FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
wma.c
Go to the documentation of this file.
1 /*
2  * WMA compatible codec
3  * Copyright (c) 2002-2007 The FFmpeg Project
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "avcodec.h"
23 #include "sinewin.h"
24 #include "wma.h"
25 #include "wma_common.h"
26 #include "wmadata.h"
27 
28 #undef NDEBUG
29 #include <assert.h>
30 
31 /* XXX: use same run/length optimization as mpeg decoders */
32 //FIXME maybe split decode / encode or pass flag
33 static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
34  float **plevel_table, uint16_t **pint_table,
35  const CoefVLCTable *vlc_table)
36 {
37  int n = vlc_table->n;
38  const uint8_t *table_bits = vlc_table->huffbits;
39  const uint32_t *table_codes = vlc_table->huffcodes;
40  const uint16_t *levels_table = vlc_table->levels;
41  uint16_t *run_table, *level_table, *int_table;
42  float *flevel_table;
43  int i, l, j, k, level;
44 
45  init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
46 
47  run_table = av_malloc(n * sizeof(uint16_t));
48  level_table = av_malloc(n * sizeof(uint16_t));
49  flevel_table= av_malloc(n * sizeof(*flevel_table));
50  int_table = av_malloc(n * sizeof(uint16_t));
51  i = 2;
52  level = 1;
53  k = 0;
54  while (i < n) {
55  int_table[k] = i;
56  l = levels_table[k++];
57  for (j = 0; j < l; j++) {
58  run_table[i] = j;
59  level_table[i] = level;
60  flevel_table[i]= level;
61  i++;
62  }
63  level++;
64  }
65  *prun_table = run_table;
66  *plevel_table = flevel_table;
67  *pint_table = int_table;
68  av_free(level_table);
69 }
70 
71 int ff_wma_init(AVCodecContext *avctx, int flags2)
72 {
73  WMACodecContext *s = avctx->priv_data;
74  int i;
75  float bps1, high_freq;
76  volatile float bps;
77  int sample_rate1;
78  int coef_vlc_table;
79 
80  if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
81  || avctx->channels <= 0 || avctx->channels > 2
82  || avctx->bit_rate <= 0)
83  return -1;
84 
85  ff_dsputil_init(&s->dsp, avctx);
86  ff_fmt_convert_init(&s->fmt_conv, avctx);
88 
89  if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
90  s->version = 1;
91  } else {
92  s->version = 2;
93  }
94 
95  /* compute MDCT block size */
97  s->version, 0);
101 
102  s->frame_len = 1 << s->frame_len_bits;
103  if (s->use_variable_block_len) {
104  int nb_max, nb;
105  nb = ((flags2 >> 3) & 3) + 1;
106  if ((avctx->bit_rate / avctx->channels) >= 32000)
107  nb += 2;
108  nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
109  if (nb > nb_max)
110  nb = nb_max;
111  s->nb_block_sizes = nb + 1;
112  } else {
113  s->nb_block_sizes = 1;
114  }
115 
116  /* init rate dependent parameters */
117  s->use_noise_coding = 1;
118  high_freq = avctx->sample_rate * 0.5;
119 
120  /* if version 2, then the rates are normalized */
121  sample_rate1 = avctx->sample_rate;
122  if (s->version == 2) {
123  if (sample_rate1 >= 44100) {
124  sample_rate1 = 44100;
125  } else if (sample_rate1 >= 22050) {
126  sample_rate1 = 22050;
127  } else if (sample_rate1 >= 16000) {
128  sample_rate1 = 16000;
129  } else if (sample_rate1 >= 11025) {
130  sample_rate1 = 11025;
131  } else if (sample_rate1 >= 8000) {
132  sample_rate1 = 8000;
133  }
134  }
135 
136  bps = (float)avctx->bit_rate / (float)(avctx->channels * avctx->sample_rate);
137  s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
138 
139  /* compute high frequency value and choose if noise coding should
140  be activated */
141  bps1 = bps;
142  if (avctx->channels == 2)
143  bps1 = bps * 1.6;
144  if (sample_rate1 == 44100) {
145  if (bps1 >= 0.61) {
146  s->use_noise_coding = 0;
147  } else {
148  high_freq = high_freq * 0.4;
149  }
150  } else if (sample_rate1 == 22050) {
151  if (bps1 >= 1.16) {
152  s->use_noise_coding = 0;
153  } else if (bps1 >= 0.72) {
154  high_freq = high_freq * 0.7;
155  } else {
156  high_freq = high_freq * 0.6;
157  }
158  } else if (sample_rate1 == 16000) {
159  if (bps > 0.5) {
160  high_freq = high_freq * 0.5;
161  } else {
162  high_freq = high_freq * 0.3;
163  }
164  } else if (sample_rate1 == 11025) {
165  high_freq = high_freq * 0.7;
166  } else if (sample_rate1 == 8000) {
167  if (bps <= 0.625) {
168  high_freq = high_freq * 0.5;
169  } else if (bps > 0.75) {
170  s->use_noise_coding = 0;
171  } else {
172  high_freq = high_freq * 0.65;
173  }
174  } else {
175  if (bps >= 0.8) {
176  high_freq = high_freq * 0.75;
177  } else if (bps >= 0.6) {
178  high_freq = high_freq * 0.6;
179  } else {
180  high_freq = high_freq * 0.5;
181  }
182  }
183  av_dlog(s->avctx, "flags2=0x%x\n", flags2);
184  av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
185  s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
186  avctx->block_align);
187  av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
188  bps, bps1, high_freq, s->byte_offset_bits);
189  av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
191 
192  /* compute the scale factor band sizes for each MDCT block size */
193  {
194  int a, b, pos, lpos, k, block_len, i, j, n;
195  const uint8_t *table;
196 
197  if (s->version == 1) {
198  s->coefs_start = 3;
199  } else {
200  s->coefs_start = 0;
201  }
202  for (k = 0; k < s->nb_block_sizes; k++) {
203  block_len = s->frame_len >> k;
204 
205  if (s->version == 1) {
206  lpos = 0;
207  for (i = 0; i < 25; i++) {
208  a = ff_wma_critical_freqs[i];
209  b = avctx->sample_rate;
210  pos = ((block_len * 2 * a) + (b >> 1)) / b;
211  if (pos > block_len)
212  pos = block_len;
213  s->exponent_bands[0][i] = pos - lpos;
214  if (pos >= block_len) {
215  i++;
216  break;
217  }
218  lpos = pos;
219  }
220  s->exponent_sizes[0] = i;
221  } else {
222  /* hardcoded tables */
223  table = NULL;
224  a = s->frame_len_bits - BLOCK_MIN_BITS - k;
225  if (a < 3) {
226  if (avctx->sample_rate >= 44100) {
227  table = exponent_band_44100[a];
228  } else if (avctx->sample_rate >= 32000) {
229  table = exponent_band_32000[a];
230  } else if (avctx->sample_rate >= 22050) {
231  table = exponent_band_22050[a];
232  }
233  }
234  if (table) {
235  n = *table++;
236  for (i = 0; i < n; i++)
237  s->exponent_bands[k][i] = table[i];
238  s->exponent_sizes[k] = n;
239  } else {
240  j = 0;
241  lpos = 0;
242  for (i = 0; i < 25; i++) {
243  a = ff_wma_critical_freqs[i];
244  b = avctx->sample_rate;
245  pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
246  pos <<= 2;
247  if (pos > block_len)
248  pos = block_len;
249  if (pos > lpos)
250  s->exponent_bands[k][j++] = pos - lpos;
251  if (pos >= block_len)
252  break;
253  lpos = pos;
254  }
255  s->exponent_sizes[k] = j;
256  }
257  }
258 
259  /* max number of coefs */
260  s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
261  /* high freq computation */
262  s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
263  avctx->sample_rate + 0.5);
264  n = s->exponent_sizes[k];
265  j = 0;
266  pos = 0;
267  for (i = 0; i < n; i++) {
268  int start, end;
269  start = pos;
270  pos += s->exponent_bands[k][i];
271  end = pos;
272  if (start < s->high_band_start[k])
273  start = s->high_band_start[k];
274  if (end > s->coefs_end[k])
275  end = s->coefs_end[k];
276  if (end > start)
277  s->exponent_high_bands[k][j++] = end - start;
278  }
279  s->exponent_high_sizes[k] = j;
280 #if 0
281  tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
282  s->frame_len >> k,
283  s->coefs_end[k],
284  s->high_band_start[k],
285  s->exponent_high_sizes[k]);
286  for (j = 0; j < s->exponent_high_sizes[k]; j++)
287  tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
288  tprintf(s->avctx, "\n");
289 #endif
290  }
291  }
292 
293 #ifdef TRACE
294  {
295  int i, j;
296  for (i = 0; i < s->nb_block_sizes; i++) {
297  tprintf(s->avctx, "%5d: n=%2d:",
298  s->frame_len >> i,
299  s->exponent_sizes[i]);
300  for (j = 0; j < s->exponent_sizes[i]; j++)
301  tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
302  tprintf(s->avctx, "\n");
303  }
304  }
305 #endif
306 
307  /* init MDCT windows : simple sinus window */
308  for (i = 0; i < s->nb_block_sizes; i++) {
310  s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
311  }
312 
313  s->reset_block_lengths = 1;
314 
315  if (s->use_noise_coding) {
316 
317  /* init the noise generator */
318  if (s->use_exp_vlc) {
319  s->noise_mult = 0.02;
320  } else {
321  s->noise_mult = 0.04;
322  }
323 
324 #ifdef TRACE
325  for (i = 0; i < NOISE_TAB_SIZE; i++)
326  s->noise_table[i] = 1.0 * s->noise_mult;
327 #else
328  {
329  unsigned int seed;
330  float norm;
331  seed = 1;
332  norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
333  for (i = 0; i < NOISE_TAB_SIZE; i++) {
334  seed = seed * 314159 + 1;
335  s->noise_table[i] = (float)((int)seed) * norm;
336  }
337  }
338 #endif
339  }
340 
341  /* choose the VLC tables for the coefficients */
342  coef_vlc_table = 2;
343  if (avctx->sample_rate >= 32000) {
344  if (bps1 < 0.72) {
345  coef_vlc_table = 0;
346  } else if (bps1 < 1.16) {
347  coef_vlc_table = 1;
348  }
349  }
350  s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
351  s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
352  init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
353  s->coef_vlcs[0]);
354  init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
355  s->coef_vlcs[1]);
356 
357  return 0;
358 }
359 
360 int ff_wma_total_gain_to_bits(int total_gain)
361 {
362  if (total_gain < 15) return 13;
363  else if (total_gain < 32) return 12;
364  else if (total_gain < 40) return 11;
365  else if (total_gain < 45) return 10;
366  else return 9;
367 }
368 
370 {
371  WMACodecContext *s = avctx->priv_data;
372  int i;
373 
374  for (i = 0; i < s->nb_block_sizes; i++)
375  ff_mdct_end(&s->mdct_ctx[i]);
376 
377  if (s->use_exp_vlc) {
378  ff_free_vlc(&s->exp_vlc);
379  }
380  if (s->use_noise_coding) {
381  ff_free_vlc(&s->hgain_vlc);
382  }
383  for (i = 0; i < 2; i++) {
384  ff_free_vlc(&s->coef_vlc[i]);
385  av_free(s->run_table[i]);
386  av_free(s->level_table[i]);
387  av_free(s->int_table[i]);
388  }
389 
390  return 0;
391 }
392 
393 /**
394  * Decode an uncompressed coefficient.
395  * @param gb GetBitContext
396  * @return the decoded coefficient
397  */
399 {
400  /** consumes up to 34 bits */
401  int n_bits = 8;
402  /** decode length */
403  if (get_bits1(gb)) {
404  n_bits += 8;
405  if (get_bits1(gb)) {
406  n_bits += 8;
407  if (get_bits1(gb)) {
408  n_bits += 7;
409  }
410  }
411  }
412  return get_bits_long(gb, n_bits);
413 }
414 
415 /**
416  * Decode run level compressed coefficients.
417  * @param avctx codec context
418  * @param gb bitstream reader context
419  * @param vlc vlc table for get_vlc2
420  * @param level_table level codes
421  * @param run_table run codes
422  * @param version 0 for wma1,2 1 for wmapro
423  * @param ptr output buffer
424  * @param offset offset in the output buffer
425  * @param num_coefs number of input coefficents
426  * @param block_len input buffer length (2^n)
427  * @param frame_len_bits number of bits for escaped run codes
428  * @param coef_nb_bits number of bits for escaped level codes
429  * @return 0 on success, -1 otherwise
430  */
432  VLC *vlc,
433  const float *level_table, const uint16_t *run_table,
434  int version, WMACoef *ptr, int offset,
435  int num_coefs, int block_len, int frame_len_bits,
436  int coef_nb_bits)
437 {
438  int code, level, sign;
439  const uint32_t *ilvl = (const uint32_t*)level_table;
440  uint32_t *iptr = (uint32_t*)ptr;
441  const unsigned int coef_mask = block_len - 1;
442  for (; offset < num_coefs; offset++) {
443  code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
444  if (code > 1) {
445  /** normal code */
446  offset += run_table[code];
447  sign = get_bits1(gb) - 1;
448  iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
449  } else if (code == 1) {
450  /** EOB */
451  break;
452  } else {
453  /** escape */
454  if (!version) {
455  level = get_bits(gb, coef_nb_bits);
456  /** NOTE: this is rather suboptimal. reading
457  block_len_bits would be better */
458  offset += get_bits(gb, frame_len_bits);
459  } else {
460  level = ff_wma_get_large_val(gb);
461  /** escape decode */
462  if (get_bits1(gb)) {
463  if (get_bits1(gb)) {
464  if (get_bits1(gb)) {
465  av_log(avctx,AV_LOG_ERROR,
466  "broken escape sequence\n");
467  return -1;
468  } else
469  offset += get_bits(gb, frame_len_bits) + 4;
470  } else
471  offset += get_bits(gb, 2) + 1;
472  }
473  }
474  sign = get_bits1(gb) - 1;
475  ptr[offset & coef_mask] = (level^sign) - sign;
476  }
477  }
478  /** NOTE: EOB can be omitted */
479  if (offset > num_coefs) {
480  av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
481  return -1;
482  }
483 
484  return 0;
485 }