FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
indeo3.c
Go to the documentation of this file.
1 /*
2  * Indeo Video v3 compatible decoder
3  * Copyright (c) 2009 - 2011 Maxim Poliakovski
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * This is a decoder for Intel Indeo Video v3.
25  * It is based on vector quantization, run-length coding and motion compensation.
26  * Known container formats: .avi and .mov
27  * Known FOURCCs: 'IV31', 'IV32'
28  *
29  * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30  */
31 
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35 #include "copy_block.h"
36 #include "dsputil.h"
37 #include "bytestream.h"
38 #include "get_bits.h"
39 #include "internal.h"
40 
41 #include "indeo3data.h"
42 
43 /* RLE opcodes. */
44 enum {
45  RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
46  RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
47  RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
48  RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
49  RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
50  RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
51  RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
52 };
53 
54 
55 /* Some constants for parsing frame bitstream flags. */
56 #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
57 #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
58 #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
59 #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
60 #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
61 #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
62 
63 
64 typedef struct Plane {
66  uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
67  uint32_t width;
68  uint32_t height;
69  uint32_t pitch;
70 } Plane;
71 
72 #define CELL_STACK_MAX 20
73 
74 typedef struct Cell {
75  int16_t xpos; ///< cell coordinates in 4x4 blocks
76  int16_t ypos;
77  int16_t width; ///< cell width in 4x4 blocks
78  int16_t height; ///< cell height in 4x4 blocks
79  uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
80  const int8_t *mv_ptr; ///< ptr to the motion vector if any
81 } Cell;
82 
83 typedef struct Indeo3DecodeContext {
87 
90  int skip_bits;
93  const int8_t *mc_vectors;
94  unsigned num_vectors; ///< number of motion vectors in mc_vectors
95 
96  int16_t width, height;
97  uint32_t frame_num; ///< current frame number (zero-based)
98  uint32_t data_size; ///< size of the frame data in bytes
99  uint16_t frame_flags; ///< frame properties
100  uint8_t cb_offset; ///< needed for selecting VQ tables
101  uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
108  const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
111 
112 
113 static uint8_t requant_tab[8][128];
114 
115 /*
116  * Build the static requantization table.
117  * This table is used to remap pixel values according to a specific
118  * quant index and thus avoid overflows while adding deltas.
119  */
120 static av_cold void build_requant_tab(void)
121 {
122  static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
123  static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
124 
125  int i, j, step;
126 
127  for (i = 0; i < 8; i++) {
128  step = i + 2;
129  for (j = 0; j < 128; j++)
130  requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
131  }
132 
133  /* some last elements calculated above will have values >= 128 */
134  /* pixel values shall never exceed 127 so set them to non-overflowing values */
135  /* according with the quantization step of the respective section */
136  requant_tab[0][127] = 126;
137  requant_tab[1][119] = 118;
138  requant_tab[1][120] = 118;
139  requant_tab[2][126] = 124;
140  requant_tab[2][127] = 124;
141  requant_tab[6][124] = 120;
142  requant_tab[6][125] = 120;
143  requant_tab[6][126] = 120;
144  requant_tab[6][127] = 120;
145 
146  /* Patch for compatibility with the Intel's binary decoders */
147  requant_tab[1][7] = 10;
148  requant_tab[4][8] = 10;
149 }
150 
151 
153  AVCodecContext *avctx, int luma_width, int luma_height)
154 {
155  int p, chroma_width, chroma_height;
156  int luma_pitch, chroma_pitch, luma_size, chroma_size;
157 
158  if (luma_width < 16 || luma_width > 640 ||
159  luma_height < 16 || luma_height > 480 ||
160  luma_width & 3 || luma_height & 3) {
161  av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
162  luma_width, luma_height);
163  return AVERROR_INVALIDDATA;
164  }
165 
166  ctx->width = luma_width ;
167  ctx->height = luma_height;
168 
169  chroma_width = FFALIGN(luma_width >> 2, 4);
170  chroma_height = FFALIGN(luma_height >> 2, 4);
171 
172  luma_pitch = FFALIGN(luma_width, 16);
173  chroma_pitch = FFALIGN(chroma_width, 16);
174 
175  /* Calculate size of the luminance plane. */
176  /* Add one line more for INTRA prediction. */
177  luma_size = luma_pitch * (luma_height + 1);
178 
179  /* Calculate size of a chrominance planes. */
180  /* Add one line more for INTRA prediction. */
181  chroma_size = chroma_pitch * (chroma_height + 1);
182 
183  /* allocate frame buffers */
184  for (p = 0; p < 3; p++) {
185  ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
186  ctx->planes[p].width = !p ? luma_width : chroma_width;
187  ctx->planes[p].height = !p ? luma_height : chroma_height;
188 
189  ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
190  ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
191 
192  /* fill the INTRA prediction lines with the middle pixel value = 64 */
193  memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
194  memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
195 
196  /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
197  ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
198  ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
199  memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
200  memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
201  }
202 
203  return 0;
204 }
205 
206 
208 {
209  int p;
210 
211  ctx->width=
212  ctx->height= 0;
213 
214  for (p = 0; p < 3; p++) {
215  av_freep(&ctx->planes[p].buffers[0]);
216  av_freep(&ctx->planes[p].buffers[1]);
217  ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
218  }
219 }
220 
221 
222 /**
223  * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
224  * the cell(x, y) in the current frame.
225  *
226  * @param ctx pointer to the decoder context
227  * @param plane pointer to the plane descriptor
228  * @param cell pointer to the cell descriptor
229  */
230 static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
231 {
232  int h, w, mv_x, mv_y, offset, offset_dst;
233  uint8_t *src, *dst;
234 
235  /* setup output and reference pointers */
236  offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
237  dst = plane->pixels[ctx->buf_sel] + offset_dst;
238  if(cell->mv_ptr){
239  mv_y = cell->mv_ptr[0];
240  mv_x = cell->mv_ptr[1];
241  }else
242  mv_x= mv_y= 0;
243  offset = offset_dst + mv_y * plane->pitch + mv_x;
244  src = plane->pixels[ctx->buf_sel ^ 1] + offset;
245 
246  h = cell->height << 2;
247 
248  for (w = cell->width; w > 0;) {
249  /* copy using 16xH blocks */
250  if (!((cell->xpos << 2) & 15) && w >= 4) {
251  for (; w >= 4; src += 16, dst += 16, w -= 4)
252  ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
253  }
254 
255  /* copy using 8xH blocks */
256  if (!((cell->xpos << 2) & 7) && w >= 2) {
257  ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
258  w -= 2;
259  src += 8;
260  dst += 8;
261  }
262 
263  if (w >= 1) {
264  copy_block4(dst, src, plane->pitch, plane->pitch, h);
265  w--;
266  src += 4;
267  dst += 4;
268  }
269  }
270 }
271 
272 
273 /* Average 4/8 pixels at once without rounding using SWAR */
274 #define AVG_32(dst, src, ref) \
275  AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
276 
277 #define AVG_64(dst, src, ref) \
278  AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
279 
280 
281 /*
282  * Replicate each even pixel as follows:
283  * ABCDEFGH -> AACCEEGG
284  */
285 static inline uint64_t replicate64(uint64_t a) {
286 #if HAVE_BIGENDIAN
287  a &= 0xFF00FF00FF00FF00ULL;
288  a |= a >> 8;
289 #else
290  a &= 0x00FF00FF00FF00FFULL;
291  a |= a << 8;
292 #endif
293  return a;
294 }
295 
296 static inline uint32_t replicate32(uint32_t a) {
297 #if HAVE_BIGENDIAN
298  a &= 0xFF00FF00UL;
299  a |= a >> 8;
300 #else
301  a &= 0x00FF00FFUL;
302  a |= a << 8;
303 #endif
304  return a;
305 }
306 
307 
308 /* Fill n lines with 64bit pixel value pix */
309 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
310  int32_t row_offset)
311 {
312  for (; n > 0; dst += row_offset, n--)
313  AV_WN64A(dst, pix);
314 }
315 
316 
317 /* Error codes for cell decoding. */
318 enum {
325 };
326 
327 
328 #define BUFFER_PRECHECK \
329 if (*data_ptr >= last_ptr) \
330  return IV3_OUT_OF_DATA; \
331 
332 #define RLE_BLOCK_COPY \
333  if (cell->mv_ptr || !skip_flag) \
334  copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
335 
336 #define RLE_BLOCK_COPY_8 \
337  pix64 = AV_RN64A(ref);\
338  if (is_first_row) {/* special prediction case: top line of a cell */\
339  pix64 = replicate64(pix64);\
340  fill_64(dst + row_offset, pix64, 7, row_offset);\
341  AVG_64(dst, ref, dst + row_offset);\
342  } else \
343  fill_64(dst, pix64, 8, row_offset)
344 
345 #define RLE_LINES_COPY \
346  copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
347 
348 #define RLE_LINES_COPY_M10 \
349  pix64 = AV_RN64A(ref);\
350  if (is_top_of_cell) {\
351  pix64 = replicate64(pix64);\
352  fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
353  AVG_64(dst, ref, dst + row_offset);\
354  } else \
355  fill_64(dst, pix64, num_lines << 1, row_offset)
356 
357 #define APPLY_DELTA_4 \
358  AV_WN16A(dst + line_offset ,\
359  (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
360  AV_WN16A(dst + line_offset + 2,\
361  (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
362  if (mode >= 3) {\
363  if (is_top_of_cell && !cell->ypos) {\
364  AV_COPY32(dst, dst + row_offset);\
365  } else {\
366  AVG_32(dst, ref, dst + row_offset);\
367  }\
368  }
369 
370 #define APPLY_DELTA_8 \
371  /* apply two 32-bit VQ deltas to next even line */\
372  if (is_top_of_cell) { \
373  AV_WN32A(dst + row_offset , \
374  (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
375  AV_WN32A(dst + row_offset + 4, \
376  (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
377  } else { \
378  AV_WN32A(dst + row_offset , \
379  (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
380  AV_WN32A(dst + row_offset + 4, \
381  (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
382  } \
383  /* odd lines are not coded but rather interpolated/replicated */\
384  /* first line of the cell on the top of image? - replicate */\
385  /* otherwise - interpolate */\
386  if (is_top_of_cell && !cell->ypos) {\
387  AV_COPY64(dst, dst + row_offset);\
388  } else \
389  AVG_64(dst, ref, dst + row_offset);
390 
391 
392 #define APPLY_DELTA_1011_INTER \
393  if (mode == 10) { \
394  AV_WN32A(dst , \
395  (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
396  AV_WN32A(dst + 4 , \
397  (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
398  AV_WN32A(dst + row_offset , \
399  (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
400  AV_WN32A(dst + row_offset + 4, \
401  (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
402  } else { \
403  AV_WN16A(dst , \
404  (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
405  AV_WN16A(dst + 2 , \
406  (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
407  AV_WN16A(dst + row_offset , \
408  (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
409  AV_WN16A(dst + row_offset + 2, \
410  (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
411  }
412 
413 
415  uint8_t *block, uint8_t *ref_block,
416  int pitch, int h_zoom, int v_zoom, int mode,
417  const vqEntry *delta[2], int swap_quads[2],
418  const uint8_t **data_ptr, const uint8_t *last_ptr)
419 {
420  int x, y, line, num_lines;
421  int rle_blocks = 0;
422  uint8_t code, *dst, *ref;
423  const vqEntry *delta_tab;
424  unsigned int dyad1, dyad2;
425  uint64_t pix64;
426  int skip_flag = 0, is_top_of_cell, is_first_row = 1;
427  int row_offset, blk_row_offset, line_offset;
428 
429  row_offset = pitch;
430  blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
431  line_offset = v_zoom ? row_offset : 0;
432 
433  if (cell->height & v_zoom || cell->width & h_zoom)
434  return IV3_BAD_DATA;
435 
436  for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
437  for (x = 0; x < cell->width; x += 1 + h_zoom) {
438  ref = ref_block;
439  dst = block;
440 
441  if (rle_blocks > 0) {
442  if (mode <= 4) {
444  } else if (mode == 10 && !cell->mv_ptr) {
446  }
447  rle_blocks--;
448  } else {
449  for (line = 0; line < 4;) {
450  num_lines = 1;
451  is_top_of_cell = is_first_row && !line;
452 
453  /* select primary VQ table for odd, secondary for even lines */
454  if (mode <= 4)
455  delta_tab = delta[line & 1];
456  else
457  delta_tab = delta[1];
459  code = bytestream_get_byte(data_ptr);
460  if (code < 248) {
461  if (code < delta_tab->num_dyads) {
463  dyad1 = bytestream_get_byte(data_ptr);
464  dyad2 = code;
465  if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
466  return IV3_BAD_DATA;
467  } else {
468  /* process QUADS */
469  code -= delta_tab->num_dyads;
470  dyad1 = code / delta_tab->quad_exp;
471  dyad2 = code % delta_tab->quad_exp;
472  if (swap_quads[line & 1])
473  FFSWAP(unsigned int, dyad1, dyad2);
474  }
475  if (mode <= 4) {
477  } else if (mode == 10 && !cell->mv_ptr) {
479  } else {
481  }
482  } else {
483  /* process RLE codes */
484  switch (code) {
485  case RLE_ESC_FC:
486  skip_flag = 0;
487  rle_blocks = 1;
488  code = 253;
489  /* FALLTHROUGH */
490  case RLE_ESC_FF:
491  case RLE_ESC_FE:
492  case RLE_ESC_FD:
493  num_lines = 257 - code - line;
494  if (num_lines <= 0)
495  return IV3_BAD_RLE;
496  if (mode <= 4) {
498  } else if (mode == 10 && !cell->mv_ptr) {
500  }
501  break;
502  case RLE_ESC_FB:
504  code = bytestream_get_byte(data_ptr);
505  rle_blocks = (code & 0x1F) - 1; /* set block counter */
506  if (code >= 64 || rle_blocks < 0)
507  return IV3_BAD_COUNTER;
508  skip_flag = code & 0x20;
509  num_lines = 4 - line; /* enforce next block processing */
510  if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
511  if (mode <= 4) {
513  } else if (mode == 10 && !cell->mv_ptr) {
515  }
516  }
517  break;
518  case RLE_ESC_F9:
519  skip_flag = 1;
520  rle_blocks = 1;
521  /* FALLTHROUGH */
522  case RLE_ESC_FA:
523  if (line)
524  return IV3_BAD_RLE;
525  num_lines = 4; /* enforce next block processing */
526  if (cell->mv_ptr) {
527  if (mode <= 4) {
529  } else if (mode == 10 && !cell->mv_ptr) {
531  }
532  }
533  break;
534  default:
535  return IV3_UNSUPPORTED;
536  }
537  }
538 
539  line += num_lines;
540  ref += row_offset * (num_lines << v_zoom);
541  dst += row_offset * (num_lines << v_zoom);
542  }
543  }
544 
545  /* move to next horizontal block */
546  block += 4 << h_zoom;
547  ref_block += 4 << h_zoom;
548  }
549 
550  /* move to next line of blocks */
551  ref_block += blk_row_offset;
552  block += blk_row_offset;
553  }
554  return IV3_NOERR;
555 }
556 
557 
558 /**
559  * Decode a vector-quantized cell.
560  * It consists of several routines, each of which handles one or more "modes"
561  * with which a cell can be encoded.
562  *
563  * @param ctx pointer to the decoder context
564  * @param avctx ptr to the AVCodecContext
565  * @param plane pointer to the plane descriptor
566  * @param cell pointer to the cell descriptor
567  * @param data_ptr pointer to the compressed data
568  * @param last_ptr pointer to the last byte to catch reads past end of buffer
569  * @return number of consumed bytes or negative number in case of error
570  */
572  Plane *plane, Cell *cell, const uint8_t *data_ptr,
573  const uint8_t *last_ptr)
574 {
575  int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
576  int zoom_fac;
577  int offset, error = 0, swap_quads[2];
578  uint8_t code, *block, *ref_block = 0;
579  const vqEntry *delta[2];
580  const uint8_t *data_start = data_ptr;
581 
582  /* get coding mode and VQ table index from the VQ descriptor byte */
583  code = *data_ptr++;
584  mode = code >> 4;
585  vq_index = code & 0xF;
586 
587  /* setup output and reference pointers */
588  offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
589  block = plane->pixels[ctx->buf_sel] + offset;
590 
591  if (cell->mv_ptr) {
592  mv_y = cell->mv_ptr[0];
593  mv_x = cell->mv_ptr[1];
594  if ( mv_x + 4*cell->xpos < 0
595  || mv_y + 4*cell->ypos < 0
596  || mv_x + 4*cell->xpos + 4*cell->width > plane->width
597  || mv_y + 4*cell->ypos + 4*cell->height > plane->height) {
598  av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*cell->xpos, mv_y + 4*cell->ypos);
599  return AVERROR_INVALIDDATA;
600  }
601  }
602 
603  if (!cell->mv_ptr) {
604  /* use previous line as reference for INTRA cells */
605  ref_block = block - plane->pitch;
606  } else if (mode >= 10) {
607  /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
608  /* so we don't need to do data copying for each RLE code later */
609  copy_cell(ctx, plane, cell);
610  } else {
611  /* set the pointer to the reference pixels for modes 0-4 INTER */
612  mv_y = cell->mv_ptr[0];
613  mv_x = cell->mv_ptr[1];
614  offset += mv_y * plane->pitch + mv_x;
615  ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
616  }
617 
618  /* select VQ tables as follows: */
619  /* modes 0 and 3 use only the primary table for all lines in a block */
620  /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
621  if (mode == 1 || mode == 4) {
622  code = ctx->alt_quant[vq_index];
623  prim_indx = (code >> 4) + ctx->cb_offset;
624  second_indx = (code & 0xF) + ctx->cb_offset;
625  } else {
626  vq_index += ctx->cb_offset;
627  prim_indx = second_indx = vq_index;
628  }
629 
630  if (prim_indx >= 24 || second_indx >= 24) {
631  av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
632  prim_indx, second_indx);
633  return AVERROR_INVALIDDATA;
634  }
635 
636  delta[0] = &vq_tab[second_indx];
637  delta[1] = &vq_tab[prim_indx];
638  swap_quads[0] = second_indx >= 16;
639  swap_quads[1] = prim_indx >= 16;
640 
641  /* requantize the prediction if VQ index of this cell differs from VQ index */
642  /* of the predicted cell in order to avoid overflows. */
643  if (vq_index >= 8 && ref_block) {
644  for (x = 0; x < cell->width << 2; x++)
645  ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
646  }
647 
648  error = IV3_NOERR;
649 
650  switch (mode) {
651  case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
652  case 1:
653  case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
654  case 4:
655  if (mode >= 3 && cell->mv_ptr) {
656  av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
657  return AVERROR_INVALIDDATA;
658  }
659 
660  zoom_fac = mode >= 3;
661  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
662  0, zoom_fac, mode, delta, swap_quads,
663  &data_ptr, last_ptr);
664  break;
665  case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
666  case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
667  if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
668  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
669  1, 1, mode, delta, swap_quads,
670  &data_ptr, last_ptr);
671  } else { /* mode 10 and 11 INTER processing */
672  if (mode == 11 && !cell->mv_ptr) {
673  av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
674  return AVERROR_INVALIDDATA;
675  }
676 
677  zoom_fac = mode == 10;
678  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
679  zoom_fac, 1, mode, delta, swap_quads,
680  &data_ptr, last_ptr);
681  }
682  break;
683  default:
684  av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
685  return AVERROR_INVALIDDATA;
686  }//switch mode
687 
688  switch (error) {
689  case IV3_BAD_RLE:
690  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
691  mode, data_ptr[-1]);
692  return AVERROR_INVALIDDATA;
693  case IV3_BAD_DATA:
694  av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
695  return AVERROR_INVALIDDATA;
696  case IV3_BAD_COUNTER:
697  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
698  return AVERROR_INVALIDDATA;
699  case IV3_UNSUPPORTED:
700  av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
701  return AVERROR_INVALIDDATA;
702  case IV3_OUT_OF_DATA:
703  av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
704  return AVERROR_INVALIDDATA;
705  }
706 
707  return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
708 }
709 
710 
711 /* Binary tree codes. */
712 enum {
713  H_SPLIT = 0,
714  V_SPLIT = 1,
717 };
718 
719 
720 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
721 
722 #define UPDATE_BITPOS(n) \
723  ctx->skip_bits += (n); \
724  ctx->need_resync = 1
725 
726 #define RESYNC_BITSTREAM \
727  if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
728  skip_bits_long(&ctx->gb, ctx->skip_bits); \
729  ctx->skip_bits = 0; \
730  ctx->need_resync = 0; \
731  }
732 
733 #define CHECK_CELL \
734  if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
735  curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
736  av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
737  curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
738  return AVERROR_INVALIDDATA; \
739  }
740 
741 
743  Plane *plane, int code, Cell *ref_cell,
744  const int depth, const int strip_width)
745 {
746  Cell curr_cell;
747  int bytes_used;
748  int mv_x, mv_y;
749 
750  if (depth <= 0) {
751  av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
752  return AVERROR_INVALIDDATA; // unwind recursion
753  }
754 
755  curr_cell = *ref_cell; // clone parent cell
756  if (code == H_SPLIT) {
757  SPLIT_CELL(ref_cell->height, curr_cell.height);
758  ref_cell->ypos += curr_cell.height;
759  ref_cell->height -= curr_cell.height;
760  if (ref_cell->height <= 0 || curr_cell.height <= 0)
761  return AVERROR_INVALIDDATA;
762  } else if (code == V_SPLIT) {
763  if (curr_cell.width > strip_width) {
764  /* split strip */
765  curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
766  } else
767  SPLIT_CELL(ref_cell->width, curr_cell.width);
768  ref_cell->xpos += curr_cell.width;
769  ref_cell->width -= curr_cell.width;
770  if (ref_cell->width <= 0 || curr_cell.width <= 0)
771  return AVERROR_INVALIDDATA;
772  }
773 
774  while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
776  switch (code = get_bits(&ctx->gb, 2)) {
777  case H_SPLIT:
778  case V_SPLIT:
779  if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
780  return AVERROR_INVALIDDATA;
781  break;
782  case INTRA_NULL:
783  if (!curr_cell.tree) { /* MC tree INTRA code */
784  curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
785  curr_cell.tree = 1; /* enter the VQ tree */
786  } else { /* VQ tree NULL code */
788  code = get_bits(&ctx->gb, 2);
789  if (code >= 2) {
790  av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
791  return AVERROR_INVALIDDATA;
792  }
793  if (code == 1)
794  av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
795 
796  CHECK_CELL
797  if (!curr_cell.mv_ptr)
798  return AVERROR_INVALIDDATA;
799 
800  mv_y = curr_cell.mv_ptr[0];
801  mv_x = curr_cell.mv_ptr[1];
802  if ( mv_x + 4*curr_cell.xpos < 0
803  || mv_y + 4*curr_cell.ypos < 0
804  || mv_x + 4*curr_cell.xpos + 4*curr_cell.width > plane->width
805  || mv_y + 4*curr_cell.ypos + 4*curr_cell.height > plane->height) {
806  av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*curr_cell.xpos, mv_y + 4*curr_cell.ypos);
807  return AVERROR_INVALIDDATA;
808  }
809 
810  copy_cell(ctx, plane, &curr_cell);
811  return 0;
812  }
813  break;
814  case INTER_DATA:
815  if (!curr_cell.tree) { /* MC tree INTER code */
816  unsigned mv_idx;
817  /* get motion vector index and setup the pointer to the mv set */
818  if (!ctx->need_resync)
819  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
820  if (ctx->next_cell_data >= ctx->last_byte) {
821  av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
822  return AVERROR_INVALIDDATA;
823  }
824  mv_idx = *(ctx->next_cell_data++);
825  if (mv_idx >= ctx->num_vectors) {
826  av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
827  return AVERROR_INVALIDDATA;
828  }
829  curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
830  curr_cell.tree = 1; /* enter the VQ tree */
831  UPDATE_BITPOS(8);
832  } else { /* VQ tree DATA code */
833  if (!ctx->need_resync)
834  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
835 
836  CHECK_CELL
837  bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
838  ctx->next_cell_data, ctx->last_byte);
839  if (bytes_used < 0)
840  return AVERROR_INVALIDDATA;
841 
842  UPDATE_BITPOS(bytes_used << 3);
843  ctx->next_cell_data += bytes_used;
844  return 0;
845  }
846  break;
847  }
848  }//while
849 
850  return AVERROR_INVALIDDATA;
851 }
852 
853 
855  Plane *plane, const uint8_t *data, int32_t data_size,
856  int32_t strip_width)
857 {
858  Cell curr_cell;
859  unsigned num_vectors;
860 
861  /* each plane data starts with mc_vector_count field, */
862  /* an optional array of motion vectors followed by the vq data */
863  num_vectors = bytestream_get_le32(&data); data_size -= 4;
864  if (num_vectors > 256) {
865  av_log(ctx->avctx, AV_LOG_ERROR,
866  "Read invalid number of motion vectors %d\n", num_vectors);
867  return AVERROR_INVALIDDATA;
868  }
869  if (num_vectors * 2 > data_size)
870  return AVERROR_INVALIDDATA;
871 
872  ctx->num_vectors = num_vectors;
873  ctx->mc_vectors = num_vectors ? data : 0;
874 
875  /* init the bitreader */
876  init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
877  ctx->skip_bits = 0;
878  ctx->need_resync = 0;
879 
880  ctx->last_byte = data + data_size;
881 
882  /* initialize the 1st cell and set its dimensions to whole plane */
883  curr_cell.xpos = curr_cell.ypos = 0;
884  curr_cell.width = plane->width >> 2;
885  curr_cell.height = plane->height >> 2;
886  curr_cell.tree = 0; // we are in the MC tree now
887  curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
888 
889  return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
890 }
891 
892 
893 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
894 
896  const uint8_t *buf, int buf_size)
897 {
898  const uint8_t *buf_ptr = buf, *bs_hdr;
899  uint32_t frame_num, word2, check_sum, data_size;
900  uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
901  uint16_t height, width;
902  int i, j;
903 
904  /* parse and check the OS header */
905  frame_num = bytestream_get_le32(&buf_ptr);
906  word2 = bytestream_get_le32(&buf_ptr);
907  check_sum = bytestream_get_le32(&buf_ptr);
908  data_size = bytestream_get_le32(&buf_ptr);
909 
910  if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
911  av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
912  return AVERROR_INVALIDDATA;
913  }
914 
915  /* parse the bitstream header */
916  bs_hdr = buf_ptr;
917  buf_size -= 16;
918 
919  if (bytestream_get_le16(&buf_ptr) != 32) {
920  av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
921  return AVERROR_INVALIDDATA;
922  }
923 
924  ctx->frame_num = frame_num;
925  ctx->frame_flags = bytestream_get_le16(&buf_ptr);
926  ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
927  ctx->cb_offset = *buf_ptr++;
928 
929  if (ctx->data_size == 16)
930  return 4;
931  if (ctx->data_size > buf_size)
932  ctx->data_size = buf_size;
933 
934  buf_ptr += 3; // skip reserved byte and checksum
935 
936  /* check frame dimensions */
937  height = bytestream_get_le16(&buf_ptr);
938  width = bytestream_get_le16(&buf_ptr);
939  if (av_image_check_size(width, height, 0, avctx))
940  return AVERROR_INVALIDDATA;
941 
942  if (width != ctx->width || height != ctx->height) {
943  int res;
944 
945  av_dlog(avctx, "Frame dimensions changed!\n");
946 
947  if (width < 16 || width > 640 ||
948  height < 16 || height > 480 ||
949  width & 3 || height & 3) {
950  av_log(avctx, AV_LOG_ERROR,
951  "Invalid picture dimensions: %d x %d!\n", width, height);
952  return AVERROR_INVALIDDATA;
953  }
954  free_frame_buffers(ctx);
955  if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
956  return res;
957  avcodec_set_dimensions(avctx, width, height);
958  }
959 
960  y_offset = bytestream_get_le32(&buf_ptr);
961  v_offset = bytestream_get_le32(&buf_ptr);
962  u_offset = bytestream_get_le32(&buf_ptr);
963 
964  /* unfortunately there is no common order of planes in the buffer */
965  /* so we use that sorting algo for determining planes data sizes */
966  starts[0] = y_offset;
967  starts[1] = v_offset;
968  starts[2] = u_offset;
969 
970  for (j = 0; j < 3; j++) {
971  ends[j] = ctx->data_size;
972  for (i = 2; i >= 0; i--)
973  if (starts[i] < ends[j] && starts[i] > starts[j])
974  ends[j] = starts[i];
975  }
976 
977  ctx->y_data_size = ends[0] - starts[0];
978  ctx->v_data_size = ends[1] - starts[1];
979  ctx->u_data_size = ends[2] - starts[2];
980  if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
981  FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
982  av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
983  return AVERROR_INVALIDDATA;
984  }
985 
986  ctx->y_data_ptr = bs_hdr + y_offset;
987  ctx->v_data_ptr = bs_hdr + v_offset;
988  ctx->u_data_ptr = bs_hdr + u_offset;
989  ctx->alt_quant = buf_ptr + sizeof(uint32_t);
990 
991  if (ctx->data_size == 16) {
992  av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
993  return 16;
994  }
995 
996  if (ctx->frame_flags & BS_8BIT_PEL) {
997  av_log_ask_for_sample(avctx, "8-bit pixel format\n");
998  return AVERROR_PATCHWELCOME;
999  }
1000 
1001  if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1002  av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
1003  return AVERROR_PATCHWELCOME;
1004  }
1005 
1006  return 0;
1007 }
1008 
1009 
1010 /**
1011  * Convert and output the current plane.
1012  * All pixel values will be upsampled by shifting right by one bit.
1013  *
1014  * @param[in] plane pointer to the descriptor of the plane being processed
1015  * @param[in] buf_sel indicates which frame buffer the input data stored in
1016  * @param[out] dst pointer to the buffer receiving converted pixels
1017  * @param[in] dst_pitch pitch for moving to the next y line
1018  * @param[in] dst_height output plane height
1019  */
1020 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1021  int dst_pitch, int dst_height)
1022 {
1023  int x,y;
1024  const uint8_t *src = plane->pixels[buf_sel];
1025  uint32_t pitch = plane->pitch;
1026 
1027  dst_height = FFMIN(dst_height, plane->height);
1028  for (y = 0; y < dst_height; y++) {
1029  /* convert four pixels at once using SWAR */
1030  for (x = 0; x < plane->width >> 2; x++) {
1031  AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1032  src += 4;
1033  dst += 4;
1034  }
1035 
1036  for (x <<= 2; x < plane->width; x++)
1037  *dst++ = *src++ << 1;
1038 
1039  src += pitch - plane->width;
1040  dst += dst_pitch - plane->width;
1041  }
1042 }
1043 
1044 
1046 {
1047  Indeo3DecodeContext *ctx = avctx->priv_data;
1048 
1049  ctx->avctx = avctx;
1050  avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1052 
1054 
1055  ff_dsputil_init(&ctx->dsp, avctx);
1056 
1057  return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1058 }
1059 
1060 
1061 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1062  AVPacket *avpkt)
1063 {
1064  Indeo3DecodeContext *ctx = avctx->priv_data;
1065  const uint8_t *buf = avpkt->data;
1066  int buf_size = avpkt->size;
1067  int res;
1068 
1069  res = decode_frame_headers(ctx, avctx, buf, buf_size);
1070  if (res < 0)
1071  return res;
1072 
1073  /* skip sync(null) frames */
1074  if (res) {
1075  // we have processed 16 bytes but no data was decoded
1076  *got_frame = 0;
1077  return buf_size;
1078  }
1079 
1080  /* skip droppable INTER frames if requested */
1081  if (ctx->frame_flags & BS_NONREF &&
1082  (avctx->skip_frame >= AVDISCARD_NONREF))
1083  return 0;
1084 
1085  /* skip INTER frames if requested */
1086  if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1087  return 0;
1088 
1089  /* use BS_BUFFER flag for buffer switching */
1090  ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1091 
1092  if (ctx->frame.data[0])
1093  avctx->release_buffer(avctx, &ctx->frame);
1094 
1095  ctx->frame.reference = 0;
1096  if ((res = ff_get_buffer(avctx, &ctx->frame)) < 0) {
1097  av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1098  return res;
1099  }
1100 
1101  /* decode luma plane */
1102  if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1103  return res;
1104 
1105  /* decode chroma planes */
1106  if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1107  return res;
1108 
1109  if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1110  return res;
1111 
1112  output_plane(&ctx->planes[0], ctx->buf_sel,
1113  ctx->frame.data[0], ctx->frame.linesize[0],
1114  avctx->height);
1115  output_plane(&ctx->planes[1], ctx->buf_sel,
1116  ctx->frame.data[1], ctx->frame.linesize[1],
1117  (avctx->height + 3) >> 2);
1118  output_plane(&ctx->planes[2], ctx->buf_sel,
1119  ctx->frame.data[2], ctx->frame.linesize[2],
1120  (avctx->height + 3) >> 2);
1121 
1122  *got_frame = 1;
1123  *(AVFrame*)data = ctx->frame;
1124 
1125  return buf_size;
1126 }
1127 
1128 
1130 {
1131  Indeo3DecodeContext *ctx = avctx->priv_data;
1132 
1133  free_frame_buffers(avctx->priv_data);
1134 
1135  if (ctx->frame.data[0])
1136  avctx->release_buffer(avctx, &ctx->frame);
1137 
1138  return 0;
1139 }
1140 
1142  .name = "indeo3",
1143  .type = AVMEDIA_TYPE_VIDEO,
1144  .id = AV_CODEC_ID_INDEO3,
1145  .priv_data_size = sizeof(Indeo3DecodeContext),
1146  .init = decode_init,
1147  .close = decode_close,
1148  .decode = decode_frame,
1149  .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1150  .capabilities = CODEC_CAP_DR1,
1151 };