->a_avail = v->c_avail = 0;
3635  if (i == 2 || i == 3 || !s->first_slice_line)
3636  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3637  if (i == 1 || i == 3 || s->mb_x)
3638  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3639 
3640  vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
3641  (i & 4) ? v->codingset2 : v->codingset);
3642  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3643  continue;
3644  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3645  if (v->rangeredfrm)
3646  for (j = 0; j < 64; j++)
3647  s->block[i][j] <<= 1;
3648  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
3649  (i & 4) ? s->uvlinesize : s->linesize);
3650  if (v->pq >= 9 && v->overlap) {
3651  if (v->c_avail)
3652  v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3653  if (v->a_avail)
3654  v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3655  }
3656  block_cbp |= 0xF << (i << 2);
3657  block_intra |= 1 << i;
3658  } else if (is_coded[i]) {
3659  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
3660  first_block, s->dest[dst_idx] + off,
3661  (i & 4) ? s->uvlinesize : s->linesize,
3662  (i & 4) && (s->flags & CODEC_FLAG_GRAY),
3663  &block_tt);
3664  block_cbp |= pat << (i << 2);
3665  if (!v->ttmbf && ttmb < 8)
3666  ttmb = -1;
3667  first_block = 0;
3668  }
3669  }
3670  } else { // skipped MB
3671  s->mb_intra = 0;
3672  s->current_picture.f.qscale_table[mb_pos] = 0;
3673  for (i = 0; i < 6; i++) {
3674  v->mb_type[0][s->block_index[i]] = 0;
3675  s->dc_val[0][s->block_index[i]] = 0;
3676  }
3677  for (i = 0; i < 4; i++) {
3678  vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3679  vc1_mc_4mv_luma(v, i, 0);
3680  }
3681  vc1_mc_4mv_chroma(v, 0);
3682  s->current_picture.f.qscale_table[mb_pos] = 0;
3683  }
3684  }
3685 end:
3686  v->cbp[s->mb_x] = block_cbp;
3687  v->ttblk[s->mb_x] = block_tt;
3688  v->is_intra[s->mb_x] = block_intra;
3689 
3690  return 0;
3691 }
3692 
3693 /* Decode one macroblock in an interlaced frame p picture */
3694 
3696 {
3697  MpegEncContext *s = &v->s;
3698  GetBitContext *gb = &s->gb;
3699  int i;
3700  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3701  int cbp = 0; /* cbp decoding stuff */
3702  int mqdiff, mquant; /* MB quantization */
3703  int ttmb = v->ttfrm; /* MB Transform type */
3704 
3705  int mb_has_coeffs = 1; /* last_flag */
3706  int dmv_x, dmv_y; /* Differential MV components */
3707  int val; /* temp value */
3708  int first_block = 1;
3709  int dst_idx, off;
3710  int skipped, fourmv = 0, twomv = 0;
3711  int block_cbp = 0, pat, block_tt = 0;
3712  int idx_mbmode = 0, mvbp;
3713  int stride_y, fieldtx;
3714 
3715  mquant = v->pq; /* Lossy initialization */
3716 
3717  if (v->skip_is_raw)
3718  skipped = get_bits1(gb);
3719  else
3720  skipped = v->s.mbskip_table[mb_pos];
3721  if (!skipped) {
3722  if (v->fourmvswitch)
3723  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
3724  else
3725  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
3726  switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
3727  /* store the motion vector type in a flag (useful later) */
3728  case MV_PMODE_INTFR_4MV:
3729  fourmv = 1;
3730  v->blk_mv_type[s->block_index[0]] = 0;
3731  v->blk_mv_type[s->block_index[1]] = 0;
3732  v->blk_mv_type[s->block_index[2]] = 0;
3733  v->blk_mv_type[s->block_index[3]] = 0;
3734  break;
3736  fourmv = 1;
3737  v->blk_mv_type[s->block_index[0]] = 1;
3738  v->blk_mv_type[s->block_index[1]] = 1;
3739  v->blk_mv_type[s->block_index[2]] = 1;
3740  v->blk_mv_type[s->block_index[3]] = 1;
3741  break;
3743  twomv = 1;
3744  v->blk_mv_type[s->block_index[0]] = 1;
3745  v->blk_mv_type[s->block_index[1]] = 1;
3746  v->blk_mv_type[s->block_index[2]] = 1;
3747  v->blk_mv_type[s->block_index[3]] = 1;
3748  break;
3749  case MV_PMODE_INTFR_1MV:
3750  v->blk_mv_type[s->block_index[0]] = 0;
3751  v->blk_mv_type[s->block_index[1]] = 0;
3752  v->blk_mv_type[s->block_index[2]] = 0;
3753  v->blk_mv_type[s->block_index[3]] = 0;
3754  break;
3755  }
3756  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
3757  s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
3758  s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
3759  s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
3760  s->mb_intra = v->is_intra[s->mb_x] = 1;
3761  for (i = 0; i < 6; i++)
3762  v->mb_type[0][s->block_index[i]] = 1;
3763  fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
3764  mb_has_coeffs = get_bits1(gb);
3765  if (mb_has_coeffs)
3766  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3767  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
3768  GET_MQUANT();
3769  s->current_picture.f.qscale_table[mb_pos] = mquant;
3770  /* Set DC scale - y and c use the same (not sure if necessary here) */
3771  s->y_dc_scale = s->y_dc_scale_table[mquant];
3772  s->c_dc_scale = s->c_dc_scale_table[mquant];
3773  dst_idx = 0;
3774  for (i = 0; i < 6; i++) {
3775  s->dc_val[0][s->block_index[i]] = 0;
3776  dst_idx += i >> 2;
3777  val = ((cbp >> (5 - i)) & 1);
3778  v->mb_type[0][s->block_index[i]] = s->mb_intra;
3779  v->a_avail = v->c_avail = 0;
3780  if (i == 2 || i == 3 || !s->first_slice_line)
3781  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3782  if (i == 1 || i == 3 || s->mb_x)
3783  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3784 
3785  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3786  (i & 4) ? v->codingset2 : v->codingset);
3787  if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3788  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3789  if (i < 4) {
3790  stride_y = s->linesize << fieldtx;
3791  off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
3792  } else {
3793  stride_y = s->uvlinesize;
3794  off = 0;
3795  }
3796  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
3797  //TODO: loop filter
3798  }
3799 
3800  } else { // inter MB
3801  mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
3802  if (mb_has_coeffs)
3803  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3804  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
3806  } else {
3807  if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
3808  || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
3810  }
3811  }
3812  s->mb_intra = v->is_intra[s->mb_x] = 0;
3813  for (i = 0; i < 6; i++)
3814  v->mb_type[0][s->block_index[i]] = 0;
3815  fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
3816  /* for all motion vector read MVDATA and motion compensate each block */
3817  dst_idx = 0;
3818  if (fourmv) {
3819  mvbp = v->fourmvbp;
3820  for (i = 0; i < 6; i++) {
3821  if (i < 4) {
3822  dmv_x = dmv_y = 0;
3823  val = ((mvbp >> (3 - i)) & 1);
3824  if (val) {
3825  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3826  }
3827  vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3828  vc1_mc_4mv_luma(v, i, 0);
3829  } else if (i == 4) {
3830  vc1_mc_4mv_chroma4(v);
3831  }
3832  }
3833  } else if (twomv) {
3834  mvbp = v->twomvbp;
3835  dmv_x = dmv_y = 0;
3836  if (mvbp & 2) {
3837  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3838  }
3839  vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
3840  vc1_mc_4mv_luma(v, 0, 0);
3841  vc1_mc_4mv_luma(v, 1, 0);
3842  dmv_x = dmv_y = 0;
3843  if (mvbp & 1) {
3844  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3845  }
3846  vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
3847  vc1_mc_4mv_luma(v, 2, 0);
3848  vc1_mc_4mv_luma(v, 3, 0);
3849  vc1_mc_4mv_chroma4(v);
3850  } else {
3851  mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
3852  dmv_x = dmv_y = 0;
3853  if (mvbp) {
3854  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3855  }
3856  vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3857  vc1_mc_1mv(v, 0);
3858  }
3859  if (cbp)
3860  GET_MQUANT(); // p. 227
3861  s->current_picture.f.qscale_table[mb_pos] = mquant;
3862  if (!v->ttmbf && cbp)
3864  for (i = 0; i < 6; i++) {
3865  s->dc_val[0][s->block_index[i]] = 0;
3866  dst_idx += i >> 2;
3867  val = ((cbp >> (5 - i)) & 1);
3868  if (!fieldtx)
3869  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3870  else
3871  off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
3872  if (val) {
3873  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
3874  first_block, s->dest[dst_idx] + off,
3875  (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
3876  (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
3877  block_cbp |= pat << (i << 2);
3878  if (!v->ttmbf && ttmb < 8)
3879  ttmb = -1;
3880  first_block = 0;
3881  }
3882  }
3883  }
3884  } else { // skipped
3885  s->mb_intra = v->is_intra[s->mb_x] = 0;
3886  for (i = 0; i < 6; i++) {
3887  v->mb_type[0][s->block_index[i]] = 0;
3888  s->dc_val[0][s->block_index[i]] = 0;
3889  }
3890  s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
3891  s->current_picture.f.qscale_table[mb_pos] = 0;
3892  v->blk_mv_type[s->block_index[0]] = 0;
3893  v->blk_mv_type[s->block_index[1]] = 0;
3894  v->blk_mv_type[s->block_index[2]] = 0;
3895  v->blk_mv_type[s->block_index[3]] = 0;
3896  vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3897  vc1_mc_1mv(v, 0);
3898  }
3899  if (s->mb_x == s->mb_width - 1)
3900  memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
3901  return 0;
3902 }
3903 
3905 {
3906  MpegEncContext *s = &v->s;
3907  GetBitContext *gb = &s->gb;
3908  int i;
3909  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3910  int cbp = 0; /* cbp decoding stuff */
3911  int mqdiff, mquant; /* MB quantization */
3912  int ttmb = v->ttfrm; /* MB Transform type */
3913 
3914  int mb_has_coeffs = 1; /* last_flag */
3915  int dmv_x, dmv_y; /* Differential MV components */
3916  int val; /* temp values */
3917  int first_block = 1;
3918  int dst_idx, off;
3919  int pred_flag = 0;
3920  int block_cbp = 0, pat, block_tt = 0;
3921  int idx_mbmode = 0;
3922 
3923  mquant = v->pq; /* Lossy initialization */
3924 
3925  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
3926  if (idx_mbmode <= 1) { // intra MB
3927  s->mb_intra = v->is_intra[s->mb_x] = 1;
3928  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
3929  s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
3930  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
3931  GET_MQUANT();
3932  s->current_picture.f.qscale_table[mb_pos] = mquant;
3933  /* Set DC scale - y and c use the same (not sure if necessary here) */
3934  s->y_dc_scale = s->y_dc_scale_table[mquant];
3935  s->c_dc_scale = s->c_dc_scale_table[mquant];
3936  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
3937  mb_has_coeffs = idx_mbmode & 1;
3938  if (mb_has_coeffs)
3939  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
3940  dst_idx = 0;
3941  for (i = 0; i < 6; i++) {
3942  s->dc_val[0][s->block_index[i]] = 0;
3943  v->mb_type[0][s->block_index[i]] = 1;
3944  dst_idx += i >> 2;
3945  val = ((cbp >> (5 - i)) & 1);
3946  v->a_avail = v->c_avail = 0;
3947  if (i == 2 || i == 3 || !s->first_slice_line)
3948  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3949  if (i == 1 || i == 3 || s->mb_x)
3950  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3951 
3952  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3953  (i & 4) ? v->codingset2 : v->codingset);
3954  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3955  continue;
3956  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3957  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3958  off += v->second_field ? ((i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0]) : 0;
3959  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
3960  // TODO: loop filter
3961  }
3962  } else {
3963  s->mb_intra = v->is_intra[s->mb_x] = 0;
3964  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
3965  for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
3966  if (idx_mbmode <= 5) { // 1-MV
3967  dmv_x = dmv_y = pred_flag = 0;
3968  if (idx_mbmode & 1) {
3969  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
3970  }
3971  vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
3972  vc1_mc_1mv(v, 0);
3973  mb_has_coeffs = !(idx_mbmode & 2);
3974  } else { // 4-MV
3976  for (i = 0; i < 6; i++) {
3977  if (i < 4) {
3978  dmv_x = dmv_y = pred_flag = 0;
3979  val = ((v->fourmvbp >> (3 - i)) & 1);
3980  if (val) {
3981  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
3982  }
3983  vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
3984  vc1_mc_4mv_luma(v, i, 0);
3985  } else if (i == 4)
3986  vc1_mc_4mv_chroma(v, 0);
3987  }
3988  mb_has_coeffs = idx_mbmode & 1;
3989  }
3990  if (mb_has_coeffs)
3991  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3992  if (cbp) {
3993  GET_MQUANT();
3994  }
3995  s->current_picture.f.qscale_table[mb_pos] = mquant;
3996  if (!v->ttmbf && cbp) {
3998  }
3999  dst_idx = 0;
4000  for (i = 0; i < 6; i++) {
4001  s->dc_val[0][s->block_index[i]] = 0;
4002  dst_idx += i >> 2;
4003  val = ((cbp >> (5 - i)) & 1);
4004  off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
4005  if (v->second_field)
4006  off += (i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0];
4007  if (val) {
4008  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
4009  first_block, s->dest[dst_idx] + off,
4010  (i & 4) ? s->uvlinesize : s->linesize,
4011  (i & 4) && (s->flags & CODEC_FLAG_GRAY),
4012  &block_tt);
4013  block_cbp |= pat << (i << 2);
4014  if (!v->ttmbf && ttmb < 8) ttmb = -1;
4015  first_block = 0;
4016  }
4017  }
4018  }
4019  if (s->mb_x == s->mb_width - 1)
4020  memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
4021  return 0;
4022 }
4023 
4024 /** Decode one B-frame MB (in Main profile)
4025  */
4027 {
4028  MpegEncContext *s = &v->s;
4029  GetBitContext *gb = &s->gb;
4030  int i, j;
4031  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
4032  int cbp = 0; /* cbp decoding stuff */
4033  int mqdiff, mquant; /* MB quantization */
4034  int ttmb = v->ttfrm; /* MB Transform type */
4035  int mb_has_coeffs = 0; /* last_flag */
4036  int index, index1; /* LUT indexes */
4037  int val, sign; /* temp values */
4038  int first_block = 1;
4039  int dst_idx, off;
4040  int skipped, direct;
4041  int dmv_x[2], dmv_y[2];
4042  int bmvtype = BMV_TYPE_BACKWARD;
4043 
4044  mquant = v->pq; /* lossy initialization */
4045  s->mb_intra = 0;
4046 
4047  if (v->dmb_is_raw)
4048  direct = get_bits1(gb);
4049  else
4050  direct = v->direct_mb_plane[mb_pos];
4051  if (v->skip_is_raw)
4052  skipped = get_bits1(gb);
4053  else
4054  skipped = v->s.mbskip_table[mb_pos];
4055 
4056  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4057  for (i = 0; i < 6; i++) {
4058  v->mb_type[0][s->block_index[i]] = 0;
4059  s->dc_val[0][s->block_index[i]] = 0;
4060  }
4061  s->current_picture.f.qscale_table[mb_pos] = 0;
4062 
4063  if (!direct) {
4064  if (!skipped) {
4065  GET_MVDATA(dmv_x[0], dmv_y[0]);
4066  dmv_x[1] = dmv_x[0];
4067  dmv_y[1] = dmv_y[0];
4068  }
4069  if (skipped || !s->mb_intra) {
4070  bmvtype = decode012(gb);
4071  switch (bmvtype) {
4072  case 0:
4073  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
4074  break;
4075  case 1:
4076  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
4077  break;
4078  case 2:
4079  bmvtype = BMV_TYPE_INTERPOLATED;
4080  dmv_x[0] = dmv_y[0] = 0;
4081  }
4082  }
4083  }
4084  for (i = 0; i < 6; i++)
4085  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4086 
4087  if (skipped) {
4088  if (direct)
4089  bmvtype = BMV_TYPE_INTERPOLATED;
4090  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4091  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4092  return;
4093  }
4094  if (direct) {
4095  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
4096  GET_MQUANT();
4097  s->mb_intra = 0;
4098  s->current_picture.f.qscale_table[mb_pos] = mquant;
4099  if (!v->ttmbf)
4101  dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
4102  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4103  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4104  } else {
4105  if (!mb_has_coeffs && !s->mb_intra) {
4106  /* no coded blocks - effectively skipped */
4107  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4108  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4109  return;
4110  }
4111  if (s->mb_intra && !mb_has_coeffs) {
4112  GET_MQUANT();
4113  s->current_picture.f.qscale_table[mb_pos] = mquant;
4114  s->ac_pred = get_bits1(gb);
4115  cbp = 0;
4116  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4117  } else {
4118  if (bmvtype == BMV_TYPE_INTERPOLATED) {
4119  GET_MVDATA(dmv_x[0], dmv_y[0]);
4120  if (!mb_has_coeffs) {
4121  /* interpolated skipped block */
4122  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4123  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4124  return;
4125  }
4126  }
4127  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4128  if (!s->mb_intra) {
4129  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4130  }
4131  if (s->mb_intra)
4132  s->ac_pred = get_bits1(gb);
4133  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
4134  GET_MQUANT();
4135  s->current_picture.f.qscale_table[mb_pos] = mquant;
4136  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
4138  }
4139  }
4140  dst_idx = 0;
4141  for (i = 0; i < 6; i++) {
4142  s->dc_val[0][s->block_index[i]] = 0;
4143  dst_idx += i >> 2;
4144  val = ((cbp >> (5 - i)) & 1);
4145  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
4146  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4147  if (s->mb_intra) {
4148  /* check if prediction blocks A and C are available */
4149  v->a_avail = v->c_avail = 0;
4150  if (i == 2 || i == 3 || !s->first_slice_line)
4151  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
4152  if (i == 1 || i == 3 || s->mb_x)
4153  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
4154 
4155  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
4156  (i & 4) ? v->codingset2 : v->codingset);
4157  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
4158  continue;
4159  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
4160  if (v->rangeredfrm)
4161  for (j = 0; j < 64; j++)
4162  s->block[i][j] <<= 1;
4163  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
4164  } else if (val) {
4165  vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
4166  first_block, s->dest[dst_idx] + off,
4167  (i & 4) ? s->uvlinesize : s->linesize,
4168  (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
4169  if (!v->ttmbf && ttmb < 8)
4170  ttmb = -1;
4171  first_block = 0;
4172  }
4173  }
4174 }
4175 
4176 /** Decode one B-frame MB (in interlaced field B picture)
4177  */
4179 {
4180  MpegEncContext *s = &v->s;
4181  GetBitContext *gb = &s->gb;
4182  int i, j;
4183  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
4184  int cbp = 0; /* cbp decoding stuff */
4185  int mqdiff, mquant; /* MB quantization */
4186  int ttmb = v->ttfrm; /* MB Transform type */
4187  int mb_has_coeffs = 0; /* last_flag */
4188  int val; /* temp value */
4189  int first_block = 1;
4190  int dst_idx, off;
4191  int fwd;
4192  int dmv_x[2], dmv_y[2], pred_flag[2];
4193  int bmvtype = BMV_TYPE_BACKWARD;
4194  int idx_mbmode, interpmvp;
4195 
4196  mquant = v->pq; /* Lossy initialization */
4197  s->mb_intra = 0;
4198 
4199  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
4200  if (idx_mbmode <= 1) { // intra MB
4201  s->mb_intra = v->is_intra[s->mb_x] = 1;
4202  s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
4203  s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
4204  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
4205  GET_MQUANT();
4206  s->current_picture.f.qscale_table[mb_pos] = mquant;
4207  /* Set DC scale - y and c use the same (not sure if necessary here) */
4208  s->y_dc_scale = s->y_dc_scale_table[mquant];
4209  s->c_dc_scale = s->c_dc_scale_table[mquant];
4210  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
4211  mb_has_coeffs = idx_mbmode & 1;
4212  if (mb_has_coeffs)
4213  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
4214  dst_idx = 0;
4215  for (i = 0; i < 6; i++) {
4216  s->dc_val[0][s->block_index[i]] = 0;
4217  dst_idx += i >> 2;
4218  val = ((cbp >> (5 - i)) & 1);
4219  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4220  v->a_avail = v->c_avail = 0;
4221  if (i == 2 || i == 3 || !s->first_slice_line)
4222  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
4223  if (i == 1 || i == 3 || s->mb_x)
4224  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
4225 
4226  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
4227  (i & 4) ? v->codingset2 : v->codingset);
4228  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
4229  continue;
4230  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
4231  if (v->rangeredfrm)
4232  for (j = 0; j < 64; j++)
4233  s->block[i][j] <<= 1;
4234  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
4235  off += v->second_field ? ((i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0]) : 0;
4236  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
4237  // TODO: yet to perform loop filter
4238  }
4239  } else {
4240  s->mb_intra = v->is_intra[s->mb_x] = 0;
4241  s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
4242  for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
4243  if (v->fmb_is_raw)
4244  fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
4245  else
4246  fwd = v->forward_mb_plane[mb_pos];
4247  if (idx_mbmode <= 5) { // 1-MV
4248  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4249  pred_flag[0] = pred_flag[1] = 0;
4250  if (fwd)
4251  bmvtype = BMV_TYPE_FORWARD;
4252  else {
4253  bmvtype = decode012(gb);
4254  switch (bmvtype) {
4255  case 0:
4256  bmvtype = BMV_TYPE_BACKWARD;
4257  break;
4258  case 1:
4259  bmvtype = BMV_TYPE_DIRECT;
4260  break;
4261  case 2:
4262  bmvtype = BMV_TYPE_INTERPOLATED;
4263  interpmvp = get_bits1(gb);
4264  }
4265  }
4266  v->bmvtype = bmvtype;
4267  if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
4268  get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
4269  }
4270  if (bmvtype == BMV_TYPE_INTERPOLATED && interpmvp) {
4271  get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
4272  }
4273  if (bmvtype == BMV_TYPE_DIRECT) {
4274  dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
4275  dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
4276  }
4277  vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
4278  vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);