FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utvideoenc.c
Go to the documentation of this file.
1 /*
2  * Ut Video encoder
3  * Copyright (c) 2012 Jan Ekström
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Ut Video encoder
25  */
26 
27 #include "libavutil/imgutils.h"
28 #include "libavutil/intreadwrite.h"
29 #include "avcodec.h"
30 #include "internal.h"
31 #include "bytestream.h"
32 #include "put_bits.h"
33 #include "dsputil.h"
34 #include "mathops.h"
35 #include "utvideo.h"
36 #include "huffman.h"
37 
38 /* Compare huffentry symbols */
39 static int huff_cmp_sym(const void *a, const void *b)
40 {
41  const HuffEntry *aa = a, *bb = b;
42  return aa->sym - bb->sym;
43 }
44 
46 {
47  UtvideoContext *c = avctx->priv_data;
48  int i;
49 
50  av_freep(&avctx->coded_frame);
51  av_freep(&c->slice_bits);
52  for (i = 0; i < 4; i++)
53  av_freep(&c->slice_buffer[i]);
54 
55  return 0;
56 }
57 
59 {
60  UtvideoContext *c = avctx->priv_data;
61  int i;
62  uint32_t original_format;
63 
64  c->avctx = avctx;
65  c->frame_info_size = 4;
66  c->slice_stride = FFALIGN(avctx->width, 32);
67 
68  switch (avctx->pix_fmt) {
69  case AV_PIX_FMT_RGB24:
70  c->planes = 3;
71  avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
72  original_format = UTVIDEO_RGB;
73  break;
74  case AV_PIX_FMT_RGBA:
75  c->planes = 4;
76  avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
77  original_format = UTVIDEO_RGBA;
78  break;
79  case AV_PIX_FMT_YUV420P:
80  if (avctx->width & 1 || avctx->height & 1) {
81  av_log(avctx, AV_LOG_ERROR,
82  "4:2:0 video requires even width and height.\n");
83  return AVERROR_INVALIDDATA;
84  }
85  c->planes = 3;
86  avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
87  original_format = UTVIDEO_420;
88  break;
89  case AV_PIX_FMT_YUV422P:
90  if (avctx->width & 1) {
91  av_log(avctx, AV_LOG_ERROR,
92  "4:2:2 video requires even width.\n");
93  return AVERROR_INVALIDDATA;
94  }
95  c->planes = 3;
96  avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
97  original_format = UTVIDEO_422;
98  break;
99  default:
100  av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
101  avctx->pix_fmt);
102  return AVERROR_INVALIDDATA;
103  }
104 
105  ff_dsputil_init(&c->dsp, avctx);
106 
107  /* Check the prediction method, and error out if unsupported */
108  if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
109  av_log(avctx, AV_LOG_WARNING,
110  "Prediction method %d is not supported in Ut Video.\n",
111  avctx->prediction_method);
113  }
114 
115  if (avctx->prediction_method == FF_PRED_PLANE) {
116  av_log(avctx, AV_LOG_ERROR,
117  "Plane prediction is not supported in Ut Video.\n");
119  }
120 
121  /* Convert from libavcodec prediction type to Ut Video's */
123 
124  if (c->frame_pred == PRED_GRADIENT) {
125  av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
127  }
128 
129  avctx->coded_frame = avcodec_alloc_frame();
130 
131  if (!avctx->coded_frame) {
132  av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
133  utvideo_encode_close(avctx);
134  return AVERROR(ENOMEM);
135  }
136 
137  /* extradata size is 4 * 32bit */
138  avctx->extradata_size = 16;
139 
140  avctx->extradata = av_mallocz(avctx->extradata_size +
142 
143  if (!avctx->extradata) {
144  av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
145  utvideo_encode_close(avctx);
146  return AVERROR(ENOMEM);
147  }
148 
149  for (i = 0; i < c->planes; i++) {
150  c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
152  if (!c->slice_buffer[i]) {
153  av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
154  utvideo_encode_close(avctx);
155  return AVERROR(ENOMEM);
156  }
157  }
158 
159  /*
160  * Set the version of the encoder.
161  * Last byte is "implementation ID", which is
162  * obtained from the creator of the format.
163  * Libavcodec has been assigned with the ID 0xF0.
164  */
165  AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
166 
167  /*
168  * Set the "original format"
169  * Not used for anything during decoding.
170  */
171  AV_WL32(avctx->extradata + 4, original_format);
172 
173  /* Write 4 as the 'frame info size' */
174  AV_WL32(avctx->extradata + 8, c->frame_info_size);
175 
176  /*
177  * Set how many slices are going to be used.
178  * Set one slice for now.
179  */
180  c->slices = 1;
181 
182  /* Set compression mode */
183  c->compression = COMP_HUFF;
184 
185  /*
186  * Set the encoding flags:
187  * - Slice count minus 1
188  * - Interlaced encoding mode flag, set to zero for now.
189  * - Compression mode (none/huff)
190  * And write the flags.
191  */
192  c->flags = (c->slices - 1) << 24;
193  c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
194  c->flags |= c->compression;
195 
196  AV_WL32(avctx->extradata + 12, c->flags);
197 
198  return 0;
199 }
200 
201 static void mangle_rgb_planes(uint8_t *dst[4], int dst_stride, uint8_t *src,
202  int step, int stride, int width, int height)
203 {
204  int i, j;
205  int k = 2 * dst_stride;
206  unsigned int g;
207 
208  for (j = 0; j < height; j++) {
209  if (step == 3) {
210  for (i = 0; i < width * step; i += step) {
211  g = src[i + 1];
212  dst[0][k] = g;
213  g += 0x80;
214  dst[1][k] = src[i + 2] - g;
215  dst[2][k] = src[i + 0] - g;
216  k++;
217  }
218  } else {
219  for (i = 0; i < width * step; i += step) {
220  g = src[i + 1];
221  dst[0][k] = g;
222  g += 0x80;
223  dst[1][k] = src[i + 2] - g;
224  dst[2][k] = src[i + 0] - g;
225  dst[3][k] = src[i + 3];
226  k++;
227  }
228  }
229  k += dst_stride - width;
230  src += stride;
231  }
232 }
233 
234 /* Write data to a plane with left prediction */
235 static void left_predict(uint8_t *src, uint8_t *dst, int stride,
236  int width, int height)
237 {
238  int i, j;
239  uint8_t prev;
240 
241  prev = 0x80; /* Set the initial value */
242  for (j = 0; j < height; j++) {
243  for (i = 0; i < width; i++) {
244  *dst++ = src[i] - prev;
245  prev = src[i];
246  }
247  src += stride;
248  }
249 }
250 
251 /* Write data to a plane with median prediction */
253  int width, int height)
254 {
255  int i, j;
256  int A, B;
257  uint8_t prev;
258 
259  /* First line uses left neighbour prediction */
260  prev = 0x80; /* Set the initial value */
261  for (i = 0; i < width; i++) {
262  *dst++ = src[i] - prev;
263  prev = src[i];
264  }
265 
266  if (height == 1)
267  return;
268 
269  src += stride;
270 
271  /*
272  * Second line uses top prediction for the first sample,
273  * and median for the rest.
274  */
275  A = B = 0;
276 
277  /* Rest of the coded part uses median prediction */
278  for (j = 1; j < height; j++) {
279  c->dsp.sub_hfyu_median_prediction(dst, src - stride, src, width, &A, &B);
280  dst += width;
281  src += stride;
282  }
283 }
284 
285 /* Count the usage of values in a plane */
286 static void count_usage(uint8_t *src, int width,
287  int height, uint64_t *counts)
288 {
289  int i, j;
290 
291  for (j = 0; j < height; j++) {
292  for (i = 0; i < width; i++) {
293  counts[src[i]]++;
294  }
295  src += width;
296  }
297 }
298 
299 /* Calculate the actual huffman codes from the code lengths */
300 static void calculate_codes(HuffEntry *he)
301 {
302  int last, i;
303  uint32_t code;
304 
305  qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
306 
307  last = 255;
308  while (he[last].len == 255 && last)
309  last--;
310 
311  code = 1;
312  for (i = last; i >= 0; i--) {
313  he[i].code = code >> (32 - he[i].len);
314  code += 0x80000000u >> (he[i].len - 1);
315  }
316 
317  qsort(he, 256, sizeof(*he), huff_cmp_sym);
318 }
319 
320 /* Write huffman bit codes to a memory block */
321 static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
322  int width, int height, HuffEntry *he)
323 {
324  PutBitContext pb;
325  int i, j;
326  int count;
327 
328  init_put_bits(&pb, dst, dst_size);
329 
330  /* Write the codes */
331  for (j = 0; j < height; j++) {
332  for (i = 0; i < width; i++)
333  put_bits(&pb, he[src[i]].len, he[src[i]].code);
334 
335  src += width;
336  }
337 
338  /* Pad output to a 32bit boundary */
339  count = put_bits_count(&pb) & 0x1F;
340 
341  if (count)
342  put_bits(&pb, 32 - count, 0);
343 
344  /* Get the amount of bits written */
345  count = put_bits_count(&pb);
346 
347  /* Flush the rest with zeroes */
348  flush_put_bits(&pb);
349 
350  return count;
351 }
352 
354  uint8_t *dst, int stride,
355  int width, int height, PutByteContext *pb)
356 {
357  UtvideoContext *c = avctx->priv_data;
358  uint8_t lengths[256];
359  uint64_t counts[256] = { 0 };
360 
361  HuffEntry he[256];
362 
363  uint32_t offset = 0, slice_len = 0;
364  int i, sstart, send = 0;
365  int symbol;
366 
367  /* Do prediction / make planes */
368  switch (c->frame_pred) {
369  case PRED_NONE:
370  for (i = 0; i < c->slices; i++) {
371  sstart = send;
372  send = height * (i + 1) / c->slices;
373  av_image_copy_plane(dst + sstart * width, width,
374  src + sstart * stride, stride,
375  width, send - sstart);
376  }
377  break;
378  case PRED_LEFT:
379  for (i = 0; i < c->slices; i++) {
380  sstart = send;
381  send = height * (i + 1) / c->slices;
382  left_predict(src + sstart * stride, dst + sstart * width,
383  stride, width, send - sstart);
384  }
385  break;
386  case PRED_MEDIAN:
387  for (i = 0; i < c->slices; i++) {
388  sstart = send;
389  send = height * (i + 1) / c->slices;
390  median_predict(c, src + sstart * stride, dst + sstart * width,
391  stride, width, send - sstart);
392  }
393  break;
394  default:
395  av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
396  c->frame_pred);
398  }
399 
400  /* Count the usage of values */
401  count_usage(dst, width, height, counts);
402 
403  /* Check for a special case where only one symbol was used */
404  for (symbol = 0; symbol < 256; symbol++) {
405  /* If non-zero count is found, see if it matches width * height */
406  if (counts[symbol]) {
407  /* Special case if only one symbol was used */
408  if (counts[symbol] == width * (int64_t)height) {
409  /*
410  * Write a zero for the single symbol
411  * used in the plane, else 0xFF.
412  */
413  for (i = 0; i < 256; i++) {
414  if (i == symbol)
415  bytestream2_put_byte(pb, 0);
416  else
417  bytestream2_put_byte(pb, 0xFF);
418  }
419 
420  /* Write zeroes for lengths */
421  for (i = 0; i < c->slices; i++)
422  bytestream2_put_le32(pb, 0);
423 
424  /* And that's all for that plane folks */
425  return 0;
426  }
427  break;
428  }
429  }
430 
431  /* Calculate huffman lengths */
432  ff_huff_gen_len_table(lengths, counts);
433 
434  /*
435  * Write the plane's header into the output packet:
436  * - huffman code lengths (256 bytes)
437  * - slice end offsets (gotten from the slice lengths)
438  */
439  for (i = 0; i < 256; i++) {
440  bytestream2_put_byte(pb, lengths[i]);
441 
442  he[i].len = lengths[i];
443  he[i].sym = i;
444  }
445 
446  /* Calculate the huffman codes themselves */
447  calculate_codes(he);
448 
449  send = 0;
450  for (i = 0; i < c->slices; i++) {
451  sstart = send;
452  send = height * (i + 1) / c->slices;
453 
454  /*
455  * Write the huffman codes to a buffer,
456  * get the offset in bits and convert to bytes.
457  */
458  offset += write_huff_codes(dst + sstart * width, c->slice_bits,
459  width * (send - sstart), width,
460  send - sstart, he) >> 3;
461 
462  slice_len = offset - slice_len;
463 
464  /* Byteswap the written huffman codes */
465  c->dsp.bswap_buf((uint32_t *) c->slice_bits,
466  (uint32_t *) c->slice_bits,
467  slice_len >> 2);
468 
469  /* Write the offset to the stream */
470  bytestream2_put_le32(pb, offset);
471 
472  /* Seek to the data part of the packet */
473  bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
474  offset - slice_len, SEEK_CUR);
475 
476  /* Write the slices' data into the output packet */
477  bytestream2_put_buffer(pb, c->slice_bits, slice_len);
478 
479  /* Seek back to the slice offsets */
480  bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
481  SEEK_CUR);
482 
483  slice_len = offset;
484  }
485 
486  /* And at the end seek to the end of written slice(s) */
487  bytestream2_seek_p(pb, offset, SEEK_CUR);
488 
489  return 0;
490 }
491 
493  const AVFrame *pic, int *got_packet)
494 {
495  UtvideoContext *c = avctx->priv_data;
496  PutByteContext pb;
497 
498  uint32_t frame_info;
499 
500  uint8_t *dst;
501 
502  int width = avctx->width, height = avctx->height;
503  int i, ret = 0;
504 
505  /* Allocate a new packet if needed, and set it to the pointer dst */
506  ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
507  c->planes + 4);
508 
509  if (ret < 0)
510  return ret;
511 
512  dst = pkt->data;
513 
514  bytestream2_init_writer(&pb, dst, pkt->size);
515 
517  width * height + FF_INPUT_BUFFER_PADDING_SIZE);
518 
519  if (!c->slice_bits) {
520  av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
521  return AVERROR(ENOMEM);
522  }
523 
524  /* In case of RGB, mangle the planes to Ut Video's format */
525  if (avctx->pix_fmt == AV_PIX_FMT_RGBA || avctx->pix_fmt == AV_PIX_FMT_RGB24)
527  c->planes, pic->linesize[0], width, height);
528 
529  /* Deal with the planes */
530  switch (avctx->pix_fmt) {
531  case AV_PIX_FMT_RGB24:
532  case AV_PIX_FMT_RGBA:
533  for (i = 0; i < c->planes; i++) {
534  ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
535  c->slice_buffer[i], c->slice_stride,
536  width, height, &pb);
537 
538  if (ret) {
539  av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
540  return ret;
541  }
542  }
543  break;
544  case AV_PIX_FMT_YUV422P:
545  for (i = 0; i < c->planes; i++) {
546  ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
547  pic->linesize[i], width >> !!i, height, &pb);
548 
549  if (ret) {
550  av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
551  return ret;
552  }
553  }
554  break;
555  case AV_PIX_FMT_YUV420P:
556  for (i = 0; i < c->planes; i++) {
557  ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
558  pic->linesize[i], width >> !!i, height >> !!i,
559  &pb);
560 
561  if (ret) {
562  av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
563  return ret;
564  }
565  }
566  break;
567  default:
568  av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
569  avctx->pix_fmt);
570  return AVERROR_INVALIDDATA;
571  }
572 
573  /*
574  * Write frame information (LE 32bit unsigned)
575  * into the output packet.
576  * Contains the prediction method.
577  */
578  frame_info = c->frame_pred << 8;
579  bytestream2_put_le32(&pb, frame_info);
580 
581  /*
582  * At least currently Ut Video is IDR only.
583  * Set flags accordingly.
584  */
585  avctx->coded_frame->key_frame = 1;
587 
588  pkt->size = bytestream2_tell_p(&pb);
589  pkt->flags |= AV_PKT_FLAG_KEY;
590 
591  /* Packet should be done */
592  *got_packet = 1;
593 
594  return 0;
595 }
596 
598  .name = "utvideo",
599  .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
600  .type = AVMEDIA_TYPE_VIDEO,
601  .id = AV_CODEC_ID_UTVIDEO,
602  .priv_data_size = sizeof(UtvideoContext),
604  .encode2 = utvideo_encode_frame,
606  .pix_fmts = (const enum AVPixelFormat[]) {
609  },
610 };