FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "dsputil.h"
27 #include "internal.h"
28 #include "snow_dwt.h"
29 #include "snow.h"
30 
31 #include "rangecoder.h"
32 #include "mathops.h"
33 
34 #include "mpegvideo.h"
35 #include "h263.h"
36 
37 #undef NDEBUG
38 #include <assert.h>
39 
40 #define QUANTIZE2 0
41 
42 #if QUANTIZE2==1
43 #define Q2_STEP 8
44 
45 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
46  SubBand *b= &p->band[level][orientation];
47  int x, y;
48  int xo=0;
49  int yo=0;
50  int step= 1 << (s->spatial_decomposition_count - level);
51 
52  if(orientation&1)
53  xo= step>>1;
54  if(orientation&2)
55  yo= step>>1;
56 
57  //FIXME bias for nonzero ?
58  //FIXME optimize
59  memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
60  for(y=0; y<p->height; y++){
61  for(x=0; x<p->width; x++){
62  int sx= (x-xo + step/2) / step / Q2_STEP;
63  int sy= (y-yo + step/2) / step / Q2_STEP;
64  int v= r0[x + y*p->width] - r1[x + y*p->width];
65  assert(sx>=0 && sy>=0 && sx < score_stride);
66  v= ((v+8)>>4)<<4;
67  score[sx + sy*score_stride] += v*v;
68  assert(score[sx + sy*score_stride] >= 0);
69  }
70  }
71 }
72 
73 static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
74  int level, orientation;
75 
76  for(level=0; level<s->spatial_decomposition_count; level++){
77  for(orientation=level ? 1 : 0; orientation<4; orientation++){
78  SubBand *b= &p->band[level][orientation];
79  IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
80 
81  dequantize(s, b, dst, b->stride);
82  }
83  }
84 }
85 
86 static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
87  int level, orientation, ys, xs, x, y, pass;
88  IDWTELEM best_dequant[height * stride];
89  IDWTELEM idwt2_buffer[height * stride];
90  const int score_stride= (width + 10)/Q2_STEP;
91  int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
92  int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
93  int threshold= (s->m.lambda * s->m.lambda) >> 6;
94 
95  //FIXME pass the copy cleanly ?
96 
97 // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM));
98  ff_spatial_dwt(buffer, s->temp_dwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
99 
100  for(level=0; level<s->spatial_decomposition_count; level++){
101  for(orientation=level ? 1 : 0; orientation<4; orientation++){
102  SubBand *b= &p->band[level][orientation];
103  IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
104  DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
105  assert(src == b->buf); // code does not depend on this but it is true currently
106 
107  quantize(s, b, dst, src, b->stride, s->qbias);
108  }
109  }
110  for(pass=0; pass<1; pass++){
111  if(s->qbias == 0) //keyframe
112  continue;
113  for(level=0; level<s->spatial_decomposition_count; level++){
114  for(orientation=level ? 1 : 0; orientation<4; orientation++){
115  SubBand *b= &p->band[level][orientation];
116  IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
117  IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
118 
119  for(ys= 0; ys<Q2_STEP; ys++){
120  for(xs= 0; xs<Q2_STEP; xs++){
121  memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
122  dequantize_all(s, p, idwt2_buffer, width, height);
123  ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
124  find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
125  memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
126  for(y=ys; y<b->height; y+= Q2_STEP){
127  for(x=xs; x<b->width; x+= Q2_STEP){
128  if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
129  if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
130  //FIXME try more than just --
131  }
132  }
133  dequantize_all(s, p, idwt2_buffer, width, height);
134  ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
135  find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
136  for(y=ys; y<b->height; y+= Q2_STEP){
137  for(x=xs; x<b->width; x+= Q2_STEP){
138  int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
139  if(score[score_idx] <= best_score[score_idx] + threshold){
140  best_score[score_idx]= score[score_idx];
141  if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
142  if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
143  //FIXME copy instead
144  }
145  }
146  }
147  }
148  }
149  }
150  }
151  }
152  memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end
153 }
154 
155 #endif /* QUANTIZE2==1 */
156 
158 {
159  SnowContext *s = avctx->priv_data;
160  int plane_index, ret;
161 
163  av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
164  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
165  return -1;
166  }
167 
168  if(avctx->prediction_method == DWT_97
169  && (avctx->flags & CODEC_FLAG_QSCALE)
170  && avctx->global_quality == 0){
171  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
172  return -1;
173  }
174 
175  s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
176 
177  s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
178  s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
179 
180  for(plane_index=0; plane_index<3; plane_index++){
181  s->plane[plane_index].diag_mc= 1;
182  s->plane[plane_index].htaps= 6;
183  s->plane[plane_index].hcoeff[0]= 40;
184  s->plane[plane_index].hcoeff[1]= -10;
185  s->plane[plane_index].hcoeff[2]= 2;
186  s->plane[plane_index].fast_mc= 1;
187  }
188 
189  if ((ret = ff_snow_common_init(avctx)) < 0) {
191  return ret;
192  }
194 
195  s->version=0;
196 
197  s->m.avctx = avctx;
198  s->m.flags = avctx->flags;
199  s->m.bit_rate= avctx->bit_rate;
200 
201  s->m.me.temp =
202  s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
203  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
204  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
205  s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
206  ff_h263_encode_init(&s->m); //mv_penalty
207 
208  s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
209 
210  if(avctx->flags&CODEC_FLAG_PASS1){
211  if(!avctx->stats_out)
212  avctx->stats_out = av_mallocz(256);
213  }
214  if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
215  if(ff_rate_control_init(&s->m) < 0)
216  return -1;
217  }
219 
220  avctx->coded_frame= &s->current_picture;
221  switch(avctx->pix_fmt){
222  case AV_PIX_FMT_YUV444P:
223 // case AV_PIX_FMT_YUV422P:
224  case AV_PIX_FMT_YUV420P:
225 // case AV_PIX_FMT_GRAY8:
226 // case AV_PIX_FMT_YUV411P:
227  case AV_PIX_FMT_YUV410P:
228  s->colorspace_type= 0;
229  break;
230 /* case AV_PIX_FMT_RGB32:
231  s->colorspace= 1;
232  break;*/
233  default:
234  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
235  return -1;
236  }
238 
239  ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
241 
242  if ((ret = ff_get_buffer(s->avctx, &s->input_picture, AV_GET_BUFFER_FLAG_REF)) < 0)
243  return ret;
244 
245  if(s->avctx->me_method == ME_ITER){
246  int i;
247  int size= s->b_width * s->b_height << 2*s->block_max_depth;
248  for(i=0; i<s->max_ref_frames; i++){
249  s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
250  s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
251  }
252  }
253 
254  return 0;
255 }
256 
257 //near copy & paste from dsputil, FIXME
258 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
259 {
260  int s, i, j;
261 
262  s = 0;
263  for (i = 0; i < h; i++) {
264  for (j = 0; j < w; j++) {
265  s += pix[0];
266  pix ++;
267  }
268  pix += line_size - w;
269  }
270  return s;
271 }
272 
273 //near copy & paste from dsputil, FIXME
274 static int pix_norm1(uint8_t * pix, int line_size, int w)
275 {
276  int s, i, j;
277  uint32_t *sq = ff_squareTbl + 256;
278 
279  s = 0;
280  for (i = 0; i < w; i++) {
281  for (j = 0; j < w; j ++) {
282  s += sq[pix[0]];
283  pix ++;
284  }
285  pix += line_size - w;
286  }
287  return s;
288 }
289 
290 static inline int get_penalty_factor(int lambda, int lambda2, int type){
291  switch(type&0xFF){
292  default:
293  case FF_CMP_SAD:
294  return lambda>>FF_LAMBDA_SHIFT;
295  case FF_CMP_DCT:
296  return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
297  case FF_CMP_W53:
298  return (4*lambda)>>(FF_LAMBDA_SHIFT);
299  case FF_CMP_W97:
300  return (2*lambda)>>(FF_LAMBDA_SHIFT);
301  case FF_CMP_SATD:
302  case FF_CMP_DCT264:
303  return (2*lambda)>>FF_LAMBDA_SHIFT;
304  case FF_CMP_RD:
305  case FF_CMP_PSNR:
306  case FF_CMP_SSE:
307  case FF_CMP_NSSE:
308  return lambda2>>FF_LAMBDA_SHIFT;
309  case FF_CMP_BIT:
310  return 1;
311  }
312 }
313 
314 //FIXME copy&paste
315 #define P_LEFT P[1]
316 #define P_TOP P[2]
317 #define P_TOPRIGHT P[3]
318 #define P_MEDIAN P[4]
319 #define P_MV1 P[9]
320 #define FLAG_QPEL 1 //must be 1
321 
322 static int encode_q_branch(SnowContext *s, int level, int x, int y){
323  uint8_t p_buffer[1024];
324  uint8_t i_buffer[1024];
325  uint8_t p_state[sizeof(s->block_state)];
326  uint8_t i_state[sizeof(s->block_state)];
327  RangeCoder pc, ic;
328  uint8_t *pbbak= s->c.bytestream;
329  uint8_t *pbbak_start= s->c.bytestream_start;
330  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
331  const int w= s->b_width << s->block_max_depth;
332  const int h= s->b_height << s->block_max_depth;
333  const int rem_depth= s->block_max_depth - level;
334  const int index= (x + y*w) << rem_depth;
335  const int block_w= 1<<(LOG2_MB_SIZE - level);
336  int trx= (x+1)<<rem_depth;
337  int try= (y+1)<<rem_depth;
338  const BlockNode *left = x ? &s->block[index-1] : &null_block;
339  const BlockNode *top = y ? &s->block[index-w] : &null_block;
340  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
341  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
342  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
343  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
344  int pl = left->color[0];
345  int pcb= left->color[1];
346  int pcr= left->color[2];
347  int pmx, pmy;
348  int mx=0, my=0;
349  int l,cr,cb;
350  const int stride= s->current_picture.linesize[0];
351  const int uvstride= s->current_picture.linesize[1];
352  uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
353  s->input_picture.data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
354  s->input_picture.data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
355  int P[10][2];
356  int16_t last_mv[3][2];
357  int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
358  const int shift= 1+qpel;
359  MotionEstContext *c= &s->m.me;
360  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
361  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
362  int my_context= av_log2(2*FFABS(left->my - top->my));
363  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
364  int ref, best_ref, ref_score, ref_mx, ref_my;
365 
366  assert(sizeof(s->block_state) >= 256);
367  if(s->keyframe){
368  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
369  return 0;
370  }
371 
372 // clip predictors / edge ?
373 
374  P_LEFT[0]= left->mx;
375  P_LEFT[1]= left->my;
376  P_TOP [0]= top->mx;
377  P_TOP [1]= top->my;
378  P_TOPRIGHT[0]= tr->mx;
379  P_TOPRIGHT[1]= tr->my;
380 
381  last_mv[0][0]= s->block[index].mx;
382  last_mv[0][1]= s->block[index].my;
383  last_mv[1][0]= right->mx;
384  last_mv[1][1]= right->my;
385  last_mv[2][0]= bottom->mx;
386  last_mv[2][1]= bottom->my;
387 
388  s->m.mb_stride=2;
389  s->m.mb_x=
390  s->m.mb_y= 0;
391  c->skip= 0;
392 
393  assert(c-> stride == stride);
394  assert(c->uvstride == uvstride);
395 
400 
401  c->xmin = - x*block_w - 16+3;
402  c->ymin = - y*block_w - 16+3;
403  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
404  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
405 
406  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
407  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
408  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
409  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
410  if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
411  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
412  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
413 
414  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
415  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
416 
417  if (!y) {
418  c->pred_x= P_LEFT[0];
419  c->pred_y= P_LEFT[1];
420  } else {
421  c->pred_x = P_MEDIAN[0];
422  c->pred_y = P_MEDIAN[1];
423  }
424 
425  score= INT_MAX;
426  best_ref= 0;
427  for(ref=0; ref<s->ref_frames; ref++){
428  init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
429 
430  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
431  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
432 
433  assert(ref_mx >= c->xmin);
434  assert(ref_mx <= c->xmax);
435  assert(ref_my >= c->ymin);
436  assert(ref_my <= c->ymax);
437 
438  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
439  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
440  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
441  if(s->ref_mvs[ref]){
442  s->ref_mvs[ref][index][0]= ref_mx;
443  s->ref_mvs[ref][index][1]= ref_my;
444  s->ref_scores[ref][index]= ref_score;
445  }
446  if(score > ref_score){
447  score= ref_score;
448  best_ref= ref;
449  mx= ref_mx;
450  my= ref_my;
451  }
452  }
453  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
454 
455  // subpel search
456  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
457  pc= s->c;
458  pc.bytestream_start=
459  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
460  memcpy(p_state, s->block_state, sizeof(s->block_state));
461 
462  if(level!=s->block_max_depth)
463  put_rac(&pc, &p_state[4 + s_context], 1);
464  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
465  if(s->ref_frames > 1)
466  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
467  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
468  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
469  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
470  p_len= pc.bytestream - pc.bytestream_start;
471  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
472 
473  block_s= block_w*block_w;
474  sum = pix_sum(current_data[0], stride, block_w, block_w);
475  l= (sum + block_s/2)/block_s;
476  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
477 
478  block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
479  sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
480  cb= (sum + block_s/2)/block_s;
481 // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
482  sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
483  cr= (sum + block_s/2)/block_s;
484 // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
485 
486  ic= s->c;
487  ic.bytestream_start=
488  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
489  memcpy(i_state, s->block_state, sizeof(s->block_state));
490  if(level!=s->block_max_depth)
491  put_rac(&ic, &i_state[4 + s_context], 1);
492  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
493  put_symbol(&ic, &i_state[32], l-pl , 1);
494  put_symbol(&ic, &i_state[64], cb-pcb, 1);
495  put_symbol(&ic, &i_state[96], cr-pcr, 1);
496  i_len= ic.bytestream - ic.bytestream_start;
497  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
498 
499 // assert(score==256*256*256*64-1);
500  assert(iscore < 255*255*256 + s->lambda2*10);
501  assert(iscore >= 0);
502  assert(l>=0 && l<=255);
503  assert(pl>=0 && pl<=255);
504 
505  if(level==0){
506  int varc= iscore >> 8;
507  int vard= score >> 8;
508  if (vard <= 64 || vard < varc)
509  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
510  else
511  c->scene_change_score+= s->m.qscale;
512  }
513 
514  if(level!=s->block_max_depth){
515  put_rac(&s->c, &s->block_state[4 + s_context], 0);
516  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
517  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
518  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
519  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
520  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
521 
522  if(score2 < score && score2 < iscore)
523  return score2;
524  }
525 
526  if(iscore < score){
527  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
528  memcpy(pbbak, i_buffer, i_len);
529  s->c= ic;
530  s->c.bytestream_start= pbbak_start;
531  s->c.bytestream= pbbak + i_len;
532  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
533  memcpy(s->block_state, i_state, sizeof(s->block_state));
534  return iscore;
535  }else{
536  memcpy(pbbak, p_buffer, p_len);
537  s->c= pc;
538  s->c.bytestream_start= pbbak_start;
539  s->c.bytestream= pbbak + p_len;
540  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
541  memcpy(s->block_state, p_state, sizeof(s->block_state));
542  return score;
543  }
544 }
545 
546 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
547  const int w= s->b_width << s->block_max_depth;
548  const int rem_depth= s->block_max_depth - level;
549  const int index= (x + y*w) << rem_depth;
550  int trx= (x+1)<<rem_depth;
551  BlockNode *b= &s->block[index];
552  const BlockNode *left = x ? &s->block[index-1] : &null_block;
553  const BlockNode *top = y ? &s->block[index-w] : &null_block;
554  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
555  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
556  int pl = left->color[0];
557  int pcb= left->color[1];
558  int pcr= left->color[2];
559  int pmx, pmy;
560  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
561  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
562  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
563  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
564 
565  if(s->keyframe){
566  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
567  return;
568  }
569 
570  if(level!=s->block_max_depth){
571  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
572  put_rac(&s->c, &s->block_state[4 + s_context], 1);
573  }else{
574  put_rac(&s->c, &s->block_state[4 + s_context], 0);
575  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
576  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
577  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
578  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
579  return;
580  }
581  }
582  if(b->type & BLOCK_INTRA){
583  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
584  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
585  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
586  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
587  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
588  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
589  }else{
590  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
591  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
592  if(s->ref_frames > 1)
593  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
594  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
595  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
596  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
597  }
598 }
599 
600 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
601  int i, x2, y2;
602  Plane *p= &s->plane[plane_index];
603  const int block_size = MB_SIZE >> s->block_max_depth;
604  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
605  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
606  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
607  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
608  const int ref_stride= s->current_picture.linesize[plane_index];
609  uint8_t *src= s-> input_picture.data[plane_index];
610  IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
611  const int b_stride = s->b_width << s->block_max_depth;
612  const int w= p->width;
613  const int h= p->height;
614  int index= mb_x + mb_y*b_stride;
615  BlockNode *b= &s->block[index];
616  BlockNode backup= *b;
617  int ab=0;
618  int aa=0;
619 
620  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
621 
622  b->type|= BLOCK_INTRA;
623  b->color[plane_index]= 0;
624  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
625 
626  for(i=0; i<4; i++){
627  int mb_x2= mb_x + (i &1) - 1;
628  int mb_y2= mb_y + (i>>1) - 1;
629  int x= block_w*mb_x2 + block_w/2;
630  int y= block_h*mb_y2 + block_h/2;
631 
632  add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
633  x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
634 
635  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
636  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
637  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
638  int obmc_v= obmc[index];
639  int d;
640  if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
641  if(x<0) obmc_v += obmc[index + block_w];
642  if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
643  if(x+block_w>w) obmc_v += obmc[index - block_w];
644  //FIXME precalculate this or simplify it somehow else
645 
646  d = -dst[index] + (1<<(FRAC_BITS-1));
647  dst[index] = d;
648  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
649  aa += obmc_v * obmc_v; //FIXME precalculate this
650  }
651  }
652  }
653  *b= backup;
654 
655  return av_clip( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa), 0, 255); //FIXME we should not need clipping
656 }
657 
658 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
659  const int b_stride = s->b_width << s->block_max_depth;
660  const int b_height = s->b_height<< s->block_max_depth;
661  int index= x + y*b_stride;
662  const BlockNode *b = &s->block[index];
663  const BlockNode *left = x ? &s->block[index-1] : &null_block;
664  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
665  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
666  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
667  int dmx, dmy;
668 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
669 // int my_context= av_log2(2*FFABS(left->my - top->my));
670 
671  if(x<0 || x>=b_stride || y>=b_height)
672  return 0;
673 /*
674 1 0 0
675 01X 1-2 1
676 001XX 3-6 2-3
677 0001XXX 7-14 4-7
678 00001XXXX 15-30 8-15
679 */
680 //FIXME try accurate rate
681 //FIXME intra and inter predictors if surrounding blocks are not the same type
682  if(b->type & BLOCK_INTRA){
683  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
684  + av_log2(2*FFABS(left->color[1] - b->color[1]))
685  + av_log2(2*FFABS(left->color[2] - b->color[2])));
686  }else{
687  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
688  dmx-= b->mx;
689  dmy-= b->my;
690  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
691  + av_log2(2*FFABS(dmy))
692  + av_log2(2*b->ref));
693  }
694 }
695 
696 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
697  Plane *p= &s->plane[plane_index];
698  const int block_size = MB_SIZE >> s->block_max_depth;
699  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
700  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
701  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
702  const int ref_stride= s->current_picture.linesize[plane_index];
703  uint8_t *dst= s->current_picture.data[plane_index];
704  uint8_t *src= s-> input_picture.data[plane_index];
705  IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
706  uint8_t *cur = s->scratchbuf;
707  uint8_t *tmp = s->emu_edge_buffer;
708  const int b_stride = s->b_width << s->block_max_depth;
709  const int b_height = s->b_height<< s->block_max_depth;
710  const int w= p->width;
711  const int h= p->height;
712  int distortion;
713  int rate= 0;
714  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
715  int sx= block_w*mb_x - block_w/2;
716  int sy= block_h*mb_y - block_h/2;
717  int x0= FFMAX(0,-sx);
718  int y0= FFMAX(0,-sy);
719  int x1= FFMIN(block_w*2, w-sx);
720  int y1= FFMIN(block_h*2, h-sy);
721  int i,x,y;
722 
723  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
724 
725  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
726 
727  for(y=y0; y<y1; y++){
728  const uint8_t *obmc1= obmc_edged[y];
729  const IDWTELEM *pred1 = pred + y*obmc_stride;
730  uint8_t *cur1 = cur + y*ref_stride;
731  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
732  for(x=x0; x<x1; x++){
733 #if FRAC_BITS >= LOG2_OBMC_MAX
734  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
735 #else
736  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
737 #endif
738  v = (v + pred1[x]) >> FRAC_BITS;
739  if(v&(~255)) v= ~(v>>31);
740  dst1[x] = v;
741  }
742  }
743 
744  /* copy the regions where obmc[] = (uint8_t)256 */
745  if(LOG2_OBMC_MAX == 8
746  && (mb_x == 0 || mb_x == b_stride-1)
747  && (mb_y == 0 || mb_y == b_height-1)){
748  if(mb_x == 0)
749  x1 = block_w;
750  else
751  x0 = block_w;
752  if(mb_y == 0)
753  y1 = block_h;
754  else
755  y0 = block_h;
756  for(y=y0; y<y1; y++)
757  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
758  }
759 
760  if(block_w==16){
761  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
762  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
763  /* FIXME cmps overlap but do not cover the wavelet's whole support.
764  * So improving the score of one block is not strictly guaranteed
765  * to improve the score of the whole frame, thus iterative motion
766  * estimation does not always converge. */
767  if(s->avctx->me_cmp == FF_CMP_W97)
768  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
769  else if(s->avctx->me_cmp == FF_CMP_W53)
770  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
771  else{
772  distortion = 0;
773  for(i=0; i<4; i++){
774  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
775  distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
776  }
777  }
778  }else{
779  assert(block_w==8);
780  distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
781  }
782 
783  if(plane_index==0){
784  for(i=0; i<4; i++){
785 /* ..RRr
786  * .RXx.
787  * rxx..
788  */
789  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
790  }
791  if(mb_x == b_stride-2)
792  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
793  }
794  return distortion + rate*penalty_factor;
795 }
796 
797 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
798  int i, y2;
799  Plane *p= &s->plane[plane_index];
800  const int block_size = MB_SIZE >> s->block_max_depth;
801  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
802  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
803  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
804  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
805  const int ref_stride= s->current_picture.linesize[plane_index];
806  uint8_t *dst= s->current_picture.data[plane_index];
807  uint8_t *src= s-> input_picture.data[plane_index];
808  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
809  // const has only been removed from zero_dst to suppress a warning
810  static IDWTELEM zero_dst[4096]; //FIXME
811  const int b_stride = s->b_width << s->block_max_depth;
812  const int w= p->width;
813  const int h= p->height;
814  int distortion= 0;
815  int rate= 0;
816  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
817 
818  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
819 
820  for(i=0; i<9; i++){
821  int mb_x2= mb_x + (i%3) - 1;
822  int mb_y2= mb_y + (i/3) - 1;
823  int x= block_w*mb_x2 + block_w/2;
824  int y= block_h*mb_y2 + block_h/2;
825 
826  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
827  x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
828 
829  //FIXME find a cleaner/simpler way to skip the outside stuff
830  for(y2= y; y2<0; y2++)
831  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
832  for(y2= h; y2<y+block_h; y2++)
833  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
834  if(x<0){
835  for(y2= y; y2<y+block_h; y2++)
836  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
837  }
838  if(x+block_w > w){
839  for(y2= y; y2<y+block_h; y2++)
840  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
841  }
842 
843  assert(block_w== 8 || block_w==16);
844  distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
845  }
846 
847  if(plane_index==0){
848  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
849  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
850 
851 /* ..RRRr
852  * .RXXx.
853  * .RXXx.
854  * rxxx.
855  */
856  if(merged)
857  rate = get_block_bits(s, mb_x, mb_y, 2);
858  for(i=merged?4:0; i<9; i++){
859  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
860  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
861  }
862  }
863  return distortion + rate*penalty_factor;
864 }
865 
866 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
867  const int w= b->width;
868  const int h= b->height;
869  int x, y;
870 
871  if(1){
872  int run=0;
873  int *runs = s->run_buffer;
874  int run_index=0;
875  int max_index;
876 
877  for(y=0; y<h; y++){
878  for(x=0; x<w; x++){
879  int v, p=0;
880  int /*ll=0, */l=0, lt=0, t=0, rt=0;
881  v= src[x + y*stride];
882 
883  if(y){
884  t= src[x + (y-1)*stride];
885  if(x){
886  lt= src[x - 1 + (y-1)*stride];
887  }
888  if(x + 1 < w){
889  rt= src[x + 1 + (y-1)*stride];
890  }
891  }
892  if(x){
893  l= src[x - 1 + y*stride];
894  /*if(x > 1){
895  if(orientation==1) ll= src[y + (x-2)*stride];
896  else ll= src[x - 2 + y*stride];
897  }*/
898  }
899  if(parent){
900  int px= x>>1;
901  int py= y>>1;
902  if(px<b->parent->width && py<b->parent->height)
903  p= parent[px + py*2*stride];
904  }
905  if(!(/*ll|*/l|lt|t|rt|p)){
906  if(v){
907  runs[run_index++]= run;
908  run=0;
909  }else{
910  run++;
911  }
912  }
913  }
914  }
915  max_index= run_index;
916  runs[run_index++]= run;
917  run_index=0;
918  run= runs[run_index++];
919 
920  put_symbol2(&s->c, b->state[30], max_index, 0);
921  if(run_index <= max_index)
922  put_symbol2(&s->c, b->state[1], run, 3);
923 
924  for(y=0; y<h; y++){
925  if(s->c.bytestream_end - s->c.bytestream < w*40){
926  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
927  return -1;
928  }
929  for(x=0; x<w; x++){
930  int v, p=0;
931  int /*ll=0, */l=0, lt=0, t=0, rt=0;
932  v= src[x + y*stride];
933 
934  if(y){
935  t= src[x + (y-1)*stride];
936  if(x){
937  lt= src[x - 1 + (y-1)*stride];
938  }
939  if(x + 1 < w){
940  rt= src[x + 1 + (y-1)*stride];
941  }
942  }
943  if(x){
944  l= src[x - 1 + y*stride];
945  /*if(x > 1){
946  if(orientation==1) ll= src[y + (x-2)*stride];
947  else ll= src[x - 2 + y*stride];
948  }*/
949  }
950  if(parent){
951  int px= x>>1;
952  int py= y>>1;
953  if(px<b->parent->width && py<b->parent->height)
954  p= parent[px + py*2*stride];
955  }
956  if(/*ll|*/l|lt|t|rt|p){
957  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
958 
959  put_rac(&s->c, &b->state[0][context], !!v);
960  }else{
961  if(!run){
962  run= runs[run_index++];
963 
964  if(run_index <= max_index)
965  put_symbol2(&s->c, b->state[1], run, 3);
966  assert(v);
967  }else{
968  run--;
969  assert(!v);
970  }
971  }
972  if(v){
973  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
974  int l2= 2*FFABS(l) + (l<0);
975  int t2= 2*FFABS(t) + (t<0);
976 
977  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
978  put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
979  }
980  }
981  }
982  }
983  return 0;
984 }
985 
986 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
987 // encode_subband_qtree(s, b, src, parent, stride, orientation);
988 // encode_subband_z0run(s, b, src, parent, stride, orientation);
989  return encode_subband_c0run(s, b, src, parent, stride, orientation);
990 // encode_subband_dzr(s, b, src, parent, stride, orientation);
991 }
992 
993 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
994  const int b_stride= s->b_width << s->block_max_depth;
995  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
996  BlockNode backup= *block;
997  unsigned value;
998  int rd, index;
999 
1000  assert(mb_x>=0 && mb_y>=0);
1001  assert(mb_x<b_stride);
1002 
1003  if(intra){
1004  block->color[0] = p[0];
1005  block->color[1] = p[1];
1006  block->color[2] = p[2];
1007  block->type |= BLOCK_INTRA;
1008  }else{
1009  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
1010  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
1011  if(s->me_cache[index] == value)
1012  return 0;
1013  s->me_cache[index]= value;
1014 
1015  block->mx= p[0];
1016  block->my= p[1];
1017  block->type &= ~BLOCK_INTRA;
1018  }
1019 
1020  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
1021 
1022 //FIXME chroma
1023  if(rd < *best_rd){
1024  *best_rd= rd;
1025  return 1;
1026  }else{
1027  *block= backup;
1028  return 0;
1029  }
1030 }
1031 
1032 /* special case for int[2] args we discard afterwards,
1033  * fixes compilation problem with gcc 2.95 */
1034 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
1035  int p[2] = {p0, p1};
1036  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
1037 }
1038 
1039 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
1040  const int b_stride= s->b_width << s->block_max_depth;
1041  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
1042  BlockNode backup[4];
1043  unsigned value;
1044  int rd, index;
1045 
1046  /* We don't initialize backup[] during variable declaration, because
1047  * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
1048  * 'int16_t'". */
1049  backup[0] = block[0];
1050  backup[1] = block[1];
1051  backup[2] = block[b_stride];
1052  backup[3] = block[b_stride + 1];
1053 
1054  assert(mb_x>=0 && mb_y>=0);
1055  assert(mb_x<b_stride);
1056  assert(((mb_x|mb_y)&1) == 0);
1057 
1058  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
1059  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
1060  if(s->me_cache[index] == value)
1061  return 0;
1062  s->me_cache[index]= value;
1063 
1064  block->mx= p0;
1065  block->my= p1;
1066  block->ref= ref;
1067  block->type &= ~BLOCK_INTRA;
1068  block[1]= block[b_stride]= block[b_stride+1]= *block;
1069 
1070  rd= get_4block_rd(s, mb_x, mb_y, 0);
1071 
1072 //FIXME chroma
1073  if(rd < *best_rd){
1074  *best_rd= rd;
1075  return 1;
1076  }else{
1077  block[0]= backup[0];
1078  block[1]= backup[1];
1079  block[b_stride]= backup[2];
1080  block[b_stride+1]= backup[3];
1081  return 0;
1082  }
1083 }
1084 
1085 static void iterative_me(SnowContext *s){
1086  int pass, mb_x, mb_y;
1087  const int b_width = s->b_width << s->block_max_depth;
1088  const int b_height= s->b_height << s->block_max_depth;
1089  const int b_stride= b_width;
1090  int color[3];
1091 
1092  {
1093  RangeCoder r = s->c;
1094  uint8_t state[sizeof(s->block_state)];
1095  memcpy(state, s->block_state, sizeof(s->block_state));
1096  for(mb_y= 0; mb_y<s->b_height; mb_y++)
1097  for(mb_x= 0; mb_x<s->b_width; mb_x++)
1098  encode_q_branch(s, 0, mb_x, mb_y);
1099  s->c = r;
1100  memcpy(s->block_state, state, sizeof(s->block_state));
1101  }
1102 
1103  for(pass=0; pass<25; pass++){
1104  int change= 0;
1105 
1106  for(mb_y= 0; mb_y<b_height; mb_y++){
1107  for(mb_x= 0; mb_x<b_width; mb_x++){
1108  int dia_change, i, j, ref;
1109  int best_rd= INT_MAX, ref_rd;
1110  BlockNode backup, ref_b;
1111  const int index= mb_x + mb_y * b_stride;
1112  BlockNode *block= &s->block[index];
1113  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1114  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1115  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1116  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1117  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1118  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1119  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1120  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1121  const int b_w= (MB_SIZE >> s->block_max_depth);
1122  uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1123 
1124  if(pass && (block->type & BLOCK_OPT))
1125  continue;
1126  block->type |= BLOCK_OPT;
1127 
1128  backup= *block;
1129 
1130  if(!s->me_cache_generation)
1131  memset(s->me_cache, 0, sizeof(s->me_cache));
1132  s->me_cache_generation += 1<<22;
1133 
1134  //FIXME precalculate
1135  {
1136  int x, y;
1137  for (y = 0; y < b_w * 2; y++)
1138  memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1139  if(mb_x==0)
1140  for(y=0; y<b_w*2; y++)
1141  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1142  if(mb_x==b_stride-1)
1143  for(y=0; y<b_w*2; y++)
1144  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1145  if(mb_y==0){
1146  for(x=0; x<b_w*2; x++)
1147  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1148  for(y=1; y<b_w; y++)
1149  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1150  }
1151  if(mb_y==b_height-1){
1152  for(x=0; x<b_w*2; x++)
1153  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1154  for(y=b_w; y<b_w*2-1; y++)
1155  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1156  }
1157  }
1158 
1159  //skip stuff outside the picture
1160  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1161  uint8_t *src= s-> input_picture.data[0];
1162  uint8_t *dst= s->current_picture.data[0];
1163  const int stride= s->current_picture.linesize[0];
1164  const int block_w= MB_SIZE >> s->block_max_depth;
1165  const int block_h= MB_SIZE >> s->block_max_depth;
1166  const int sx= block_w*mb_x - block_w/2;
1167  const int sy= block_h*mb_y - block_h/2;
1168  const int w= s->plane[0].width;
1169  const int h= s->plane[0].height;
1170  int y;
1171 
1172  for(y=sy; y<0; y++)
1173  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1174  for(y=h; y<sy+block_h*2; y++)
1175  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1176  if(sx<0){
1177  for(y=sy; y<sy+block_h*2; y++)
1178  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1179  }
1180  if(sx+block_w*2 > w){
1181  for(y=sy; y<sy+block_h*2; y++)
1182  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1183  }
1184  }
1185 
1186  // intra(black) = neighbors' contribution to the current block
1187  for(i=0; i<3; i++)
1188  color[i]= get_dc(s, mb_x, mb_y, i);
1189 
1190  // get previous score (cannot be cached due to OBMC)
1191  if(pass > 0 && (block->type&BLOCK_INTRA)){
1192  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1193  check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1194  }else
1195  check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1196 
1197  ref_b= *block;
1198  ref_rd= best_rd;
1199  for(ref=0; ref < s->ref_frames; ref++){
1200  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1201  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1202  continue;
1203  block->ref= ref;
1204  best_rd= INT_MAX;
1205 
1206  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1207  check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1208  if(tb)
1209  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1210  if(lb)
1211  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1212  if(rb)
1213  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1214  if(bb)
1215  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1216 
1217  /* fullpel ME */
1218  //FIXME avoid subpel interpolation / round to nearest integer
1219  do{
1220  dia_change=0;
1221  for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1222  for(j=0; j<i; j++){
1223  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1224  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1225  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1226  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1227  }
1228  }
1229  }while(dia_change);
1230  /* subpel ME */
1231  do{
1232  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1233  dia_change=0;
1234  for(i=0; i<8; i++)
1235  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1236  }while(dia_change);
1237  //FIXME or try the standard 2 pass qpel or similar
1238 
1239  mvr[0][0]= block->mx;
1240  mvr[0][1]= block->my;
1241  if(ref_rd > best_rd){
1242  ref_rd= best_rd;
1243  ref_b= *block;
1244  }
1245  }
1246  best_rd= ref_rd;
1247  *block= ref_b;
1248  check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1249  //FIXME RD style color selection
1250  if(!same_block(block, &backup)){
1251  if(tb ) tb ->type &= ~BLOCK_OPT;
1252  if(lb ) lb ->type &= ~BLOCK_OPT;
1253  if(rb ) rb ->type &= ~BLOCK_OPT;
1254  if(bb ) bb ->type &= ~BLOCK_OPT;
1255  if(tlb) tlb->type &= ~BLOCK_OPT;
1256  if(trb) trb->type &= ~BLOCK_OPT;
1257  if(blb) blb->type &= ~BLOCK_OPT;
1258  if(brb) brb->type &= ~BLOCK_OPT;
1259  change ++;
1260  }
1261  }
1262  }
1263  av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1264  if(!change)
1265  break;
1266  }
1267 
1268  if(s->block_max_depth == 1){
1269  int change= 0;
1270  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1271  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1272  int i;
1273  int best_rd, init_rd;
1274  const int index= mb_x + mb_y * b_stride;
1275  BlockNode *b[4];
1276 
1277  b[0]= &s->block[index];
1278  b[1]= b[0]+1;
1279  b[2]= b[0]+b_stride;
1280  b[3]= b[2]+1;
1281  if(same_block(b[0], b[1]) &&
1282  same_block(b[0], b[2]) &&
1283  same_block(b[0], b[3]))
1284  continue;
1285 
1286  if(!s->me_cache_generation)
1287  memset(s->me_cache, 0, sizeof(s->me_cache));
1288  s->me_cache_generation += 1<<22;
1289 
1290  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1291 
1292  //FIXME more multiref search?
1293  check_4block_inter(s, mb_x, mb_y,
1294  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1295  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1296 
1297  for(i=0; i<4; i++)
1298  if(!(b[i]->type&BLOCK_INTRA))
1299  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1300 
1301  if(init_rd != best_rd)
1302  change++;
1303  }
1304  }
1305  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1306  }
1307 }
1308 
1309 static void encode_blocks(SnowContext *s, int search){
1310  int x, y;
1311  int w= s->b_width;
1312  int h= s->b_height;
1313 
1314  if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1315  iterative_me(s);
1316 
1317  for(y=0; y<h; y++){
1318  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1319  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1320  return;
1321  }
1322  for(x=0; x<w; x++){
1323  if(s->avctx->me_method == ME_ITER || !search)
1324  encode_q_branch2(s, 0, x, y);
1325  else
1326  encode_q_branch (s, 0, x, y);
1327  }
1328  }
1329 }
1330 
1331 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1332  const int w= b->width;
1333  const int h= b->height;
1334  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1335  const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1336  int x,y, thres1, thres2;
1337 
1338  if(s->qlog == LOSSLESS_QLOG){
1339  for(y=0; y<h; y++)
1340  for(x=0; x<w; x++)
1341  dst[x + y*stride]= src[x + y*stride];
1342  return;
1343  }
1344 
1345  bias= bias ? 0 : (3*qmul)>>3;
1346  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1347  thres2= 2*thres1;
1348 
1349  if(!bias){
1350  for(y=0; y<h; y++){
1351  for(x=0; x<w; x++){
1352  int i= src[x + y*stride];
1353 
1354  if((unsigned)(i+thres1) > thres2){
1355  if(i>=0){
1356  i<<= QEXPSHIFT;
1357  i/= qmul; //FIXME optimize
1358  dst[x + y*stride]= i;
1359  }else{
1360  i= -i;
1361  i<<= QEXPSHIFT;
1362  i/= qmul; //FIXME optimize
1363  dst[x + y*stride]= -i;
1364  }
1365  }else
1366  dst[x + y*stride]= 0;
1367  }
1368  }
1369  }else{
1370  for(y=0; y<h; y++){
1371  for(x=0; x<w; x++){
1372  int i= src[x + y*stride];
1373 
1374  if((unsigned)(i+thres1) > thres2){
1375  if(i>=0){
1376  i<<= QEXPSHIFT;
1377  i= (i + bias) / qmul; //FIXME optimize
1378  dst[x + y*stride]= i;
1379  }else{
1380  i= -i;
1381  i<<= QEXPSHIFT;
1382  i= (i + bias) / qmul; //FIXME optimize
1383  dst[x + y*stride]= -i;
1384  }
1385  }else
1386  dst[x + y*stride]= 0;
1387  }
1388  }
1389  }
1390 }
1391 
1392 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1393  const int w= b->width;
1394  const int h= b->height;
1395  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1396  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1397  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1398  int x,y;
1399 
1400  if(s->qlog == LOSSLESS_QLOG) return;
1401 
1402  for(y=0; y<h; y++){
1403  for(x=0; x<w; x++){
1404  int i= src[x + y*stride];
1405  if(i<0){
1406  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1407  }else if(i>0){
1408  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1409  }
1410  }
1411  }
1412 }
1413 
1414 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1415  const int w= b->width;
1416  const int h= b->height;
1417  int x,y;
1418 
1419  for(y=h-1; y>=0; y--){
1420  for(x=w-1; x>=0; x--){
1421  int i= x + y*stride;
1422 
1423  if(x){
1424  if(use_median){
1425  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1426  else src[i] -= src[i - 1];
1427  }else{
1428  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1429  else src[i] -= src[i - 1];
1430  }
1431  }else{
1432  if(y) src[i] -= src[i - stride];
1433  }
1434  }
1435  }
1436 }
1437 
1438 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1439  const int w= b->width;
1440  const int h= b->height;
1441  int x,y;
1442 
1443  for(y=0; y<h; y++){
1444  for(x=0; x<w; x++){
1445  int i= x + y*stride;
1446 
1447  if(x){
1448  if(use_median){
1449  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1450  else src[i] += src[i - 1];
1451  }else{
1452  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1453  else src[i] += src[i - 1];
1454  }
1455  }else{
1456  if(y) src[i] += src[i - stride];
1457  }
1458  }
1459  }
1460 }
1461 
1462 static void encode_qlogs(SnowContext *s){
1463  int plane_index, level, orientation;
1464 
1465  for(plane_index=0; plane_index<2; plane_index++){
1466  for(level=0; level<s->spatial_decomposition_count; level++){
1467  for(orientation=level ? 1:0; orientation<4; orientation++){
1468  if(orientation==2) continue;
1469  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1470  }
1471  }
1472  }
1473 }
1474 
1475 static void encode_header(SnowContext *s){
1476  int plane_index, i;
1477  uint8_t kstate[32];
1478 
1479  memset(kstate, MID_STATE, sizeof(kstate));
1480 
1481  put_rac(&s->c, kstate, s->keyframe);
1482  if(s->keyframe || s->always_reset){
1485  s->last_qlog=
1486  s->last_qbias=
1487  s->last_mv_scale=
1488  s->last_block_max_depth= 0;
1489  for(plane_index=0; plane_index<2; plane_index++){
1490  Plane *p= &s->plane[plane_index];
1491  p->last_htaps=0;
1492  p->last_diag_mc=0;
1493  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1494  }
1495  }
1496  if(s->keyframe){
1497  put_symbol(&s->c, s->header_state, s->version, 0);
1498  put_rac(&s->c, s->header_state, s->always_reset);
1502  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1503  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1504  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1506 // put_rac(&s->c, s->header_state, s->rate_scalability);
1507  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1508 
1509  encode_qlogs(s);
1510  }
1511 
1512  if(!s->keyframe){
1513  int update_mc=0;
1514  for(plane_index=0; plane_index<2; plane_index++){
1515  Plane *p= &s->plane[plane_index];
1516  update_mc |= p->last_htaps != p->htaps;
1517  update_mc |= p->last_diag_mc != p->diag_mc;
1518  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1519  }
1520  put_rac(&s->c, s->header_state, update_mc);
1521  if(update_mc){
1522  for(plane_index=0; plane_index<2; plane_index++){
1523  Plane *p= &s->plane[plane_index];
1524  put_rac(&s->c, s->header_state, p->diag_mc);
1525  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1526  for(i= p->htaps/2; i; i--)
1527  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1528  }
1529  }
1531  put_rac(&s->c, s->header_state, 1);
1533  encode_qlogs(s);
1534  }else
1535  put_rac(&s->c, s->header_state, 0);
1536  }
1537 
1539  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1540  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1541  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1543 
1544 }
1545 
1547  int plane_index;
1548 
1549  if(!s->keyframe){
1550  for(plane_index=0; plane_index<2; plane_index++){
1551  Plane *p= &s->plane[plane_index];
1552  p->last_diag_mc= p->diag_mc;
1553  p->last_htaps = p->htaps;
1554  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1555  }
1556  }
1557 
1559  s->last_qlog = s->qlog;
1560  s->last_qbias = s->qbias;
1561  s->last_mv_scale = s->mv_scale;
1564 }
1565 
1566 static int qscale2qlog(int qscale){
1567  return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1568  + 61*QROOT/8; ///< 64 > 60
1569 }
1570 
1572 {
1573  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1574  * FIXME we know exact mv bits at this point,
1575  * but ratecontrol isn't set up to include them. */
1576  uint32_t coef_sum= 0;
1577  int level, orientation, delta_qlog;
1578 
1579  for(level=0; level<s->spatial_decomposition_count; level++){
1580  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1581  SubBand *b= &s->plane[0].band[level][orientation];
1582  IDWTELEM *buf= b->ibuf;
1583  const int w= b->width;
1584  const int h= b->height;
1585  const int stride= b->stride;
1586  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1587  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1588  const int qdiv= (1<<16)/qmul;
1589  int x, y;
1590  //FIXME this is ugly
1591  for(y=0; y<h; y++)
1592  for(x=0; x<w; x++)
1593  buf[x+y*stride]= b->buf[x+y*stride];
1594  if(orientation==0)
1595  decorrelate(s, b, buf, stride, 1, 0);
1596  for(y=0; y<h; y++)
1597  for(x=0; x<w; x++)
1598  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1599  }
1600  }
1601 
1602  /* ugly, ratecontrol just takes a sqrt again */
1603  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1604  assert(coef_sum < INT_MAX);
1605 
1606  if(pict->pict_type == AV_PICTURE_TYPE_I){
1607  s->m.current_picture.mb_var_sum= coef_sum;
1609  }else{
1610  s->m.current_picture.mc_mb_var_sum= coef_sum;
1612  }
1613 
1614  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1615  if (pict->quality < 0)
1616  return INT_MIN;
1617  s->lambda= pict->quality * 3/2;
1618  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1619  s->qlog+= delta_qlog;
1620  return delta_qlog;
1621 }
1622 
1624  int width = p->width;
1625  int height= p->height;
1626  int level, orientation, x, y;
1627 
1628  for(level=0; level<s->spatial_decomposition_count; level++){
1629  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1630  SubBand *b= &p->band[level][orientation];
1631  IDWTELEM *ibuf= b->ibuf;
1632  int64_t error=0;
1633 
1634  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1635  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1637  for(y=0; y<height; y++){
1638  for(x=0; x<width; x++){
1639  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1640  error += d*d;
1641  }
1642  }
1643 
1644  b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1645  }
1646  }
1647 }
1648 
1650  const AVFrame *pict, int *got_packet)
1651 {
1652  SnowContext *s = avctx->priv_data;
1653  RangeCoder * const c= &s->c;
1654  AVFrame *pic = &s->new_picture;
1655  const int width= s->avctx->width;
1656  const int height= s->avctx->height;
1657  int level, orientation, plane_index, i, y, ret;
1658  uint8_t rc_header_bak[sizeof(s->header_state)];
1659  uint8_t rc_block_bak[sizeof(s->block_state)];
1660 
1661  if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1662  return ret;
1663 
1664  ff_init_range_encoder(c, pkt->data, pkt->size);
1665  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1666 
1667  for(i=0; i<3; i++){
1668  int hshift= i ? s->chroma_h_shift : 0;
1669  int vshift= i ? s->chroma_v_shift : 0;
1670  for(y=0; y<(height>>vshift); y++)
1671  memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
1672  &pict->data[i][y * pict->linesize[i]],
1673  width>>hshift);
1675  width >> hshift, height >> vshift,
1676  EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1677  EDGE_TOP | EDGE_BOTTOM);
1678 
1679  }
1680  emms_c();
1681  s->new_picture = *pict;
1682 
1683  s->m.picture_number= avctx->frame_number;
1684  if(avctx->flags&CODEC_FLAG_PASS2){
1686  s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1687  if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1688  pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1689  if (pic->quality < 0)
1690  return -1;
1691  }
1692  }else{
1693  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1695  }
1696 
1697  if(s->pass1_rc && avctx->frame_number == 0)
1698  pic->quality = 2*FF_QP2LAMBDA;
1699  if (pic->quality) {
1700  s->qlog = qscale2qlog(pic->quality);
1701  s->lambda = pic->quality * 3/2;
1702  }
1703  if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1704  s->qlog= LOSSLESS_QLOG;
1705  s->lambda = 0;
1706  }//else keep previous frame's qlog until after motion estimation
1707 
1709 
1712  s->m.current_picture.f.pts = pict->pts;
1713  if(pic->pict_type == AV_PICTURE_TYPE_P){
1714  int block_width = (width +15)>>4;
1715  int block_height= (height+15)>>4;
1716  int stride= s->current_picture.linesize[0];
1717 
1718  assert(s->current_picture.data[0]);
1719  assert(s->last_picture[0].data[0]);
1720 
1721  s->m.avctx= s->avctx;
1722  s->m.current_picture.f.data[0] = s->current_picture.data[0];
1723  s->m. last_picture.f.data[0] = s->last_picture[0].data[0];
1724  s->m. new_picture.f.data[0] = s-> input_picture.data[0];
1725  s->m. last_picture_ptr= &s->m. last_picture;
1726  s->m.linesize=
1727  s->m. last_picture.f.linesize[0] =
1728  s->m. new_picture.f.linesize[0] =
1729  s->m.current_picture.f.linesize[0] = stride;
1731  s->m.width = width;
1732  s->m.height= height;
1733  s->m.mb_width = block_width;
1734  s->m.mb_height= block_height;
1735  s->m.mb_stride= s->m.mb_width+1;
1736  s->m.b8_stride= 2*s->m.mb_width+1;
1737  s->m.f_code=1;
1738  s->m.pict_type = pic->pict_type;
1739  s->m.me_method= s->avctx->me_method;
1740  s->m.me.scene_change_score=0;
1741  s->m.flags= s->avctx->flags;
1742  s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1743  s->m.out_format= FMT_H263;
1744  s->m.unrestricted_mv= 1;
1745 
1746  s->m.lambda = s->lambda;
1747  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1748  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1749 
1750  s->m.dsp= s->dsp; //move
1751  s->m.hdsp = s->hdsp;
1752  ff_init_me(&s->m);
1753  s->hdsp = s->m.hdsp;
1754  s->dsp= s->m.dsp;
1755  }
1756 
1757  if(s->pass1_rc){
1758  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1759  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1760  }
1761 
1762 redo_frame:
1763 
1764  if (pic->pict_type == AV_PICTURE_TYPE_I)
1766  else
1768 
1769  while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1770  || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1772 
1773  if (s->spatial_decomposition_count <= 0) {
1774  av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1775  return AVERROR(EINVAL);
1776  }
1777 
1778  s->m.pict_type = pic->pict_type;
1779  s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1780 
1782 
1784  for(plane_index=0; plane_index<3; plane_index++){
1785  calculate_visual_weight(s, &s->plane[plane_index]);
1786  }
1787  }
1788 
1789  encode_header(s);
1790  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1791  encode_blocks(s, 1);
1792  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1793 
1794  for(plane_index=0; plane_index<3; plane_index++){
1795  Plane *p= &s->plane[plane_index];
1796  int w= p->width;
1797  int h= p->height;
1798  int x, y;
1799 // int bits= put_bits_count(&s->c.pb);
1800 
1801  if (!s->memc_only) {
1802  //FIXME optimize
1803  if(pict->data[plane_index]) //FIXME gray hack
1804  for(y=0; y<h; y++){
1805  for(x=0; x<w; x++){
1806  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1807  }
1808  }
1809  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1810 
1811  if( plane_index==0
1812  && pic->pict_type == AV_PICTURE_TYPE_P
1813  && !(avctx->flags&CODEC_FLAG_PASS2)
1815  ff_init_range_encoder(c, pkt->data, pkt->size);
1816  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1818  s->keyframe=1;
1820  goto redo_frame;
1821  }
1822 
1823  if(s->qlog == LOSSLESS_QLOG){
1824  for(y=0; y<h; y++){
1825  for(x=0; x<w; x++){
1826  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1827  }
1828  }
1829  }else{
1830  for(y=0; y<h; y++){
1831  for(x=0; x<w; x++){
1833  }
1834  }
1835  }
1836 
1837  /* if(QUANTIZE2)
1838  dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type);
1839  else*/
1841 
1842  if(s->pass1_rc && plane_index==0){
1843  int delta_qlog = ratecontrol_1pass(s, pic);
1844  if (delta_qlog <= INT_MIN)
1845  return -1;
1846  if(delta_qlog){
1847  //reordering qlog in the bitstream would eliminate this reset
1848  ff_init_range_encoder(c, pkt->data, pkt->size);
1849  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1850  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1851  encode_header(s);
1852  encode_blocks(s, 0);
1853  }
1854  }
1855 
1856  for(level=0; level<s->spatial_decomposition_count; level++){
1857  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1858  SubBand *b= &p->band[level][orientation];
1859 
1860  if(!QUANTIZE2)
1861  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1862  if(orientation==0)
1863  decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1864  if (!s->no_bitstream)
1865  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1866  assert(b->parent==NULL || b->parent->stride == b->stride*2);
1867  if(orientation==0)
1868  correlate(s, b, b->ibuf, b->stride, 1, 0);
1869  }
1870  }
1871 
1872  for(level=0; level<s->spatial_decomposition_count; level++){
1873  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1874  SubBand *b= &p->band[level][orientation];
1875 
1876  dequantize(s, b, b->ibuf, b->stride);
1877  }
1878  }
1879 
1881  if(s->qlog == LOSSLESS_QLOG){
1882  for(y=0; y<h; y++){
1883  for(x=0; x<w; x++){
1884  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1885  }
1886  }
1887  }
1888  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1889  }else{
1890  //ME/MC only
1891  if(pic->pict_type == AV_PICTURE_TYPE_I){
1892  for(y=0; y<h; y++){
1893  for(x=0; x<w; x++){
1894  s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
1895  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1896  }
1897  }
1898  }else{
1899  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1900  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1901  }
1902  }
1903  if(s->avctx->flags&CODEC_FLAG_PSNR){
1904  int64_t error= 0;
1905 
1906  if(pict->data[plane_index]) //FIXME gray hack
1907  for(y=0; y<h; y++){
1908  for(x=0; x<w; x++){
1909  int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1910  error += d*d;
1911  }
1912  }
1913  s->avctx->error[plane_index] += error;
1914  s->current_picture.error[plane_index] = error;
1915  }
1916 
1917  }
1918 
1920 
1921  ff_snow_release_buffer(avctx);
1922 
1924  s->current_picture.pict_type = pict->pict_type;
1925  s->current_picture.quality = pict->quality;
1926  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1927  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1930  s->m.current_picture.f.quality = pic->quality;
1931  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1932  if(s->pass1_rc)
1933  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1934  return -1;
1935  if(avctx->flags&CODEC_FLAG_PASS1)
1936  ff_write_pass1_stats(&s->m);
1937  s->m.last_pict_type = s->m.pict_type;
1938  avctx->frame_bits = s->m.frame_bits;
1939  avctx->mv_bits = s->m.mv_bits;
1940  avctx->misc_bits = s->m.misc_bits;
1941  avctx->p_tex_bits = s->m.p_tex_bits;
1942 
1943  emms_c();
1944 
1945  pkt->size = ff_rac_terminate(c);
1946  if (avctx->coded_frame->key_frame)
1947  pkt->flags |= AV_PKT_FLAG_KEY;
1948  *got_packet = 1;
1949 
1950  return 0;
1951 }
1952 
1954 {
1955  SnowContext *s = avctx->priv_data;
1956 
1957  ff_snow_common_end(s);
1959  av_free(avctx->stats_out);
1960 
1961  return 0;
1962 }
1963 
1964 #define OFFSET(x) offsetof(SnowContext, x)
1965 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1966 static const AVOption options[] = {
1967  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1968  { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1969  { NULL },
1970 };
1971 
1972 static const AVClass snowenc_class = {
1973  .class_name = "snow encoder",
1974  .item_name = av_default_item_name,
1975  .option = options,
1976  .version = LIBAVUTIL_VERSION_INT,
1977 };
1978 
1980  .name = "snow",
1981  .type = AVMEDIA_TYPE_VIDEO,
1982  .id = AV_CODEC_ID_SNOW,
1983  .priv_data_size = sizeof(SnowContext),
1984  .init = encode_init,
1985  .encode2 = encode_frame,
1986  .close = encode_end,
1987  .pix_fmts = (const enum AVPixelFormat[]){
1990  },
1991  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1992  .priv_class = &snowenc_class,
1993 };
1994 
1995 
1996 #ifdef TEST
1997 #undef malloc
1998 #undef free
1999 #undef printf
2000 
2001 #include "libavutil/lfg.h"
2002 #include "libavutil/mathematics.h"
2003 
2004 int main(void){
2005 #define width 256
2006 #define height 256
2007  int buffer[2][width*height];
2008  SnowContext s;
2009  int i;
2010  AVLFG prng;
2013 
2014  s.temp_dwt_buffer = av_mallocz(width * sizeof(DWTELEM));
2015  s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
2016 
2017  av_lfg_init(&prng, 1);
2018 
2019  printf("testing 5/3 DWT\n");
2020  for(i=0; i<width*height; i++)
2021  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
2022 
2025 
2026  for(i=0; i<width*height; i++)
2027  if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
2028 
2029  printf("testing 9/7 DWT\n");
2031  for(i=0; i<width*height; i++)
2032  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
2033 
2036 
2037  for(i=0; i<width*height; i++)
2038  if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
2039 
2040  {
2041  int level, orientation, x, y;
2042  int64_t errors[8][4];
2043  int64_t g=0;
2044 
2045  memset(errors, 0, sizeof(errors));
2048  for(level=0; level<s.spatial_decomposition_count; level++){
2049  for(orientation=level ? 1 : 0; orientation<4; orientation++){
2050  int w= width >> (s.spatial_decomposition_count-level);
2051  int h= height >> (s.spatial_decomposition_count-level);
2052  int stride= width << (s.spatial_decomposition_count-level);
2053  DWTELEM *buf= buffer[0];
2054  int64_t error=0;
2055 
2056  if(orientation&1) buf+=w;
2057  if(orientation>1) buf+=stride>>1;
2058 
2059  memset(buffer[0], 0, sizeof(int)*width*height);
2060  buf[w/2 + h/2*stride]= 256*256;
2062  for(y=0; y<height; y++){
2063  for(x=0; x<width; x++){
2064  int64_t d= buffer[0][x + y*width];
2065  error += d*d;
2066  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
2067  }
2068  if(FFABS(height/2-y)<9 && level==2) printf("\n");
2069  }
2070  error= (int)(sqrt(error)+0.5);
2071  errors[level][orientation]= error;
2072  if(g) g=av_gcd(g, error);
2073  else g= error;
2074  }
2075  }
2076  printf("static int const visual_weight[][4]={\n");
2077  for(level=0; level<s.spatial_decomposition_count; level++){
2078  printf(" {");
2079  for(orientation=0; orientation<4; orientation++){
2080  printf("%8"PRId64",", errors[level][orientation]/g);
2081  }
2082  printf("},\n");
2083  }
2084  printf("};\n");
2085  {
2086  int level=2;
2087  int w= width >> (s.spatial_decomposition_count-level);
2088  //int h= height >> (s.spatial_decomposition_count-level);
2089  int stride= width << (s.spatial_decomposition_count-level);
2090  DWTELEM *buf= buffer[0];
2091  int64_t error=0;
2092 
2093  buf+=w;
2094  buf+=stride>>1;
2095 
2096  memset(buffer[0], 0, sizeof(int)*width*height);
2097  for(y=0; y<height; y++){
2098  for(x=0; x<width; x++){
2099  int tab[4]={0,2,3,1};
2100  buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2101  }
2102  }
2104  for(y=0; y<height; y++){
2105  for(x=0; x<width; x++){
2106  int64_t d= buffer[0][x + y*width];
2107  error += d*d;
2108  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2109  }
2110  if(FFABS(height/2-y)<9) printf("\n");
2111  }
2112  }
2113 
2114  }
2115  return 0;
2116 }
2117 #endif /* TEST */