43 #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
44 #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
46 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
48 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
50 #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
52 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
54 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
56 #define PSY_3GPP_RPEMIN 0.01f
57 #define PSY_3GPP_RPELEV 2.0f
59 #define PSY_3GPP_C1 3.0f
60 #define PSY_3GPP_C2 1.3219281f
61 #define PSY_3GPP_C3 0.55935729f
63 #define PSY_SNR_1DB 7.9432821e-1f
64 #define PSY_SNR_25DB 3.1622776e-3f
66 #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
67 #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
68 #define PSY_3GPP_SAVE_ADD_L -0.84285712f
69 #define PSY_3GPP_SAVE_ADD_S -0.75f
70 #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
71 #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
72 #define PSY_3GPP_SPEND_ADD_L -0.35f
73 #define PSY_3GPP_SPEND_ADD_S -0.26111111f
74 #define PSY_3GPP_CLIP_LO_L 0.2f
75 #define PSY_3GPP_CLIP_LO_S 0.2f
76 #define PSY_3GPP_CLIP_HI_L 0.95f
77 #define PSY_3GPP_CLIP_HI_S 0.75f
79 #define PSY_3GPP_AH_THR_LONG 0.5f
80 #define PSY_3GPP_AH_THR_SHORT 0.63f
88 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
91 #define PSY_LAME_FIR_LEN 21
92 #define AAC_BLOCK_SIZE_LONG 1024
93 #define AAC_BLOCK_SIZE_SHORT 128
94 #define AAC_NUM_BLOCKS_SHORT 8
95 #define PSY_LAME_NUM_SUBBLOCKS 3
215 -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
216 -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
217 -5.52212e-17 * 2, -0.313819 * 2
226 int lower_range = 12, upper_range = 12;
227 int lower_range_kbps = psy_abr_map[12].
quality;
228 int upper_range_kbps = psy_abr_map[12].
quality;
234 for (i = 1; i < 13; i++) {
235 if (
FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
237 upper_range_kbps = psy_abr_map[i ].
quality;
239 lower_range_kbps = psy_abr_map[i - 1].
quality;
245 if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
246 return psy_abr_map[lower_range].
st_lrm;
247 return psy_abr_map[upper_range].
st_lrm;
256 for (i = 0; i < avctx->
channels; i++) {
274 return 13.3f *
atanf(0.00076f * f) + 3.5f *
atanf((f / 7500.0f) * (f / 7500.0f));
285 return 3.64 * pow(f, -0.8)
286 - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
287 + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
288 + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
295 float prev, minscale, minath, minsnr, pe_min;
298 const float num_bark =
calc_bark((
float)bandwidth);
311 for (j = 0; j < 2; j++) {
315 float avg_chan_bits = chan_bitrate / ctx->
avctx->
sample_rate * (j ? 128.0f : 1024.0f);
324 for (g = 0; g < ctx->
num_bands[j]; g++) {
326 bark =
calc_bark((i-1) * line_to_frequency);
327 coeffs[
g].
barks = (bark + prev) / 2.0;
330 for (g = 0; g < ctx->
num_bands[j] - 1; g++) {
332 float bark_width = coeffs[g+1].
barks - coeffs->
barks;
335 coeff->
spread_low[1] = pow(10.0, -bark_width * en_spread_low);
336 coeff->
spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
337 pe_min = bark_pe * bark_width;
338 minsnr =
exp2(pe_min / band_sizes[g]) - 1.5f;
342 for (g = 0; g < ctx->
num_bands[j]; g++) {
343 minscale =
ath(start * line_to_frequency,
ATH_ADD);
344 for (i = 1; i < band_sizes[
g]; i++)
345 minscale =
FFMIN(minscale,
ath((start + i) * line_to_frequency,
ATH_ADD));
346 coeffs[
g].
ath = minscale - minath;
347 start += band_sizes[
g];
365 ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
375 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
383 const int16_t *audio,
385 int channel,
int prev_type)
389 int attack_ratio = br <= 16000 ? 18 : 10;
393 int next_type = pch->next_window_seq;
398 int switch_to_eight = 0;
399 float sum = 0.0, sum2 = 0.0;
402 for (i = 0; i < 8; i++) {
403 for (j = 0; j < 128; j++) {
410 for (i = 0; i < 8; i++) {
411 if (s[i] > pch->win_energy * attack_ratio) {
417 pch->win_energy = pch->win_energy*7/8 + sum2/64;
419 wi.window_type[1] = prev_type;
427 grouping = pch->next_grouping;
443 pch->next_window_seq = next_type;
445 for (i = 0; i < 3; i++)
446 wi.window_type[i] = prev_type;
457 for (i = 0; i < 8; i++) {
458 if (!((grouping >> i) & 1))
460 wi.grouping[lastgrp]++;
477 float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
481 fill_level = av_clipf((
float)ctx->
fill_level / size, clip_low, clip_high);
482 clipped_pe = av_clipf(pe, ctx->
pe.
min, ctx->
pe.
max);
483 bit_save = (fill_level + bitsave_add) * bitsave_slope;
484 assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
485 bit_spend = (fill_level + bitspend_add) * bitspend_slope;
486 assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
493 bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->
pe.
max - ctx->
pe.
min)) * (clipped_pe - ctx->
pe.
min);
527 float thr_avg, reduction;
529 if(active_lines == 0.0)
532 thr_avg =
exp2f((a - pe) / (4.0f * active_lines));
533 reduction =
exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
535 return FFMAX(reduction, 0.0f);
541 float thr = band->
thr;
545 thr = sqrtf(thr) + reduction;
573 float desired_bits, desired_pe, delta_pe, reduction=
NAN, spread_en[128] = {0};
574 float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
575 float pe = pctx->chan_bitrate > 32000 ? 0.0f :
FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
576 const int num_bands = ctx->num_bands[wi->num_windows == 8];
577 const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
582 for (w = 0; w < wi->num_windows*16; w += 16) {
583 for (
g = 0;
g < num_bands;
g++) {
586 float form_factor = 0.0f;
589 for (i = 0; i < band_sizes[
g]; i++) {
590 band->
energy += coefs[start+i] * coefs[start+i];
591 form_factor += sqrtf(fabs(coefs[start+i]));
593 Temp = band->
energy > 0 ? sqrtf((
float)band_sizes[
g] / band->
energy) : 0;
595 band->
nz_lines = form_factor * sqrtf(Temp);
597 start += band_sizes[
g];
601 for (w = 0; w < wi->num_windows*16; w += 16) {
605 spread_en[0] = bands[0].
energy;
606 for (
g = 1;
g < num_bands;
g++) {
607 bands[
g].
thr =
FFMAX(bands[
g].thr, bands[
g-1].thr * coeffs[
g].spread_hi[0]);
608 spread_en[w+
g] =
FFMAX(bands[
g].energy, spread_en[w+
g-1] * coeffs[
g].spread_hi[1]);
610 for (
g = num_bands - 2;
g >= 0;
g--) {
611 bands[
g].
thr =
FFMAX(bands[
g].thr, bands[
g+1].thr * coeffs[
g].spread_low[0]);
612 spread_en[w+
g] =
FFMAX(spread_en[w+
g], spread_en[w+
g+1] * coeffs[
g].spread_low[1]);
615 for (
g = 0;
g < num_bands;
g++) {
630 if (spread_en[w+
g] * avoid_hole_thr > band->
energy || coeffs[
g].
min_snr > 1.0f)
638 ctx->ch[channel].entropy = pe;
639 desired_bits =
calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
645 if (ctx->bitres.bits > 0)
650 if (desired_pe < pe) {
652 for (w = 0; w < wi->num_windows*16; w += 16) {
657 for (
g = 0;
g < num_bands;
g++) {
669 for (i = 0; i < 2; i++) {
670 float pe_no_ah = 0.0f, desired_pe_no_ah;
671 active_lines = a = 0.0f;
672 for (w = 0; w < wi->num_windows*16; w += 16) {
673 for (
g = 0;
g < num_bands;
g++) {
677 pe_no_ah += band->
pe;
683 desired_pe_no_ah =
FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
684 if (active_lines > 0.0f)
688 for (w = 0; w < wi->num_windows*16; w += 16) {
689 for (
g = 0;
g < num_bands;
g++) {
692 if (active_lines > 0.0f)
699 delta_pe = desired_pe - pe;
700 if (fabs(delta_pe) > 0.05f * desired_pe)
704 if (pe < 1.15f * desired_pe) {
706 norm_fac = 1.0f / norm_fac;
707 for (w = 0; w < wi->num_windows*16; w += 16) {
708 for (
g = 0;
g < num_bands;
g++) {
712 float delta_sfb_pe = band->
norm_fac * norm_fac * delta_pe;
713 float thr = band->
thr;
725 while (pe > desired_pe &&
g--) {
726 for (w = 0; w < wi->num_windows*16; w+= 16) {
739 for (w = 0; w < wi->num_windows*16; w += 16) {
740 for (
g = 0;
g < num_bands;
g++) {
742 FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+
g];
749 memcpy(pch->prev_band, pch->band,
sizeof(pch->band));
758 for (ch = 0; ch < group->
num_ch; ch++)
788 const float *la,
int channel,
int prev_type)
793 int uselongblock = 1;
800 float const *pf = hpfsmpl;
817 hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
822 energy_subshort[i] = pch->prev_energy_subshort[i + ((
AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
823 assert(pch->prev_energy_subshort[i + ((
AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
824 attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((
AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
825 energy_short[0] += energy_subshort[i];
831 for (; pf < pfe; pf++)
832 p =
FFMAX(p, fabsf(*pf));
842 if (p > energy_subshort[i + 1])
843 p = p / energy_subshort[i + 1];
844 else if (energy_subshort[i + 1] > p * 10.0f)
845 p = energy_subshort[i + 1] / (p * 10.0f);
853 if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
854 if (attack_intensity[i] > pch->attack_threshold)
862 float const u = energy_short[i - 1];
863 float const v = energy_short[i];
864 float const m =
FFMAX(u, v);
866 if (u < 1.7f * v && v < 1.7f * u) {
867 if (i == 1 && attacks[0] < attacks[i])
872 att_sum += attacks[i];
875 if (attacks[0] <= pch->prev_attack)
878 att_sum += attacks[0];
880 if (pch->prev_attack == 3 || att_sum) {
883 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
884 if (attacks[i] && attacks[i-1])
907 for (i = 0; i < 8; i++) {
908 if (!((pch->next_grouping >> i) & 1))
920 for (i = 0; i < 9; i++) {
928 pch->prev_attack = attacks[8];
935 .
name =
"3GPP TS 26.403-inspired model",