FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
swresample-test.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  * Copyright (c) 2002 Fabrice Bellard
4  *
5  * This file is part of libswresample
6  *
7  * libswresample is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * libswresample is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with libswresample; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "libavutil/avassert.h"
24 #include "libavutil/common.h"
25 #include "libavutil/opt.h"
26 #include "swresample.h"
27 
28 #undef time
29 #include "time.h"
30 #undef fprintf
31 
32 #define SAMPLES 1000
33 
34 #define ASSERT_LEVEL 2
35 
36 static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){
37  const uint8_t *p;
39  f= av_get_alt_sample_fmt(f, 0);
40  p= a[ch];
41  }else{
42  p= a[0];
43  index= ch + index*ch_count;
44  }
45 
46  switch(f){
47  case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0;
48  case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0;
49  case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0;
50  case AV_SAMPLE_FMT_FLT: return ((const float *)p)[index];
51  case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index];
52  default: av_assert0(0);
53  }
54 }
55 
56 static void set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){
57  uint8_t *p;
59  f= av_get_alt_sample_fmt(f, 0);
60  p= a[ch];
61  }else{
62  p= a[0];
63  index= ch + index*ch_count;
64  }
65  switch(f){
66  case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127)); break;
67  case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767)); break;
68  case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647)); break;
69  case AV_SAMPLE_FMT_FLT: ((float *)p)[index]= v; break;
70  case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v; break;
71  default: av_assert2(0);
72  }
73 }
74 
75 static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){
76  int ch;
77 
79  f= av_get_alt_sample_fmt(f, 0);
80  for(ch= 0; ch<ch_count; ch++)
81  a[ch] += index*av_get_bytes_per_sample(f);
82  }else{
83  a[0] += index*ch_count*av_get_bytes_per_sample(f);
84  }
85 }
86 
87 static const enum AVSampleFormat formats[] = {
98 };
99 
100 static const int rates[] = {
101  8000,
102  11025,
103  16000,
104  22050,
105  32000,
106  48000,
107 };
108 
109 uint64_t layouts[]={
124 };
125 
126 static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){
127  if(av_sample_fmt_is_planar(format)){
128  int i;
129  int plane_size= av_get_bytes_per_sample(format&0xFF)*samples;
130  format&=0xFF;
131  for(i=0; i<SWR_CH_MAX; i++){
132  out[i]= in + i*plane_size;
133  }
134  }else{
135  out[0]= in;
136  }
137 }
138 
139 static int cmp(const int *a, const int *b){
140  return *a - *b;
141 }
142 
143 static void audiogen(void *data, enum AVSampleFormat sample_fmt,
144  int channels, int sample_rate, int nb_samples)
145 {
146  int i, ch, k;
147  double v, f, a, ampa;
148  double tabf1[SWR_CH_MAX];
149  double tabf2[SWR_CH_MAX];
150  double taba[SWR_CH_MAX];
151  unsigned static rnd;
152 
153 #define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v);
154 #define uint_rand(x) (x = x * 1664525 + 1013904223)
155 #define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1)
156  k = 0;
157 
158  /* 1 second of single freq sinus at 1000 Hz */
159  a = 0;
160  for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
161  v = sin(a) * 0.30;
162  for (ch = 0; ch < channels; ch++)
163  PUT_SAMPLE
164  a += M_PI * 1000.0 * 2.0 / sample_rate;
165  }
166 
167  /* 1 second of varing frequency between 100 and 10000 Hz */
168  a = 0;
169  for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
170  v = sin(a) * 0.30;
171  for (ch = 0; ch < channels; ch++)
172  PUT_SAMPLE
173  f = 100.0 + (((10000.0 - 100.0) * i) / sample_rate);
174  a += M_PI * f * 2.0 / sample_rate;
175  }
176 
177  /* 0.5 second of low amplitude white noise */
178  for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
179  v = dbl_rand(rnd) * 0.30;
180  for (ch = 0; ch < channels; ch++)
181  PUT_SAMPLE
182  }
183 
184  /* 0.5 second of high amplitude white noise */
185  for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
186  v = dbl_rand(rnd);
187  for (ch = 0; ch < channels; ch++)
188  PUT_SAMPLE
189  }
190 
191  /* 1 second of unrelated ramps for each channel */
192  for (ch = 0; ch < channels; ch++) {
193  taba[ch] = 0;
194  tabf1[ch] = 100 + uint_rand(rnd) % 5000;
195  tabf2[ch] = 100 + uint_rand(rnd) % 5000;
196  }
197  for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
198  for (ch = 0; ch < channels; ch++) {
199  v = sin(taba[ch]) * 0.30;
200  PUT_SAMPLE
201  f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate);
202  taba[ch] += M_PI * f * 2.0 / sample_rate;
203  }
204  }
205 
206  /* 2 seconds of 500 Hz with varying volume */
207  a = 0;
208  ampa = 0;
209  for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) {
210  for (ch = 0; ch < channels; ch++) {
211  double amp = (1.0 + sin(ampa)) * 0.15;
212  if (ch & 1)
213  amp = 0.30 - amp;
214  v = sin(a) * amp;
215  PUT_SAMPLE
216  a += M_PI * 500.0 * 2.0 / sample_rate;
217  ampa += M_PI * 2.0 / sample_rate;
218  }
219  }
220 }
221 
222 int main(int argc, char **argv){
223  int in_sample_rate, out_sample_rate, ch ,i, flush_count;
224  uint64_t in_ch_layout, out_ch_layout;
225  enum AVSampleFormat in_sample_fmt, out_sample_fmt;
226  uint8_t array_in[SAMPLES*8*8];
227  uint8_t array_mid[SAMPLES*8*8*3];
228  uint8_t array_out[SAMPLES*8*8+100];
229  uint8_t *ain[SWR_CH_MAX];
230  uint8_t *aout[SWR_CH_MAX];
231  uint8_t *amid[SWR_CH_MAX];
232  int flush_i=0;
233  int mode;
234  int num_tests = 10000;
235  uint32_t seed = 0;
236  uint32_t rand_seed = 0;
238  int max_tests = FF_ARRAY_ELEMS(remaining_tests);
239  int test;
240  int specific_test= -1;
241 
242  struct SwrContext * forw_ctx= NULL;
243  struct SwrContext *backw_ctx= NULL;
244 
245  if (argc > 1) {
246  if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
247  av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]] \n"
248  "num_tests Default is %d\n", num_tests);
249  return 0;
250  }
251  num_tests = strtol(argv[1], NULL, 0);
252  if(num_tests < 0) {
253  num_tests = -num_tests;
254  rand_seed = time(0);
255  }
256  if(num_tests<= 0 || num_tests>max_tests)
257  num_tests = max_tests;
258  if(argc > 2) {
259  specific_test = strtol(argv[1], NULL, 0);
260  }
261  }
262 
263  for(i=0; i<max_tests; i++)
264  remaining_tests[i] = i;
265 
266  for(test=0; test<num_tests; test++){
267  unsigned r;
268  uint_rand(seed);
269  r = (seed * (uint64_t)(max_tests - test)) >>32;
270  FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]);
271  }
272  qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), (void*)cmp);
273  in_sample_rate=16000;
274  for(test=0; test<num_tests; test++){
275  char in_layout_string[256];
276  char out_layout_string[256];
277  unsigned vector= remaining_tests[max_tests - test - 1];
278  int in_ch_count;
279  int out_count, mid_count, out_ch_count;
280 
281  in_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
282  out_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
283  in_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
284  out_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
285  out_sample_rate = rates [vector % FF_ARRAY_ELEMS(rates )]; vector /= FF_ARRAY_ELEMS(rates);
286  av_assert0(!vector);
287 
288  if(specific_test == 0){
289  if(out_sample_rate != in_sample_rate || in_ch_layout != out_ch_layout)
290  continue;
291  }
292 
293  in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout);
294  out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout);
295  av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string), in_ch_count, in_ch_layout);
296  av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout);
297  fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n",
298  in_layout_string, out_layout_string,
299  in_sample_rate, out_sample_rate,
300  av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt));
301  forw_ctx = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt, out_sample_rate,
302  in_ch_layout, in_sample_fmt, in_sample_rate,
303  0, 0);
304  backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout, in_sample_fmt, in_sample_rate,
305  out_ch_layout, out_sample_fmt, out_sample_rate,
306  0, 0);
307  if(!forw_ctx) {
308  fprintf(stderr, "Failed to init forw_cts\n");
309  return 1;
310  }
311  if(!backw_ctx) {
312  fprintf(stderr, "Failed to init backw_ctx\n");
313  return 1;
314  }
315  if(swr_init( forw_ctx) < 0)
316  fprintf(stderr, "swr_init(->) failed\n");
317  if(swr_init(backw_ctx) < 0)
318  fprintf(stderr, "swr_init(<-) failed\n");
319  //FIXME test planar
320  setup_array(ain , array_in , in_sample_fmt, SAMPLES);
321  setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES);
322  setup_array(aout, array_out, in_sample_fmt , SAMPLES);
323 #if 0
324  for(ch=0; ch<in_ch_count; ch++){
325  for(i=0; i<SAMPLES; i++)
326  set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES));
327  }
328 #else
329  audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES);
330 #endif
331  mode = uint_rand(rand_seed) % 3;
332  if(mode==0 /*|| out_sample_rate == in_sample_rate*/) {
333  mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES);
334  } else if(mode==1){
335  mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, SAMPLES);
336  mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
337  } else {
338  int tmp_count;
339  mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, 1);
340  av_assert0(mid_count==0);
341  shift(ain, 1, in_ch_count, in_sample_fmt);
342  mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
343  shift(amid, mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
344  mid_count+=swr_convert(forw_ctx, amid, 2, (const uint8_t **)ain, 2);
345  shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
346  shift(ain, 2, in_ch_count, in_sample_fmt);
347  mid_count+=swr_convert(forw_ctx, amid, 1, (const uint8_t **)ain, SAMPLES-3);
348  shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
349  shift(ain, -3, in_ch_count, in_sample_fmt);
350  mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
351  shift(amid, -tmp_count, out_ch_count, out_sample_fmt);
352  }
353  out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count);
354 
355  for(ch=0; ch<in_ch_count; ch++){
356  double sse, maxdiff=0;
357  double sum_a= 0;
358  double sum_b= 0;
359  double sum_aa= 0;
360  double sum_bb= 0;
361  double sum_ab= 0;
362  for(i=0; i<out_count; i++){
363  double a= get(ain , ch, i, in_ch_count, in_sample_fmt);
364  double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
365  sum_a += a;
366  sum_b += b;
367  sum_aa+= a*a;
368  sum_bb+= b*b;
369  sum_ab+= a*b;
370  maxdiff= FFMAX(maxdiff, FFABS(a-b));
371  }
372  sse= sum_aa + sum_bb - 2*sum_ab;
373  if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
374 
375  fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count);
376  }
377 
378  flush_i++;
379  flush_i%=21;
380  flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0);
381  shift(aout, flush_i, in_ch_count, in_sample_fmt);
382  flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0);
383  shift(aout, -flush_i, in_ch_count, in_sample_fmt);
384  if(flush_count){
385  for(ch=0; ch<in_ch_count; ch++){
386  double sse, maxdiff=0;
387  double sum_a= 0;
388  double sum_b= 0;
389  double sum_aa= 0;
390  double sum_bb= 0;
391  double sum_ab= 0;
392  for(i=0; i<flush_count; i++){
393  double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt);
394  double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
395  sum_a += a;
396  sum_b += b;
397  sum_aa+= a*a;
398  sum_bb+= b*b;
399  sum_ab+= a*b;
400  maxdiff= FFMAX(maxdiff, FFABS(a-b));
401  }
402  sse= sum_aa + sum_bb - 2*sum_ab;
403  if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
404 
405  fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i);
406  }
407  }
408 
409 
410  fprintf(stderr, "\n");
411  }
412 
413  return 0;
414 }