FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25  * @author Stefan Gehrer <stefan.gehrer@gmx.de>
26  */
27 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "h264chroma.h"
32 #include "mathops.h"
33 #include "cavs.h"
34 
35 static const uint8_t alpha_tab[64] = {
36  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
37  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
38  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
39  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
40 };
41 
42 static const uint8_t beta_tab[64] = {
43  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
44  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
45  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
46  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
47 };
48 
49 static const uint8_t tc_tab[64] = {
50  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
51  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
52  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
53  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
54 };
55 
56 /** mark block as unavailable, i.e. out of picture
57  * or not yet decoded */
58 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
59 
60 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
61 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
62 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
63 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
64 
65 /*****************************************************************************
66  *
67  * in-loop deblocking filter
68  *
69  ****************************************************************************/
70 
71 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
72 {
73  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
74  return 2;
75  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
76  return 1;
77  if (b) {
78  mvP += MV_BWD_OFFS;
79  mvQ += MV_BWD_OFFS;
80  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
81  return 1;
82  } else {
83  if (mvP->ref != mvQ->ref)
84  return 1;
85  }
86  return 0;
87 }
88 
89 #define SET_PARAMS \
90  alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
91  beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
92  tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
93 
94 /**
95  * in-loop deblocking filter for a single macroblock
96  *
97  * boundary strength (bs) mapping:
98  *
99  * --4---5--
100  * 0 2 |
101  * | 6 | 7 |
102  * 1 3 |
103  * ---------
104  *
105  */
106 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
107 {
108  uint8_t bs[8];
109  int qp_avg, alpha, beta, tc;
110  int i;
111 
112  /* save un-deblocked lines */
113  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
114  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
115  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
116  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
117  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
118  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
119  for (i = 0; i < 8; i++) {
120  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
121  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
122  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
123  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
124  }
125  if (!h->loop_filter_disable) {
126  /* determine bs */
127  if (mb_type == I_8X8)
128  memset(bs, 2, 8);
129  else {
130  memset(bs, 0, 8);
131  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
132  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
133  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
134  }
135  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
136  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
137  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
138  }
139  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
140  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
141  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
142  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
143  }
144  if (AV_RN64(bs)) {
145  if (h->flags & A_AVAIL) {
146  qp_avg = (h->qp + h->left_qp + 1) >> 1;
147  SET_PARAMS;
148  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
149  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
150  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
151  }
152  qp_avg = h->qp;
153  SET_PARAMS;
154  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
155  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
156 
157  if (h->flags & B_AVAIL) {
158  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
159  SET_PARAMS;
160  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
161  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
162  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
163  }
164  }
165  }
166  h->left_qp = h->qp;
167  h->top_qp[h->mbx] = h->qp;
168 }
169 
170 #undef SET_PARAMS
171 
172 /*****************************************************************************
173  *
174  * spatial intra prediction
175  *
176  ****************************************************************************/
177 
179  uint8_t **left, int block)
180 {
181  int i;
182 
183  switch (block) {
184  case 0:
185  *left = h->left_border_y;
186  h->left_border_y[0] = h->left_border_y[1];
187  memset(&h->left_border_y[17], h->left_border_y[16], 9);
188  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
189  top[17] = top[16];
190  top[0] = top[1];
191  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
192  h->left_border_y[0] = top[0] = h->topleft_border_y;
193  break;
194  case 1:
195  *left = h->intern_border_y;
196  for (i = 0; i < 8; i++)
197  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
198  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
199  h->intern_border_y[0] = h->intern_border_y[1];
200  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
201  if (h->flags & C_AVAIL)
202  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
203  else
204  memset(&top[9], top[8], 9);
205  top[17] = top[16];
206  top[0] = top[1];
207  if (h->flags & B_AVAIL)
208  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
209  break;
210  case 2:
211  *left = &h->left_border_y[8];
212  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
213  top[17] = top[16];
214  top[0] = top[1];
215  if (h->flags & A_AVAIL)
216  top[0] = h->left_border_y[8];
217  break;
218  case 3:
219  *left = &h->intern_border_y[8];
220  for (i = 0; i < 8; i++)
221  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
222  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
223  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
224  memset(&top[9], top[8], 9);
225  break;
226  }
227 }
228 
230 {
231  /* extend borders by one pixel */
232  h->left_border_u[9] = h->left_border_u[8];
233  h->left_border_v[9] = h->left_border_v[8];
234  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
235  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
236  if (h->mbx && h->mby) {
237  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
238  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
239  } else {
240  h->left_border_u[0] = h->left_border_u[1];
241  h->left_border_v[0] = h->left_border_v[1];
242  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
243  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
244  }
245 }
246 
247 static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
248 {
249  int y;
250  uint64_t a = AV_RN64(&top[1]);
251  for (y = 0; y < 8; y++)
252  *((uint64_t *)(d + y * stride)) = a;
253 }
254 
255 static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
256 {
257  int y;
258  uint64_t a;
259  for (y = 0; y < 8; y++) {
260  a = left[y + 1] * 0x0101010101010101ULL;
261  *((uint64_t *)(d + y * stride)) = a;
262  }
263 }
264 
265 static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
266 {
267  int y;
268  uint64_t a = 0x8080808080808080ULL;
269  for (y = 0; y < 8; y++)
270  *((uint64_t *)(d + y * stride)) = a;
271 }
272 
273 static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
274 {
275  int x, y, ia;
276  int ih = 0;
277  int iv = 0;
278  const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
279 
280  for (x = 0; x < 4; x++) {
281  ih += (x + 1) * (top[5 + x] - top[3 - x]);
282  iv += (x + 1) * (left[5 + x] - left[3 - x]);
283  }
284  ia = (top[8] + left[8]) << 4;
285  ih = (17 * ih + 16) >> 5;
286  iv = (17 * iv + 16) >> 5;
287  for (y = 0; y < 8; y++)
288  for (x = 0; x < 8; x++)
289  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
290 }
291 
292 #define LOWPASS(ARRAY, INDEX) \
293  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
294 
295 static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
296 {
297  int x, y;
298  for (y = 0; y < 8; y++)
299  for (x = 0; x < 8; x++)
300  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
301 }
302 
303 static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
304 {
305  int x, y;
306  for (y = 0; y < 8; y++)
307  for (x = 0; x < 8; x++)
308  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
309 }
310 
311 static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
312 {
313  int x, y;
314  for (y = 0; y < 8; y++)
315  for (x = 0; x < 8; x++)
316  if (x == y)
317  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
318  else if (x > y)
319  d[y * stride + x] = LOWPASS(top, x - y);
320  else
321  d[y * stride + x] = LOWPASS(left, y - x);
322 }
323 
324 static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
325 {
326  int x, y;
327  for (y = 0; y < 8; y++)
328  for (x = 0; x < 8; x++)
329  d[y * stride + x] = LOWPASS(left, y + 1);
330 }
331 
332 static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
333 {
334  int x, y;
335  for (y = 0; y < 8; y++)
336  for (x = 0; x < 8; x++)
337  d[y * stride + x] = LOWPASS(top, x + 1);
338 }
339 
340 #undef LOWPASS
341 
342 static inline void modify_pred(const int8_t *mod_table, int *mode)
343 {
344  *mode = mod_table[*mode];
345  if (*mode < 0) {
346  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
347  *mode = 0;
348  }
349 }
350 
351 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
352 {
353  /* save pred modes before they get modified */
354  h->pred_mode_Y[3] = h->pred_mode_Y[5];
355  h->pred_mode_Y[6] = h->pred_mode_Y[8];
356  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
357  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
358 
359  /* modify pred modes according to availability of neighbour samples */
360  if (!(h->flags & A_AVAIL)) {
363  modify_pred(left_modifier_c, pred_mode_uv);
364  }
365  if (!(h->flags & B_AVAIL)) {
368  modify_pred(top_modifier_c, pred_mode_uv);
369  }
370 }
371 
372 /*****************************************************************************
373  *
374  * motion compensation
375  *
376  ****************************************************************************/
377 
378 static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
379  int delta, int list, uint8_t *dest_y,
380  uint8_t *dest_cb, uint8_t *dest_cr,
381  int src_x_offset, int src_y_offset,
382  qpel_mc_func *qpix_op,
383  h264_chroma_mc_func chroma_op, cavs_vector *mv)
384 {
385  const int mx = mv->x + src_x_offset * 8;
386  const int my = mv->y + src_y_offset * 8;
387  const int luma_xy = (mx & 3) + ((my & 3) << 2);
388  uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
389  uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
390  uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
391  int extra_width = 0;
392  int extra_height = extra_width;
393  const int full_mx = mx >> 2;
394  const int full_my = my >> 2;
395  const int pic_width = 16 * h->mb_width;
396  const int pic_height = 16 * h->mb_height;
397  int emu = 0;
398 
399  if (!pic->data[0])
400  return;
401  if (mx & 7)
402  extra_width -= 3;
403  if (my & 7)
404  extra_height -= 3;
405 
406  if (full_mx < 0 - extra_width ||
407  full_my < 0 - extra_height ||
408  full_mx + 16 /* FIXME */ > pic_width + extra_width ||
409  full_my + 16 /* FIXME */ > pic_height + extra_height) {
411  src_y - 2 - 2 * h->l_stride, h->l_stride,
412  16 + 5, 16 + 5 /* FIXME */,
413  full_mx - 2, full_my - 2,
414  pic_width, pic_height);
415  src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
416  emu = 1;
417  }
418 
419  // FIXME try variable height perhaps?
420  qpix_op[luma_xy](dest_y, src_y, h->l_stride);
421 
422  if (emu) {
423  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, h->c_stride, src_cb,
424  h->c_stride,
425  9, 9 /* FIXME */,
426  mx >> 3, my >> 3,
427  pic_width >> 1, pic_height >> 1);
428  src_cb = h->edge_emu_buffer;
429  }
430  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
431 
432  if (emu) {
433  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, h->c_stride, src_cr,
434  h->c_stride,
435  9, 9 /* FIXME */,
436  mx >> 3, my >> 3,
437  pic_width >> 1, pic_height >> 1);
438  src_cr = h->edge_emu_buffer;
439  }
440  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
441 }
442 
443 static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
444  uint8_t *dest_y,
445  uint8_t *dest_cb,
446  uint8_t *dest_cr,
447  int x_offset, int y_offset,
448  qpel_mc_func *qpix_put,
449  h264_chroma_mc_func chroma_put,
450  qpel_mc_func *qpix_avg,
451  h264_chroma_mc_func chroma_avg,
452  cavs_vector *mv)
453 {
454  qpel_mc_func *qpix_op = qpix_put;
455  h264_chroma_mc_func chroma_op = chroma_put;
456 
457  dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
458  dest_cb += x_offset + y_offset * h->c_stride;
459  dest_cr += x_offset + y_offset * h->c_stride;
460  x_offset += 8 * h->mbx;
461  y_offset += 8 * h->mby;
462 
463  if (mv->ref >= 0) {
464  AVFrame *ref = h->DPB[mv->ref].f;
465  mc_dir_part(h, ref, chroma_height, delta, 0,
466  dest_y, dest_cb, dest_cr, x_offset, y_offset,
467  qpix_op, chroma_op, mv);
468 
469  qpix_op = qpix_avg;
470  chroma_op = chroma_avg;
471  }
472 
473  if ((mv + MV_BWD_OFFS)->ref >= 0) {
474  AVFrame *ref = h->DPB[0].f;
475  mc_dir_part(h, ref, chroma_height, delta, 1,
476  dest_y, dest_cb, dest_cr, x_offset, y_offset,
477  qpix_op, chroma_op, mv + MV_BWD_OFFS);
478  }
479 }
480 
481 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
482 {
483  if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
484  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
489  &h->mv[MV_FWD_X0]);
490  } else {
491  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
496  &h->mv[MV_FWD_X0]);
497  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
502  &h->mv[MV_FWD_X1]);
503  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
508  &h->mv[MV_FWD_X2]);
509  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
514  &h->mv[MV_FWD_X3]);
515  }
516 }
517 
518 /*****************************************************************************
519  *
520  * motion vector prediction
521  *
522  ****************************************************************************/
523 
524 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
525  cavs_vector *src, int distp)
526 {
527  int den = h->scale_den[src->ref];
528 
529  *d_x = (src->x * distp * den + 256 + (src->x >> 31)) >> 9;
530  *d_y = (src->y * distp * den + 256 + (src->y >> 31)) >> 9;
531 }
532 
533 static inline void mv_pred_median(AVSContext *h,
534  cavs_vector *mvP,
535  cavs_vector *mvA,
536  cavs_vector *mvB,
537  cavs_vector *mvC)
538 {
539  int ax, ay, bx, by, cx, cy;
540  int len_ab, len_bc, len_ca, len_mid;
541 
542  /* scale candidates according to their temporal span */
543  scale_mv(h, &ax, &ay, mvA, mvP->dist);
544  scale_mv(h, &bx, &by, mvB, mvP->dist);
545  scale_mv(h, &cx, &cy, mvC, mvP->dist);
546  /* find the geometrical median of the three candidates */
547  len_ab = abs(ax - bx) + abs(ay - by);
548  len_bc = abs(bx - cx) + abs(by - cy);
549  len_ca = abs(cx - ax) + abs(cy - ay);
550  len_mid = mid_pred(len_ab, len_bc, len_ca);
551  if (len_mid == len_ab) {
552  mvP->x = cx;
553  mvP->y = cy;
554  } else if (len_mid == len_bc) {
555  mvP->x = ax;
556  mvP->y = ay;
557  } else {
558  mvP->x = bx;
559  mvP->y = by;
560  }
561 }
562 
563 void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
564  enum cavs_mv_pred mode, enum cavs_block size, int ref)
565 {
566  cavs_vector *mvP = &h->mv[nP];
567  cavs_vector *mvA = &h->mv[nP-1];
568  cavs_vector *mvB = &h->mv[nP-4];
569  cavs_vector *mvC = &h->mv[nC];
570  const cavs_vector *mvP2 = NULL;
571 
572  mvP->ref = ref;
573  mvP->dist = h->dist[mvP->ref];
574  if (mvC->ref == NOT_AVAIL)
575  mvC = &h->mv[nP - 5]; // set to top-left (mvD)
576  if (mode == MV_PRED_PSKIP &&
577  (mvA->ref == NOT_AVAIL ||
578  mvB->ref == NOT_AVAIL ||
579  (mvA->x | mvA->y | mvA->ref) == 0 ||
580  (mvB->x | mvB->y | mvB->ref) == 0)) {
581  mvP2 = &un_mv;
582  /* if there is only one suitable candidate, take it */
583  } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
584  mvP2 = mvA;
585  } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
586  mvP2 = mvB;
587  } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
588  mvP2 = mvC;
589  } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
590  mvP2 = mvA;
591  } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
592  mvP2 = mvB;
593  } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
594  mvP2 = mvC;
595  }
596  if (mvP2) {
597  mvP->x = mvP2->x;
598  mvP->y = mvP2->y;
599  } else
600  mv_pred_median(h, mvP, mvA, mvB, mvC);
601 
602  if (mode < MV_PRED_PSKIP) {
603  mvP->x += get_se_golomb(&h->gb);
604  mvP->y += get_se_golomb(&h->gb);
605  }
606  set_mvs(mvP, size);
607 }
608 
609 /*****************************************************************************
610  *
611  * macroblock level
612  *
613  ****************************************************************************/
614 
615 /**
616  * initialise predictors for motion vectors and intra prediction
617  */
619 {
620  int i;
621 
622  /* copy predictors from top line (MB B and C) into cache */
623  for (i = 0; i < 3; i++) {
624  h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
625  h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
626  }
627  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
628  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
629  /* clear top predictors if MB B is not available */
630  if (!(h->flags & B_AVAIL)) {
631  h->mv[MV_FWD_B2] = un_mv;
632  h->mv[MV_FWD_B3] = un_mv;
633  h->mv[MV_BWD_B2] = un_mv;
634  h->mv[MV_BWD_B3] = un_mv;
635  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
636  h->flags &= ~(C_AVAIL | D_AVAIL);
637  } else if (h->mbx) {
638  h->flags |= D_AVAIL;
639  }
640  if (h->mbx == h->mb_width - 1) // MB C not available
641  h->flags &= ~C_AVAIL;
642  /* clear top-right predictors if MB C is not available */
643  if (!(h->flags & C_AVAIL)) {
644  h->mv[MV_FWD_C2] = un_mv;
645  h->mv[MV_BWD_C2] = un_mv;
646  }
647  /* clear top-left predictors if MB D is not available */
648  if (!(h->flags & D_AVAIL)) {
649  h->mv[MV_FWD_D3] = un_mv;
650  h->mv[MV_BWD_D3] = un_mv;
651  }
652 }
653 
654 /**
655  * save predictors for later macroblocks and increase
656  * macroblock address
657  * @return 0 if end of frame is reached, 1 otherwise
658  */
660 {
661  int i;
662 
663  h->flags |= A_AVAIL;
664  h->cy += 16;
665  h->cu += 8;
666  h->cv += 8;
667  /* copy mvs as predictors to the left */
668  for (i = 0; i <= 20; i += 4)
669  h->mv[i] = h->mv[i + 2];
670  /* copy bottom mvs from cache to top line */
671  h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
672  h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
673  h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
674  h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
675  /* next MB address */
676  h->mbidx++;
677  h->mbx++;
678  if (h->mbx == h->mb_width) { // New mb line
679  h->flags = B_AVAIL | C_AVAIL;
680  /* clear left pred_modes */
681  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
682  /* clear left mv predictors */
683  for (i = 0; i <= 20; i += 4)
684  h->mv[i] = un_mv;
685  h->mbx = 0;
686  h->mby++;
687  /* re-calculate sample pointers */
688  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
689  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
690  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
691  if (h->mby == h->mb_height) { // Frame end
692  return 0;
693  }
694  }
695  return 1;
696 }
697 
698 /*****************************************************************************
699  *
700  * frame level
701  *
702  ****************************************************************************/
703 
705 {
706  int i;
707 
708  /* clear some predictors */
709  for (i = 0; i <= 20; i += 4)
710  h->mv[i] = un_mv;
712  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
714  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
715  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
716  h->cy = h->cur.f->data[0];
717  h->cu = h->cur.f->data[1];
718  h->cv = h->cur.f->data[2];
719  h->l_stride = h->cur.f->linesize[0];
720  h->c_stride = h->cur.f->linesize[1];
721  h->luma_scan[2] = 8 * h->l_stride;
722  h->luma_scan[3] = 8 * h->l_stride + 8;
723  h->mbx = h->mby = h->mbidx = 0;
724  h->flags = 0;
725 
726  return 0;
727 }
728 
729 /*****************************************************************************
730  *
731  * headers and interface
732  *
733  ****************************************************************************/
734 
735 /**
736  * some predictions require data from the top-neighbouring macroblock.
737  * this data has to be stored for one complete row of macroblocks
738  * and this storage space is allocated here
739  */
741 {
742  /* alloc top line of predictors */
743  h->top_qp = av_mallocz(h->mb_width);
744  h->top_mv[0] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
745  h->top_mv[1] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
746  h->top_pred_Y = av_mallocz(h->mb_width * 2 * sizeof(*h->top_pred_Y));
747  h->top_border_y = av_mallocz((h->mb_width + 1) * 16);
748  h->top_border_u = av_mallocz(h->mb_width * 10);
749  h->top_border_v = av_mallocz(h->mb_width * 10);
750 
751  /* alloc space for co-located MVs and types */
752  h->col_mv = av_mallocz(h->mb_width * h->mb_height * 4 *
753  sizeof(cavs_vector));
755  h->block = av_mallocz(64 * sizeof(int16_t));
756 }
757 
759 {
760  AVSContext *h = avctx->priv_data;
761 
762  ff_dsputil_init(&h->dsp, avctx);
764  ff_videodsp_init(&h->vdsp, 8);
765  ff_cavsdsp_init(&h->cdsp, avctx);
767  h->cdsp.idct_perm);
769 
770  h->avctx = avctx;
771  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
772 
773  h->cur.f = av_frame_alloc();
774  h->DPB[0].f = av_frame_alloc();
775  h->DPB[1].f = av_frame_alloc();
776  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
777  ff_cavs_end(avctx);
778  return AVERROR(ENOMEM);
779  }
780 
781  h->luma_scan[0] = 0;
782  h->luma_scan[1] = 8;
798  h->mv[7] = un_mv;
799  h->mv[19] = un_mv;
800  return 0;
801 }
802 
804 {
805  AVSContext *h = avctx->priv_data;
806 
807  av_frame_free(&h->cur.f);
808  av_frame_free(&h->DPB[0].f);
809  av_frame_free(&h->DPB[1].f);
810 
811  av_free(h->top_qp);
812  av_free(h->top_mv[0]);
813  av_free(h->top_mv[1]);
814  av_free(h->top_pred_Y);
815  av_free(h->top_border_y);
816  av_free(h->top_border_u);
817  av_free(h->top_border_v);
818  av_free(h->col_mv);
820  av_free(h->block);
822  return 0;
823 }