FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
apedec.c
Go to the documentation of this file.
1 /*
2  * Monkey's Audio lossless audio decoder
3  * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4  * based upon libdemac from Dave Chapman.
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "libavutil/avassert.h"
25 #include "libavutil/opt.h"
26 #include "avcodec.h"
27 #include "dsputil.h"
28 #include "bytestream.h"
29 #include "internal.h"
30 
31 /**
32  * @file
33  * Monkey's Audio lossless audio decoder
34  */
35 
36 #define MAX_CHANNELS 2
37 #define MAX_BYTESPERSAMPLE 3
38 
39 #define APE_FRAMECODE_MONO_SILENCE 1
40 #define APE_FRAMECODE_STEREO_SILENCE 3
41 #define APE_FRAMECODE_PSEUDO_STEREO 4
42 
43 #define HISTORY_SIZE 512
44 #define PREDICTOR_ORDER 8
45 /** Total size of all predictor histories */
46 #define PREDICTOR_SIZE 50
47 
48 #define YDELAYA (18 + PREDICTOR_ORDER*4)
49 #define YDELAYB (18 + PREDICTOR_ORDER*3)
50 #define XDELAYA (18 + PREDICTOR_ORDER*2)
51 #define XDELAYB (18 + PREDICTOR_ORDER)
52 
53 #define YADAPTCOEFFSA 18
54 #define XADAPTCOEFFSA 14
55 #define YADAPTCOEFFSB 10
56 #define XADAPTCOEFFSB 5
57 
58 /**
59  * Possible compression levels
60  * @{
61  */
68 };
69 /** @} */
70 
71 #define APE_FILTER_LEVELS 3
72 
73 /** Filter orders depending on compression level */
74 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
75  { 0, 0, 0 },
76  { 16, 0, 0 },
77  { 64, 0, 0 },
78  { 32, 256, 0 },
79  { 16, 256, 1280 }
80 };
81 
82 /** Filter fraction bits depending on compression level */
84  { 0, 0, 0 },
85  { 11, 0, 0 },
86  { 11, 0, 0 },
87  { 10, 13, 0 },
88  { 11, 13, 15 }
89 };
90 
91 
92 /** Filters applied to the decoded data */
93 typedef struct APEFilter {
94  int16_t *coeffs; ///< actual coefficients used in filtering
95  int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
96  int16_t *historybuffer; ///< filter memory
97  int16_t *delay; ///< filtered values
98 
99  int avg;
100 } APEFilter;
101 
102 typedef struct APERice {
103  uint32_t k;
104  uint32_t ksum;
105 } APERice;
106 
107 typedef struct APERangecoder {
108  uint32_t low; ///< low end of interval
109  uint32_t range; ///< length of interval
110  uint32_t help; ///< bytes_to_follow resp. intermediate value
111  unsigned int buffer; ///< buffer for input/output
112 } APERangecoder;
113 
114 /** Filter histories */
115 typedef struct APEPredictor {
117 
119 
122 
123  int32_t coeffsA[2][4]; ///< adaption coefficients
124  int32_t coeffsB[2][5]; ///< adaption coefficients
126 } APEPredictor;
127 
128 /** Decoder context */
129 typedef struct APEContext {
130  AVClass *class; ///< class for AVOptions
133  int channels;
134  int samples; ///< samples left to decode in current frame
135  int bps;
136 
137  int fileversion; ///< codec version, very important in decoding process
138  int compression_level; ///< compression levels
139  int fset; ///< which filter set to use (calculated from compression level)
140  int flags; ///< global decoder flags
141 
142  uint32_t CRC; ///< frame CRC
143  int frameflags; ///< frame flags
144  APEPredictor predictor; ///< predictor used for final reconstruction
145 
148  int32_t *decoded[MAX_CHANNELS]; ///< decoded data for each channel
149  int blocks_per_loop; ///< maximum number of samples to decode for each call
150 
151  int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
152 
153  APERangecoder rc; ///< rangecoder used to decode actual values
154  APERice riceX; ///< rice code parameters for the second channel
155  APERice riceY; ///< rice code parameters for the first channel
156  APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
157 
158  uint8_t *data; ///< current frame data
159  uint8_t *data_end; ///< frame data end
160  int data_size; ///< frame data allocated size
161  const uint8_t *ptr; ///< current position in frame data
162 
163  int error;
164 } APEContext;
165 
166 // TODO: dsputilize
167 
169 {
170  APEContext *s = avctx->priv_data;
171  int i;
172 
173  for (i = 0; i < APE_FILTER_LEVELS; i++)
174  av_freep(&s->filterbuf[i]);
175 
177  av_freep(&s->data);
178  s->decoded_size = s->data_size = 0;
179 
180  return 0;
181 }
182 
184 {
185  APEContext *s = avctx->priv_data;
186  int i;
187 
188  if (avctx->extradata_size != 6) {
189  av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
190  return AVERROR(EINVAL);
191  }
192  if (avctx->channels > 2) {
193  av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
194  return AVERROR(EINVAL);
195  }
196  s->bps = avctx->bits_per_coded_sample;
197  switch (s->bps) {
198  case 8:
199  avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
200  break;
201  case 16:
203  break;
204  case 24:
206  break;
207  default:
208  av_log_ask_for_sample(avctx, "Unsupported bits per coded sample %d\n",
209  s->bps);
210  return AVERROR_PATCHWELCOME;
211  }
212  s->avctx = avctx;
213  s->channels = avctx->channels;
214  s->fileversion = AV_RL16(avctx->extradata);
215  s->compression_level = AV_RL16(avctx->extradata + 2);
216  s->flags = AV_RL16(avctx->extradata + 4);
217 
218  av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n",
219  s->compression_level, s->flags);
221  av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
222  s->compression_level);
223  return AVERROR_INVALIDDATA;
224  }
225  s->fset = s->compression_level / 1000 - 1;
226  for (i = 0; i < APE_FILTER_LEVELS; i++) {
227  if (!ape_filter_orders[s->fset][i])
228  break;
229  FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
230  (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
231  filter_alloc_fail);
232  }
233 
234  ff_dsputil_init(&s->dsp, avctx);
236 
237  return 0;
238 filter_alloc_fail:
239  ape_decode_close(avctx);
240  return AVERROR(ENOMEM);
241 }
242 
243 /**
244  * @name APE range decoding functions
245  * @{
246  */
247 
248 #define CODE_BITS 32
249 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
250 #define SHIFT_BITS (CODE_BITS - 9)
251 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
252 #define BOTTOM_VALUE (TOP_VALUE >> 8)
253 
254 /** Start the decoder */
255 static inline void range_start_decoding(APEContext *ctx)
256 {
257  ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
258  ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
259  ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
260 }
261 
262 /** Perform normalization */
263 static inline void range_dec_normalize(APEContext *ctx)
264 {
265  while (ctx->rc.range <= BOTTOM_VALUE) {
266  ctx->rc.buffer <<= 8;
267  if(ctx->ptr < ctx->data_end) {
268  ctx->rc.buffer += *ctx->ptr;
269  ctx->ptr++;
270  } else {
271  ctx->error = 1;
272  }
273  ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
274  ctx->rc.range <<= 8;
275  }
276 }
277 
278 /**
279  * Calculate culmulative frequency for next symbol. Does NO update!
280  * @param ctx decoder context
281  * @param tot_f is the total frequency or (code_value)1<<shift
282  * @return the culmulative frequency
283  */
284 static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
285 {
286  range_dec_normalize(ctx);
287  ctx->rc.help = ctx->rc.range / tot_f;
288  return ctx->rc.low / ctx->rc.help;
289 }
290 
291 /**
292  * Decode value with given size in bits
293  * @param ctx decoder context
294  * @param shift number of bits to decode
295  */
296 static inline int range_decode_culshift(APEContext *ctx, int shift)
297 {
298  range_dec_normalize(ctx);
299  ctx->rc.help = ctx->rc.range >> shift;
300  return ctx->rc.low / ctx->rc.help;
301 }
302 
303 
304 /**
305  * Update decoding state
306  * @param ctx decoder context
307  * @param sy_f the interval length (frequency of the symbol)
308  * @param lt_f the lower end (frequency sum of < symbols)
309  */
310 static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
311 {
312  ctx->rc.low -= ctx->rc.help * lt_f;
313  ctx->rc.range = ctx->rc.help * sy_f;
314 }
315 
316 /** Decode n bits (n <= 16) without modelling */
317 static inline int range_decode_bits(APEContext *ctx, int n)
318 {
319  int sym = range_decode_culshift(ctx, n);
320  range_decode_update(ctx, 1, sym);
321  return sym;
322 }
323 
324 
325 #define MODEL_ELEMENTS 64
326 
327 /**
328  * Fixed probabilities for symbols in Monkey Audio version 3.97
329  */
330 static const uint16_t counts_3970[22] = {
331  0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
332  62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
333  65450, 65469, 65480, 65487, 65491, 65493,
334 };
335 
336 /**
337  * Probability ranges for symbols in Monkey Audio version 3.97
338  */
339 static const uint16_t counts_diff_3970[21] = {
340  14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
341  1104, 677, 415, 248, 150, 89, 54, 31,
342  19, 11, 7, 4, 2,
343 };
344 
345 /**
346  * Fixed probabilities for symbols in Monkey Audio version 3.98
347  */
348 static const uint16_t counts_3980[22] = {
349  0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
350  64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
351  65485, 65488, 65490, 65491, 65492, 65493,
352 };
353 
354 /**
355  * Probability ranges for symbols in Monkey Audio version 3.98
356  */
357 static const uint16_t counts_diff_3980[21] = {
358  19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
359  261, 119, 65, 31, 19, 10, 6, 3,
360  3, 2, 1, 1, 1,
361 };
362 
363 /**
364  * Decode symbol
365  * @param ctx decoder context
366  * @param counts probability range start position
367  * @param counts_diff probability range widths
368  */
369 static inline int range_get_symbol(APEContext *ctx,
370  const uint16_t counts[],
371  const uint16_t counts_diff[])
372 {
373  int symbol, cf;
374 
375  cf = range_decode_culshift(ctx, 16);
376 
377  if(cf > 65492){
378  symbol= cf - 65535 + 63;
379  range_decode_update(ctx, 1, cf);
380  if(cf > 65535)
381  ctx->error=1;
382  return symbol;
383  }
384  /* figure out the symbol inefficiently; a binary search would be much better */
385  for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
386 
387  range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
388 
389  return symbol;
390 }
391 /** @} */ // group rangecoder
392 
393 static inline void update_rice(APERice *rice, unsigned int x)
394 {
395  int lim = rice->k ? (1 << (rice->k + 4)) : 0;
396  rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
397 
398  if (rice->ksum < lim)
399  rice->k--;
400  else if (rice->ksum >= (1 << (rice->k + 5)))
401  rice->k++;
402 }
403 
404 static inline int ape_decode_value(APEContext *ctx, APERice *rice)
405 {
406  unsigned int x, overflow;
407 
408  if (ctx->fileversion < 3990) {
409  int tmpk;
410 
412 
413  if (overflow == (MODEL_ELEMENTS - 1)) {
414  tmpk = range_decode_bits(ctx, 5);
415  overflow = 0;
416  } else
417  tmpk = (rice->k < 1) ? 0 : rice->k - 1;
418 
419  if (tmpk <= 16)
420  x = range_decode_bits(ctx, tmpk);
421  else if (tmpk <= 32) {
422  x = range_decode_bits(ctx, 16);
423  x |= (range_decode_bits(ctx, tmpk - 16) << 16);
424  } else {
425  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
426  return AVERROR_INVALIDDATA;
427  }
428  x += overflow << tmpk;
429  } else {
430  int base, pivot;
431 
432  pivot = rice->ksum >> 5;
433  if (pivot == 0)
434  pivot = 1;
435 
437 
438  if (overflow == (MODEL_ELEMENTS - 1)) {
439  overflow = range_decode_bits(ctx, 16) << 16;
440  overflow |= range_decode_bits(ctx, 16);
441  }
442 
443  if (pivot < 0x10000) {
444  base = range_decode_culfreq(ctx, pivot);
445  range_decode_update(ctx, 1, base);
446  } else {
447  int base_hi = pivot, base_lo;
448  int bbits = 0;
449 
450  while (base_hi & ~0xFFFF) {
451  base_hi >>= 1;
452  bbits++;
453  }
454  base_hi = range_decode_culfreq(ctx, base_hi + 1);
455  range_decode_update(ctx, 1, base_hi);
456  base_lo = range_decode_culfreq(ctx, 1 << bbits);
457  range_decode_update(ctx, 1, base_lo);
458 
459  base = (base_hi << bbits) + base_lo;
460  }
461 
462  x = base + overflow * pivot;
463  }
464 
465  update_rice(rice, x);
466 
467  /* Convert to signed */
468  if (x & 1)
469  return (x >> 1) + 1;
470  else
471  return -(x >> 1);
472 }
473 
474 static void entropy_decode(APEContext *ctx, int blockstodecode, int stereo)
475 {
476  int32_t *decoded0 = ctx->decoded[0];
477  int32_t *decoded1 = ctx->decoded[1];
478 
479  while (blockstodecode--) {
480  *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
481  if (stereo)
482  *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
483  }
484 }
485 
487 {
488  /* Read the CRC */
489  if (ctx->data_end - ctx->ptr < 6)
490  return AVERROR_INVALIDDATA;
491  ctx->CRC = bytestream_get_be32(&ctx->ptr);
492 
493  /* Read the frame flags if they exist */
494  ctx->frameflags = 0;
495  if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
496  ctx->CRC &= ~0x80000000;
497 
498  if (ctx->data_end - ctx->ptr < 6)
499  return AVERROR_INVALIDDATA;
500  ctx->frameflags = bytestream_get_be32(&ctx->ptr);
501  }
502 
503  /* Initialize the rice structs */
504  ctx->riceX.k = 10;
505  ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
506  ctx->riceY.k = 10;
507  ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
508 
509  /* The first 8 bits of input are ignored. */
510  ctx->ptr++;
511 
513 
514  return 0;
515 }
516 
517 static const int32_t initial_coeffs[4] = {
518  360, 317, -109, 98
519 };
520 
522 {
523  APEPredictor *p = &ctx->predictor;
524 
525  /* Zero the history buffers */
526  memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
527  p->buf = p->historybuffer;
528 
529  /* Initialize and zero the coefficients */
530  memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
531  memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
532  memset(p->coeffsB, 0, sizeof(p->coeffsB));
533 
534  p->filterA[0] = p->filterA[1] = 0;
535  p->filterB[0] = p->filterB[1] = 0;
536  p->lastA[0] = p->lastA[1] = 0;
537 }
538 
539 /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
540 static inline int APESIGN(int32_t x) {
541  return (x < 0) - (x > 0);
542 }
543 
545  const int decoded, const int filter,
546  const int delayA, const int delayB,
547  const int adaptA, const int adaptB)
548 {
549  int32_t predictionA, predictionB, sign;
550 
551  p->buf[delayA] = p->lastA[filter];
552  p->buf[adaptA] = APESIGN(p->buf[delayA]);
553  p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
554  p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
555 
556  predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
557  p->buf[delayA - 1] * p->coeffsA[filter][1] +
558  p->buf[delayA - 2] * p->coeffsA[filter][2] +
559  p->buf[delayA - 3] * p->coeffsA[filter][3];
560 
561  /* Apply a scaled first-order filter compression */
562  p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
563  p->buf[adaptB] = APESIGN(p->buf[delayB]);
564  p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
565  p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
566  p->filterB[filter] = p->filterA[filter ^ 1];
567 
568  predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
569  p->buf[delayB - 1] * p->coeffsB[filter][1] +
570  p->buf[delayB - 2] * p->coeffsB[filter][2] +
571  p->buf[delayB - 3] * p->coeffsB[filter][3] +
572  p->buf[delayB - 4] * p->coeffsB[filter][4];
573 
574  p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
575  p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
576 
577  sign = APESIGN(decoded);
578  p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
579  p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
580  p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
581  p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
582  p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
583  p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
584  p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
585  p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
586  p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
587 
588  return p->filterA[filter];
589 }
590 
591 static void predictor_decode_stereo(APEContext *ctx, int count)
592 {
593  APEPredictor *p = &ctx->predictor;
594  int32_t *decoded0 = ctx->decoded[0];
595  int32_t *decoded1 = ctx->decoded[1];
596 
597  while (count--) {
598  /* Predictor Y */
599  *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
601  decoded0++;
602  *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
604  decoded1++;
605 
606  /* Combined */
607  p->buf++;
608 
609  /* Have we filled the history buffer? */
610  if (p->buf == p->historybuffer + HISTORY_SIZE) {
611  memmove(p->historybuffer, p->buf,
612  PREDICTOR_SIZE * sizeof(*p->historybuffer));
613  p->buf = p->historybuffer;
614  }
615  }
616 }
617 
618 static void predictor_decode_mono(APEContext *ctx, int count)
619 {
620  APEPredictor *p = &ctx->predictor;
621  int32_t *decoded0 = ctx->decoded[0];
622  int32_t predictionA, currentA, A, sign;
623 
624  currentA = p->lastA[0];
625 
626  while (count--) {
627  A = *decoded0;
628 
629  p->buf[YDELAYA] = currentA;
630  p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
631 
632  predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
633  p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
634  p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
635  p->buf[YDELAYA - 3] * p->coeffsA[0][3];
636 
637  currentA = A + (predictionA >> 10);
638 
639  p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
640  p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
641 
642  sign = APESIGN(A);
643  p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
644  p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
645  p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
646  p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
647 
648  p->buf++;
649 
650  /* Have we filled the history buffer? */
651  if (p->buf == p->historybuffer + HISTORY_SIZE) {
652  memmove(p->historybuffer, p->buf,
653  PREDICTOR_SIZE * sizeof(*p->historybuffer));
654  p->buf = p->historybuffer;
655  }
656 
657  p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
658  *(decoded0++) = p->filterA[0];
659  }
660 
661  p->lastA[0] = currentA;
662 }
663 
664 static void do_init_filter(APEFilter *f, int16_t *buf, int order)
665 {
666  f->coeffs = buf;
667  f->historybuffer = buf + order;
668  f->delay = f->historybuffer + order * 2;
669  f->adaptcoeffs = f->historybuffer + order;
670 
671  memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
672  memset(f->coeffs, 0, order * sizeof(*f->coeffs));
673  f->avg = 0;
674 }
675 
676 static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
677 {
678  do_init_filter(&f[0], buf, order);
679  do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
680 }
681 
682 static void do_apply_filter(APEContext *ctx, int version, APEFilter *f,
683  int32_t *data, int count, int order, int fracbits)
684 {
685  int res;
686  int absres;
687 
688  while (count--) {
689  /* round fixedpoint scalar product */
690  res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order,
691  f->adaptcoeffs - order,
692  order, APESIGN(*data));
693  res = (res + (1 << (fracbits - 1))) >> fracbits;
694  res += *data;
695  *data++ = res;
696 
697  /* Update the output history */
698  *f->delay++ = av_clip_int16(res);
699 
700  if (version < 3980) {
701  /* Version ??? to < 3.98 files (untested) */
702  f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
703  f->adaptcoeffs[-4] >>= 1;
704  f->adaptcoeffs[-8] >>= 1;
705  } else {
706  /* Version 3.98 and later files */
707 
708  /* Update the adaption coefficients */
709  absres = FFABS(res);
710  if (absres)
711  *f->adaptcoeffs = ((res & (-1<<31)) ^ (-1<<30)) >>
712  (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
713  else
714  *f->adaptcoeffs = 0;
715 
716  f->avg += (absres - f->avg) / 16;
717 
718  f->adaptcoeffs[-1] >>= 1;
719  f->adaptcoeffs[-2] >>= 1;
720  f->adaptcoeffs[-8] >>= 1;
721  }
722 
723  f->adaptcoeffs++;
724 
725  /* Have we filled the history buffer? */
726  if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
727  memmove(f->historybuffer, f->delay - (order * 2),
728  (order * 2) * sizeof(*f->historybuffer));
729  f->delay = f->historybuffer + order * 2;
730  f->adaptcoeffs = f->historybuffer + order;
731  }
732  }
733 }
734 
735 static void apply_filter(APEContext *ctx, APEFilter *f,
736  int32_t *data0, int32_t *data1,
737  int count, int order, int fracbits)
738 {
739  do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
740  if (data1)
741  do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
742 }
743 
744 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
745  int32_t *decoded1, int count)
746 {
747  int i;
748 
749  for (i = 0; i < APE_FILTER_LEVELS; i++) {
750  if (!ape_filter_orders[ctx->fset][i])
751  break;
752  apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
753  ape_filter_orders[ctx->fset][i],
754  ape_filter_fracbits[ctx->fset][i]);
755  }
756 }
757 
759 {
760  int i, ret;
761  if ((ret = init_entropy_decoder(ctx)) < 0)
762  return ret;
764 
765  for (i = 0; i < APE_FILTER_LEVELS; i++) {
766  if (!ape_filter_orders[ctx->fset][i])
767  break;
768  init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
769  ape_filter_orders[ctx->fset][i]);
770  }
771  return 0;
772 }
773 
774 static void ape_unpack_mono(APEContext *ctx, int count)
775 {
777  /* We are pure silence, so we're done. */
778  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
779  return;
780  }
781 
782  entropy_decode(ctx, count, 0);
783  ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
784 
785  /* Now apply the predictor decoding */
786  predictor_decode_mono(ctx, count);
787 
788  /* Pseudo-stereo - just copy left channel to right channel */
789  if (ctx->channels == 2) {
790  memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
791  }
792 }
793 
794 static void ape_unpack_stereo(APEContext *ctx, int count)
795 {
796  int32_t left, right;
797  int32_t *decoded0 = ctx->decoded[0];
798  int32_t *decoded1 = ctx->decoded[1];
799 
801  /* We are pure silence, so we're done. */
802  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
803  return;
804  }
805 
806  entropy_decode(ctx, count, 1);
807  ape_apply_filters(ctx, decoded0, decoded1, count);
808 
809  /* Now apply the predictor decoding */
810  predictor_decode_stereo(ctx, count);
811 
812  /* Decorrelate and scale to output depth */
813  while (count--) {
814  left = *decoded1 - (*decoded0 / 2);
815  right = left + *decoded0;
816 
817  *(decoded0++) = left;
818  *(decoded1++) = right;
819  }
820 }
821 
822 static int ape_decode_frame(AVCodecContext *avctx, void *data,
823  int *got_frame_ptr, AVPacket *avpkt)
824 {
825  AVFrame *frame = data;
826  const uint8_t *buf = avpkt->data;
827  APEContext *s = avctx->priv_data;
828  uint8_t *sample8;
829  int16_t *sample16;
830  int32_t *sample24;
831  int i, ch, ret;
832  int blockstodecode;
833 
834  /* this should never be negative, but bad things will happen if it is, so
835  check it just to make sure. */
836  av_assert0(s->samples >= 0);
837 
838  if(!s->samples){
839  uint32_t nblocks, offset;
840  int buf_size;
841 
842  if (!avpkt->size) {
843  *got_frame_ptr = 0;
844  return 0;
845  }
846  if (avpkt->size < 8) {
847  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
848  return AVERROR_INVALIDDATA;
849  }
850  buf_size = avpkt->size & ~3;
851  if (buf_size != avpkt->size) {
852  av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
853  "extra bytes at the end will be skipped.\n");
854  }
855 
856  av_fast_malloc(&s->data, &s->data_size, buf_size);
857  if (!s->data)
858  return AVERROR(ENOMEM);
859  s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
860  s->ptr = s->data;
861  s->data_end = s->data + buf_size;
862 
863  nblocks = bytestream_get_be32(&s->ptr);
864  offset = bytestream_get_be32(&s->ptr);
865  if (offset > 3) {
866  av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
867  s->data = NULL;
868  return AVERROR_INVALIDDATA;
869  }
870  if (s->data_end - s->ptr < offset) {
871  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
872  return AVERROR_INVALIDDATA;
873  }
874  s->ptr += offset;
875 
876  if (!nblocks || nblocks > INT_MAX) {
877  av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %u.\n", nblocks);
878  return AVERROR_INVALIDDATA;
879  }
880  s->samples = nblocks;
881 
882  /* Initialize the frame decoder */
883  if (init_frame_decoder(s) < 0) {
884  av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
885  return AVERROR_INVALIDDATA;
886  }
887  }
888 
889  if (!s->data) {
890  *got_frame_ptr = 0;
891  return avpkt->size;
892  }
893 
894  blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
895 
896  /* reallocate decoded sample buffer if needed */
898  2 * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer));
899  if (!s->decoded_buffer)
900  return AVERROR(ENOMEM);
901  memset(s->decoded_buffer, 0, s->decoded_size);
902  s->decoded[0] = s->decoded_buffer;
903  s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
904 
905  /* get output buffer */
906  frame->nb_samples = blockstodecode;
907  if ((ret = ff_get_buffer(avctx, frame)) < 0) {
908  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
909  return ret;
910  }
911 
912  s->error=0;
913 
914  if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
915  ape_unpack_mono(s, blockstodecode);
916  else
917  ape_unpack_stereo(s, blockstodecode);
918  emms_c();
919 
920  if (s->error) {
921  s->samples=0;
922  av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
923  return AVERROR_INVALIDDATA;
924  }
925 
926  switch (s->bps) {
927  case 8:
928  for (ch = 0; ch < s->channels; ch++) {
929  sample8 = (uint8_t *)frame->data[ch];
930  for (i = 0; i < blockstodecode; i++)
931  *sample8++ = (s->decoded[ch][i] + 0x80) & 0xff;
932  }
933  break;
934  case 16:
935  for (ch = 0; ch < s->channels; ch++) {
936  sample16 = (int16_t *)frame->data[ch];
937  for (i = 0; i < blockstodecode; i++)
938  *sample16++ = s->decoded[ch][i];
939  }
940  break;
941  case 24:
942  for (ch = 0; ch < s->channels; ch++) {
943  sample24 = (int32_t *)frame->data[ch];
944  for (i = 0; i < blockstodecode; i++)
945  *sample24++ = s->decoded[ch][i] << 8;
946  }
947  break;
948  }
949 
950  s->samples -= blockstodecode;
951 
952  *got_frame_ptr = 1;
953 
954  return !s->samples ? avpkt->size : 0;
955 }
956 
957 static void ape_flush(AVCodecContext *avctx)
958 {
959  APEContext *s = avctx->priv_data;
960  s->samples= 0;
961 }
962 
963 #define OFFSET(x) offsetof(APEContext, x)
964 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
965 static const AVOption options[] = {
966  { "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" },
967  { "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
968  { NULL},
969 };
970 
971 static const AVClass ape_decoder_class = {
972  .class_name = "APE decoder",
973  .item_name = av_default_item_name,
974  .option = options,
975  .version = LIBAVUTIL_VERSION_INT,
976 };
977 
979  .name = "ape",
980  .type = AVMEDIA_TYPE_AUDIO,
981  .id = AV_CODEC_ID_APE,
982  .priv_data_size = sizeof(APEContext),
987  .flush = ape_flush,
988  .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
989  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
993  .priv_class = &ape_decoder_class,
994 };