FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cook.c
Go to the documentation of this file.
1 /*
2  * COOK compatible decoder
3  * Copyright (c) 2003 Sascha Sommer
4  * Copyright (c) 2005 Benjamin Larsson
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Cook compatible decoder. Bastardization of the G.722.1 standard.
26  * This decoder handles RealNetworks, RealAudio G2 data.
27  * Cook is identified by the codec name cook in RM files.
28  *
29  * To use this decoder, a calling application must supply the extradata
30  * bytes provided from the RM container; 8+ bytes for mono streams and
31  * 16+ for stereo streams (maybe more).
32  *
33  * Codec technicalities (all this assume a buffer length of 1024):
34  * Cook works with several different techniques to achieve its compression.
35  * In the timedomain the buffer is divided into 8 pieces and quantized. If
36  * two neighboring pieces have different quantization index a smooth
37  * quantization curve is used to get a smooth overlap between the different
38  * pieces.
39  * To get to the transformdomain Cook uses a modulated lapped transform.
40  * The transform domain has 50 subbands with 20 elements each. This
41  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42  * available.
43  */
44 
46 #include "libavutil/lfg.h"
47 #include "avcodec.h"
48 #include "get_bits.h"
49 #include "dsputil.h"
50 #include "bytestream.h"
51 #include "fft.h"
52 #include "internal.h"
53 #include "sinewin.h"
54 #include "unary.h"
55 
56 #include "cookdata.h"
57 
58 /* the different Cook versions */
59 #define MONO 0x1000001
60 #define STEREO 0x1000002
61 #define JOINT_STEREO 0x1000003
62 #define MC_COOK 0x2000000 // multichannel Cook, not supported
63 
64 #define SUBBAND_SIZE 20
65 #define MAX_SUBPACKETS 5
66 
67 typedef struct {
68  int *now;
69  int *previous;
70 } cook_gains;
71 
72 typedef struct {
73  int ch_idx;
74  int size;
77  int subbands;
82  unsigned int channel_mask;
88  int numvector_size; // 1 << log2_numvector_size;
89 
90  float mono_previous_buffer1[1024];
91  float mono_previous_buffer2[1024];
92 
95  int gain_1[9];
96  int gain_2[9];
97  int gain_3[9];
98  int gain_4[9];
100 
101 typedef struct cook {
102  /*
103  * The following 5 functions provide the lowlevel arithmetic on
104  * the internal audio buffers.
105  */
106  void (*scalar_dequant)(struct cook *q, int index, int quant_index,
107  int *subband_coef_index, int *subband_coef_sign,
108  float *mlt_p);
109 
110  void (*decouple)(struct cook *q,
111  COOKSubpacket *p,
112  int subband,
113  float f1, float f2,
114  float *decode_buffer,
115  float *mlt_buffer1, float *mlt_buffer2);
116 
117  void (*imlt_window)(struct cook *q, float *buffer1,
118  cook_gains *gains_ptr, float *previous_buffer);
119 
120  void (*interpolate)(struct cook *q, float *buffer,
121  int gain_index, int gain_index_next);
122 
123  void (*saturate_output)(struct cook *q, float *out);
124 
128  /* stream data */
131  /* states */
134 
135  /* transform data */
137  float* mlt_window;
138 
139  /* VLC data */
140  VLC envelope_quant_index[13];
141  VLC sqvh[7]; // scalar quantization
142 
143  /* generatable tables and related variables */
145  float gain_table[23];
146 
147  /* data buffers */
148 
150  DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
151  float decode_buffer_1[1024];
152  float decode_buffer_2[1024];
153  float decode_buffer_0[1060]; /* static allocation for joint decode */
154 
155  const float *cplscales[5];
158 } COOKContext;
159 
160 static float pow2tab[127];
161 static float rootpow2tab[127];
162 
163 /*************** init functions ***************/
164 
165 /* table generator */
166 static av_cold void init_pow2table(void)
167 {
168  int i;
169  for (i = -63; i < 64; i++) {
170  pow2tab[63 + i] = pow(2, i);
171  rootpow2tab[63 + i] = sqrt(pow(2, i));
172  }
173 }
174 
175 /* table generator */
177 {
178  int i;
180  for (i = 0; i < 23; i++)
181  q->gain_table[i] = pow(pow2tab[i + 52],
182  (1.0 / (double) q->gain_size_factor));
183 }
184 
185 
187 {
188  int i, result;
189 
190  result = 0;
191  for (i = 0; i < 13; i++) {
192  result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
194  envelope_quant_index_huffcodes[i], 2, 2, 0);
195  }
196  av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
197  for (i = 0; i < 7; i++) {
198  result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
199  cvh_huffbits[i], 1, 1,
200  cvh_huffcodes[i], 2, 2, 0);
201  }
202 
203  for (i = 0; i < q->num_subpackets; i++) {
204  if (q->subpacket[i].joint_stereo == 1) {
205  result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
206  (1 << q->subpacket[i].js_vlc_bits) - 1,
207  ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
208  ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
209  av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
210  }
211  }
212 
213  av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
214  return result;
215 }
216 
218 {
219  int j, ret;
220  int mlt_size = q->samples_per_channel;
221 
222  if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
223  return AVERROR(ENOMEM);
224 
225  /* Initialize the MLT window: simple sine window. */
226  ff_sine_window_init(q->mlt_window, mlt_size);
227  for (j = 0; j < mlt_size; j++)
228  q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
229 
230  /* Initialize the MDCT. */
231  if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
232  av_freep(&q->mlt_window);
233  return ret;
234  }
235  av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
236  av_log2(mlt_size) + 1);
237 
238  return 0;
239 }
240 
242 {
243  int i;
244  for (i = 0; i < 5; i++)
245  q->cplscales[i] = cplscales[i];
246 }
247 
248 /*************** init functions end ***********/
249 
250 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
251 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
252 
253 /**
254  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
255  * Why? No idea, some checksum/error detection method maybe.
256  *
257  * Out buffer size: extra bytes are needed to cope with
258  * padding/misalignment.
259  * Subpackets passed to the decoder can contain two, consecutive
260  * half-subpackets, of identical but arbitrary size.
261  * 1234 1234 1234 1234 extraA extraB
262  * Case 1: AAAA BBBB 0 0
263  * Case 2: AAAA ABBB BB-- 3 3
264  * Case 3: AAAA AABB BBBB 2 2
265  * Case 4: AAAA AAAB BBBB BB-- 1 5
266  *
267  * Nice way to waste CPU cycles.
268  *
269  * @param inbuffer pointer to byte array of indata
270  * @param out pointer to byte array of outdata
271  * @param bytes number of bytes
272  */
273 static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
274 {
275  static const uint32_t tab[4] = {
276  AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
277  AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
278  };
279  int i, off;
280  uint32_t c;
281  const uint32_t *buf;
282  uint32_t *obuf = (uint32_t *) out;
283  /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
284  * I'm too lazy though, should be something like
285  * for (i = 0; i < bitamount / 64; i++)
286  * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
287  * Buffer alignment needs to be checked. */
288 
289  off = (intptr_t) inbuffer & 3;
290  buf = (const uint32_t *) (inbuffer - off);
291  c = tab[off];
292  bytes += 3 + off;
293  for (i = 0; i < bytes / 4; i++)
294  obuf[i] = c ^ buf[i];
295 
296  return off;
297 }
298 
300 {
301  int i;
302  COOKContext *q = avctx->priv_data;
303  av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
304 
305  /* Free allocated memory buffers. */
306  av_freep(&q->mlt_window);
308 
309  /* Free the transform. */
310  ff_mdct_end(&q->mdct_ctx);
311 
312  /* Free the VLC tables. */
313  for (i = 0; i < 13; i++)
315  for (i = 0; i < 7; i++)
316  ff_free_vlc(&q->sqvh[i]);
317  for (i = 0; i < q->num_subpackets; i++)
319 
320  av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
321 
322  return 0;
323 }
324 
325 /**
326  * Fill the gain array for the timedomain quantization.
327  *
328  * @param gb pointer to the GetBitContext
329  * @param gaininfo array[9] of gain indexes
330  */
331 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
332 {
333  int i, n;
334 
335  n = get_unary(gb, 0, get_bits_left(gb)); // amount of elements*2 to update
336 
337  i = 0;
338  while (n--) {
339  int index = get_bits(gb, 3);
340  int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
341 
342  while (i <= index)
343  gaininfo[i++] = gain;
344  }
345  while (i <= 8)
346  gaininfo[i++] = 0;
347 }
348 
349 /**
350  * Create the quant index table needed for the envelope.
351  *
352  * @param q pointer to the COOKContext
353  * @param quant_index_table pointer to the array
354  */
356  int *quant_index_table)
357 {
358  int i, j, vlc_index;
359 
360  quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
361 
362  for (i = 1; i < p->total_subbands; i++) {
363  vlc_index = i;
364  if (i >= p->js_subband_start * 2) {
365  vlc_index -= p->js_subband_start;
366  } else {
367  vlc_index /= 2;
368  if (vlc_index < 1)
369  vlc_index = 1;
370  }
371  if (vlc_index > 13)
372  vlc_index = 13; // the VLC tables >13 are identical to No. 13
373 
374  j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
375  q->envelope_quant_index[vlc_index - 1].bits, 2);
376  quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
377  if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
379  "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
380  quant_index_table[i], i);
381  return AVERROR_INVALIDDATA;
382  }
383  }
384 
385  return 0;
386 }
387 
388 /**
389  * Calculate the category and category_index vector.
390  *
391  * @param q pointer to the COOKContext
392  * @param quant_index_table pointer to the array
393  * @param category pointer to the category array
394  * @param category_index pointer to the category_index array
395  */
396 static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
397  int *category, int *category_index)
398 {
399  int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
400  int exp_index2[102] = { 0 };
401  int exp_index1[102] = { 0 };
402 
403  int tmp_categorize_array[128 * 2] = { 0 };
404  int tmp_categorize_array1_idx = p->numvector_size;
405  int tmp_categorize_array2_idx = p->numvector_size;
406 
407  bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
408 
409  if (bits_left > q->samples_per_channel)
410  bits_left = q->samples_per_channel +
411  ((bits_left - q->samples_per_channel) * 5) / 8;
412 
413  bias = -32;
414 
415  /* Estimate bias. */
416  for (i = 32; i > 0; i = i / 2) {
417  num_bits = 0;
418  index = 0;
419  for (j = p->total_subbands; j > 0; j--) {
420  exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
421  index++;
422  num_bits += expbits_tab[exp_idx];
423  }
424  if (num_bits >= bits_left - 32)
425  bias += i;
426  }
427 
428  /* Calculate total number of bits. */
429  num_bits = 0;
430  for (i = 0; i < p->total_subbands; i++) {
431  exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
432  num_bits += expbits_tab[exp_idx];
433  exp_index1[i] = exp_idx;
434  exp_index2[i] = exp_idx;
435  }
436  tmpbias1 = tmpbias2 = num_bits;
437 
438  for (j = 1; j < p->numvector_size; j++) {
439  if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
440  int max = -999999;
441  index = -1;
442  for (i = 0; i < p->total_subbands; i++) {
443  if (exp_index1[i] < 7) {
444  v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
445  if (v >= max) {
446  max = v;
447  index = i;
448  }
449  }
450  }
451  if (index == -1)
452  break;
453  tmp_categorize_array[tmp_categorize_array1_idx++] = index;
454  tmpbias1 -= expbits_tab[exp_index1[index]] -
455  expbits_tab[exp_index1[index] + 1];
456  ++exp_index1[index];
457  } else { /* <--- */
458  int min = 999999;
459  index = -1;
460  for (i = 0; i < p->total_subbands; i++) {
461  if (exp_index2[i] > 0) {
462  v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
463  if (v < min) {
464  min = v;
465  index = i;
466  }
467  }
468  }
469  if (index == -1)
470  break;
471  tmp_categorize_array[--tmp_categorize_array2_idx] = index;
472  tmpbias2 -= expbits_tab[exp_index2[index]] -
473  expbits_tab[exp_index2[index] - 1];
474  --exp_index2[index];
475  }
476  }
477 
478  for (i = 0; i < p->total_subbands; i++)
479  category[i] = exp_index2[i];
480 
481  for (i = 0; i < p->numvector_size - 1; i++)
482  category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
483 }
484 
485 
486 /**
487  * Expand the category vector.
488  *
489  * @param q pointer to the COOKContext
490  * @param category pointer to the category array
491  * @param category_index pointer to the category_index array
492  */
493 static inline void expand_category(COOKContext *q, int *category,
494  int *category_index)
495 {
496  int i;
497  for (i = 0; i < q->num_vectors; i++)
498  {
499  int idx = category_index[i];
500  if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
501  --category[idx];
502  }
503 }
504 
505 /**
506  * The real requantization of the mltcoefs
507  *
508  * @param q pointer to the COOKContext
509  * @param index index
510  * @param quant_index quantisation index
511  * @param subband_coef_index array of indexes to quant_centroid_tab
512  * @param subband_coef_sign signs of coefficients
513  * @param mlt_p pointer into the mlt buffer
514  */
515 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
516  int *subband_coef_index, int *subband_coef_sign,
517  float *mlt_p)
518 {
519  int i;
520  float f1;
521 
522  for (i = 0; i < SUBBAND_SIZE; i++) {
523  if (subband_coef_index[i]) {
524  f1 = quant_centroid_tab[index][subband_coef_index[i]];
525  if (subband_coef_sign[i])
526  f1 = -f1;
527  } else {
528  /* noise coding if subband_coef_index[i] == 0 */
529  f1 = dither_tab[index];
530  if (av_lfg_get(&q->random_state) < 0x80000000)
531  f1 = -f1;
532  }
533  mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
534  }
535 }
536 /**
537  * Unpack the subband_coef_index and subband_coef_sign vectors.
538  *
539  * @param q pointer to the COOKContext
540  * @param category pointer to the category array
541  * @param subband_coef_index array of indexes to quant_centroid_tab
542  * @param subband_coef_sign signs of coefficients
543  */
544 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
545  int *subband_coef_index, int *subband_coef_sign)
546 {
547  int i, j;
548  int vlc, vd, tmp, result;
549 
550  vd = vd_tab[category];
551  result = 0;
552  for (i = 0; i < vpr_tab[category]; i++) {
553  vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
554  if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
555  vlc = 0;
556  result = 1;
557  }
558  for (j = vd - 1; j >= 0; j--) {
559  tmp = (vlc * invradix_tab[category]) / 0x100000;
560  subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
561  vlc = tmp;
562  }
563  for (j = 0; j < vd; j++) {
564  if (subband_coef_index[i * vd + j]) {
565  if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
566  subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
567  } else {
568  result = 1;
569  subband_coef_sign[i * vd + j] = 0;
570  }
571  } else {
572  subband_coef_sign[i * vd + j] = 0;
573  }
574  }
575  }
576  return result;
577 }
578 
579 
580 /**
581  * Fill the mlt_buffer with mlt coefficients.
582  *
583  * @param q pointer to the COOKContext
584  * @param category pointer to the category array
585  * @param quant_index_table pointer to the array
586  * @param mlt_buffer pointer to mlt coefficients
587  */
588 static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
589  int *quant_index_table, float *mlt_buffer)
590 {
591  /* A zero in this table means that the subband coefficient is
592  random noise coded. */
593  int subband_coef_index[SUBBAND_SIZE];
594  /* A zero in this table means that the subband coefficient is a
595  positive multiplicator. */
596  int subband_coef_sign[SUBBAND_SIZE];
597  int band, j;
598  int index = 0;
599 
600  for (band = 0; band < p->total_subbands; band++) {
601  index = category[band];
602  if (category[band] < 7) {
603  if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
604  index = 7;
605  for (j = 0; j < p->total_subbands; j++)
606  category[band + j] = 7;
607  }
608  }
609  if (index >= 7) {
610  memset(subband_coef_index, 0, sizeof(subband_coef_index));
611  memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
612  }
613  q->scalar_dequant(q, index, quant_index_table[band],
614  subband_coef_index, subband_coef_sign,
615  &mlt_buffer[band * SUBBAND_SIZE]);
616  }
617 
618  /* FIXME: should this be removed, or moved into loop above? */
620  return;
621 }
622 
623 
624 static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
625 {
626  int category_index[128] = { 0 };
627  int category[128] = { 0 };
628  int quant_index_table[102];
629  int res, i;
630 
631  if ((res = decode_envelope(q, p, quant_index_table)) < 0)
632  return res;
634  categorize(q, p, quant_index_table, category, category_index);
635  expand_category(q, category, category_index);
636  for (i=0; i<p->total_subbands; i++) {
637  if (category[i] > 7)
638  return AVERROR_INVALIDDATA;
639  }
640  decode_vectors(q, p, category, quant_index_table, mlt_buffer);
641 
642  return 0;
643 }
644 
645 
646 /**
647  * the actual requantization of the timedomain samples
648  *
649  * @param q pointer to the COOKContext
650  * @param buffer pointer to the timedomain buffer
651  * @param gain_index index for the block multiplier
652  * @param gain_index_next index for the next block multiplier
653  */
654 static void interpolate_float(COOKContext *q, float *buffer,
655  int gain_index, int gain_index_next)
656 {
657  int i;
658  float fc1, fc2;
659  fc1 = pow2tab[gain_index + 63];
660 
661  if (gain_index == gain_index_next) { // static gain
662  for (i = 0; i < q->gain_size_factor; i++)
663  buffer[i] *= fc1;
664  } else { // smooth gain
665  fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
666  for (i = 0; i < q->gain_size_factor; i++) {
667  buffer[i] *= fc1;
668  fc1 *= fc2;
669  }
670  }
671 }
672 
673 /**
674  * Apply transform window, overlap buffers.
675  *
676  * @param q pointer to the COOKContext
677  * @param inbuffer pointer to the mltcoefficients
678  * @param gains_ptr current and previous gains
679  * @param previous_buffer pointer to the previous buffer to be used for overlapping
680  */
681 static void imlt_window_float(COOKContext *q, float *inbuffer,
682  cook_gains *gains_ptr, float *previous_buffer)
683 {
684  const float fc = pow2tab[gains_ptr->previous[0] + 63];
685  int i;
686  /* The weird thing here, is that the two halves of the time domain
687  * buffer are swapped. Also, the newest data, that we save away for
688  * next frame, has the wrong sign. Hence the subtraction below.
689  * Almost sounds like a complex conjugate/reverse data/FFT effect.
690  */
691 
692  /* Apply window and overlap */
693  for (i = 0; i < q->samples_per_channel; i++)
694  inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
695  previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
696 }
697 
698 /**
699  * The modulated lapped transform, this takes transform coefficients
700  * and transforms them into timedomain samples.
701  * Apply transform window, overlap buffers, apply gain profile
702  * and buffer management.
703  *
704  * @param q pointer to the COOKContext
705  * @param inbuffer pointer to the mltcoefficients
706  * @param gains_ptr current and previous gains
707  * @param previous_buffer pointer to the previous buffer to be used for overlapping
708  */
709 static void imlt_gain(COOKContext *q, float *inbuffer,
710  cook_gains *gains_ptr, float *previous_buffer)
711 {
712  float *buffer0 = q->mono_mdct_output;
713  float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
714  int i;
715 
716  /* Inverse modified discrete cosine transform */
717  q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
718 
719  q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
720 
721  /* Apply gain profile */
722  for (i = 0; i < 8; i++)
723  if (gains_ptr->now[i] || gains_ptr->now[i + 1])
724  q->interpolate(q, &buffer1[q->gain_size_factor * i],
725  gains_ptr->now[i], gains_ptr->now[i + 1]);
726 
727  /* Save away the current to be previous block. */
728  memcpy(previous_buffer, buffer0,
729  q->samples_per_channel * sizeof(*previous_buffer));
730 }
731 
732 
733 /**
734  * function for getting the jointstereo coupling information
735  *
736  * @param q pointer to the COOKContext
737  * @param decouple_tab decoupling array
738  */
739 static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
740 {
741  int i;
742  int vlc = get_bits1(&q->gb);
743  int start = cplband[p->js_subband_start];
744  int end = cplband[p->subbands - 1];
745  int length = end - start + 1;
746 
747  if (start > end)
748  return 0;
749 
750  if (vlc)
751  for (i = 0; i < length; i++)
752  decouple_tab[start + i] = get_vlc2(&q->gb,
754  p->channel_coupling.bits, 2);
755  else
756  for (i = 0; i < length; i++) {
757  int v = get_bits(&q->gb, p->js_vlc_bits);
758  if (v == (1<<p->js_vlc_bits)-1) {
759  av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
760  return AVERROR_INVALIDDATA;
761  }
762  decouple_tab[start + i] = v;
763  }
764  return 0;
765 }
766 
767 /**
768  * function decouples a pair of signals from a single signal via multiplication.
769  *
770  * @param q pointer to the COOKContext
771  * @param subband index of the current subband
772  * @param f1 multiplier for channel 1 extraction
773  * @param f2 multiplier for channel 2 extraction
774  * @param decode_buffer input buffer
775  * @param mlt_buffer1 pointer to left channel mlt coefficients
776  * @param mlt_buffer2 pointer to right channel mlt coefficients
777  */
779  COOKSubpacket *p,
780  int subband,
781  float f1, float f2,
782  float *decode_buffer,
783  float *mlt_buffer1, float *mlt_buffer2)
784 {
785  int j, tmp_idx;
786  for (j = 0; j < SUBBAND_SIZE; j++) {
787  tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
788  mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
789  mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
790  }
791 }
792 
793 /**
794  * function for decoding joint stereo data
795  *
796  * @param q pointer to the COOKContext
797  * @param mlt_buffer1 pointer to left channel mlt coefficients
798  * @param mlt_buffer2 pointer to right channel mlt coefficients
799  */
801  float *mlt_buffer_left, float *mlt_buffer_right)
802 {
803  int i, j, res;
804  int decouple_tab[SUBBAND_SIZE] = { 0 };
805  float *decode_buffer = q->decode_buffer_0;
806  int idx, cpl_tmp;
807  float f1, f2;
808  const float *cplscale;
809 
810  memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
811 
812  /* Make sure the buffers are zeroed out. */
813  memset(mlt_buffer_left, 0, 1024 * sizeof(*mlt_buffer_left));
814  memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
815  if ((res = decouple_info(q, p, decouple_tab)) < 0)
816  return res;
817  if ((res = mono_decode(q, p, decode_buffer)) < 0)
818  return res;
819  /* The two channels are stored interleaved in decode_buffer. */
820  for (i = 0; i < p->js_subband_start; i++) {
821  for (j = 0; j < SUBBAND_SIZE; j++) {
822  mlt_buffer_left[i * 20 + j] = decode_buffer[i * 40 + j];
823  mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
824  }
825  }
826 
827  /* When we reach js_subband_start (the higher frequencies)
828  the coefficients are stored in a coupling scheme. */
829  idx = (1 << p->js_vlc_bits) - 1;
830  for (i = p->js_subband_start; i < p->subbands; i++) {
831  cpl_tmp = cplband[i];
832  idx -= decouple_tab[cpl_tmp];
833  cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
834  f1 = cplscale[decouple_tab[cpl_tmp] + 1];
835  f2 = cplscale[idx];
836  q->decouple(q, p, i, f1, f2, decode_buffer,
837  mlt_buffer_left, mlt_buffer_right);
838  idx = (1 << p->js_vlc_bits) - 1;
839  }
840 
841  return 0;
842 }
843 
844 /**
845  * First part of subpacket decoding:
846  * decode raw stream bytes and read gain info.
847  *
848  * @param q pointer to the COOKContext
849  * @param inbuffer pointer to raw stream data
850  * @param gains_ptr array of current/prev gain pointers
851  */
853  const uint8_t *inbuffer,
854  cook_gains *gains_ptr)
855 {
856  int offset;
857 
858  offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
859  p->bits_per_subpacket / 8);
860  init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
861  p->bits_per_subpacket);
862  decode_gain_info(&q->gb, gains_ptr->now);
863 
864  /* Swap current and previous gains */
865  FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
866 }
867 
868 /**
869  * Saturate the output signal and interleave.
870  *
871  * @param q pointer to the COOKContext
872  * @param out pointer to the output vector
873  */
874 static void saturate_output_float(COOKContext *q, float *out)
875 {
877  -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8));
878 }
879 
880 
881 /**
882  * Final part of subpacket decoding:
883  * Apply modulated lapped transform, gain compensation,
884  * clip and convert to integer.
885  *
886  * @param q pointer to the COOKContext
887  * @param decode_buffer pointer to the mlt coefficients
888  * @param gains_ptr array of current/prev gain pointers
889  * @param previous_buffer pointer to the previous buffer to be used for overlapping
890  * @param out pointer to the output buffer
891  */
892 static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
893  cook_gains *gains_ptr, float *previous_buffer,
894  float *out)
895 {
896  imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
897  if (out)
898  q->saturate_output(q, out);
899 }
900 
901 
902 /**
903  * Cook subpacket decoding. This function returns one decoded subpacket,
904  * usually 1024 samples per channel.
905  *
906  * @param q pointer to the COOKContext
907  * @param inbuffer pointer to the inbuffer
908  * @param outbuffer pointer to the outbuffer
909  */
911  const uint8_t *inbuffer, float **outbuffer)
912 {
913  int sub_packet_size = p->size;
914  int res;
915 
916  memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
917  decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
918 
919  if (p->joint_stereo) {
920  if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
921  return res;
922  } else {
923  if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
924  return res;
925 
926  if (p->num_channels == 2) {
927  decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
928  if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
929  return res;
930  }
931  }
932 
935  outbuffer ? outbuffer[p->ch_idx] : NULL);
936 
937  if (p->num_channels == 2) {
938  if (p->joint_stereo)
941  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
942  else
945  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
946  }
947 
948  return 0;
949 }
950 
951 
952 static int cook_decode_frame(AVCodecContext *avctx, void *data,
953  int *got_frame_ptr, AVPacket *avpkt)
954 {
955  AVFrame *frame = data;
956  const uint8_t *buf = avpkt->data;
957  int buf_size = avpkt->size;
958  COOKContext *q = avctx->priv_data;
959  float **samples = NULL;
960  int i, ret;
961  int offset = 0;
962  int chidx = 0;
963 
964  if (buf_size < avctx->block_align)
965  return buf_size;
966 
967  /* get output buffer */
968  if (q->discarded_packets >= 2) {
969  frame->nb_samples = q->samples_per_channel;
970  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
971  return ret;
972  samples = (float **)frame->extended_data;
973  }
974 
975  /* estimate subpacket sizes */
976  q->subpacket[0].size = avctx->block_align;
977 
978  for (i = 1; i < q->num_subpackets; i++) {
979  q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
980  q->subpacket[0].size -= q->subpacket[i].size + 1;
981  if (q->subpacket[0].size < 0) {
982  av_log(avctx, AV_LOG_DEBUG,
983  "frame subpacket size total > avctx->block_align!\n");
984  return AVERROR_INVALIDDATA;
985  }
986  }
987 
988  /* decode supbackets */
989  for (i = 0; i < q->num_subpackets; i++) {
990  q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
992  q->subpacket[i].ch_idx = chidx;
993  av_log(avctx, AV_LOG_DEBUG,
994  "subpacket[%i] size %i js %i %i block_align %i\n",
995  i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
996  avctx->block_align);
997 
998  if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
999  return ret;
1000  offset += q->subpacket[i].size;
1001  chidx += q->subpacket[i].num_channels;
1002  av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1003  i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1004  }
1005 
1006  /* Discard the first two frames: no valid audio. */
1007  if (q->discarded_packets < 2) {
1008  q->discarded_packets++;
1009  *got_frame_ptr = 0;
1010  return avctx->block_align;
1011  }
1012 
1013  *got_frame_ptr = 1;
1014 
1015  return avctx->block_align;
1016 }
1017 
1018 #ifdef DEBUG
1019 static void dump_cook_context(COOKContext *q)
1020 {
1021  //int i=0;
1022 #define PRINT(a, b) av_dlog(q->avctx, " %s = %d\n", a, b);
1023  av_dlog(q->avctx, "COOKextradata\n");
1024  av_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
1025  if (q->subpacket[0].cookversion > STEREO) {
1026  PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1027  PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1028  }
1029  av_dlog(q->avctx, "COOKContext\n");
1030  PRINT("nb_channels", q->avctx->channels);
1031  PRINT("bit_rate", q->avctx->bit_rate);
1032  PRINT("sample_rate", q->avctx->sample_rate);
1033  PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1034  PRINT("subbands", q->subpacket[0].subbands);
1035  PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1036  PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1037  PRINT("numvector_size", q->subpacket[0].numvector_size);
1038  PRINT("total_subbands", q->subpacket[0].total_subbands);
1039 }
1040 #endif
1041 
1042 /**
1043  * Cook initialization
1044  *
1045  * @param avctx pointer to the AVCodecContext
1046  */
1048 {
1049  COOKContext *q = avctx->priv_data;
1050  const uint8_t *edata_ptr = avctx->extradata;
1051  const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1052  int extradata_size = avctx->extradata_size;
1053  int s = 0;
1054  unsigned int channel_mask = 0;
1055  int samples_per_frame = 0;
1056  int ret;
1057  q->avctx = avctx;
1058 
1059  /* Take care of the codec specific extradata. */
1060  if (extradata_size <= 0) {
1061  av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1062  return AVERROR_INVALIDDATA;
1063  }
1064  av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1065 
1066  /* Take data from the AVCodecContext (RM container). */
1067  if (!avctx->channels) {
1068  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1069  return AVERROR_INVALIDDATA;
1070  }
1071 
1072  /* Initialize RNG. */
1073  av_lfg_init(&q->random_state, 0);
1074 
1075  ff_dsputil_init(&q->dsp, avctx);
1076 
1077  while (edata_ptr < edata_ptr_end) {
1078  /* 8 for mono, 16 for stereo, ? for multichannel
1079  Swap to right endianness so we don't need to care later on. */
1080  if (extradata_size >= 8) {
1081  q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1082  samples_per_frame = bytestream_get_be16(&edata_ptr);
1083  q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1084  extradata_size -= 8;
1085  }
1086  if (extradata_size >= 8) {
1087  bytestream_get_be32(&edata_ptr); // Unknown unused
1088  q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1089  if (q->subpacket[s].js_subband_start >= 51) {
1090  av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
1091  return AVERROR_INVALIDDATA;
1092  }
1093 
1094  q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1095  extradata_size -= 8;
1096  }
1097 
1098  /* Initialize extradata related variables. */
1099  q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
1100  q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1101 
1102  /* Initialize default data states. */
1105  q->subpacket[s].num_channels = 1;
1106 
1107  /* Initialize version-dependent variables */
1108 
1109  av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1110  q->subpacket[s].cookversion);
1111  q->subpacket[s].joint_stereo = 0;
1112  switch (q->subpacket[s].cookversion) {
1113  case MONO:
1114  if (avctx->channels != 1) {
1115  avpriv_request_sample(avctx, "Container channels != 1");
1116  return AVERROR_PATCHWELCOME;
1117  }
1118  av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1119  break;
1120  case STEREO:
1121  if (avctx->channels != 1) {
1122  q->subpacket[s].bits_per_subpdiv = 1;
1123  q->subpacket[s].num_channels = 2;
1124  }
1125  av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1126  break;
1127  case JOINT_STEREO:
1128  if (avctx->channels != 2) {
1129  avpriv_request_sample(avctx, "Container channels != 2");
1130  return AVERROR_PATCHWELCOME;
1131  }
1132  av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1133  if (avctx->extradata_size >= 16) {
1136  q->subpacket[s].joint_stereo = 1;
1137  q->subpacket[s].num_channels = 2;
1138  }
1139  if (q->subpacket[s].samples_per_channel > 256) {
1141  }
1142  if (q->subpacket[s].samples_per_channel > 512) {
1144  }
1145  break;
1146  case MC_COOK:
1147  av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1148  if (extradata_size >= 4)
1149  channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1150 
1154  q->subpacket[s].joint_stereo = 1;
1155  q->subpacket[s].num_channels = 2;
1156  q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
1157 
1158  if (q->subpacket[s].samples_per_channel > 256) {
1160  }
1161  if (q->subpacket[s].samples_per_channel > 512) {
1163  }
1164  } else
1165  q->subpacket[s].samples_per_channel = samples_per_frame;
1166 
1167  break;
1168  default:
1169  avpriv_request_sample(avctx, "Cook version %d",
1170  q->subpacket[s].cookversion);
1171  return AVERROR_PATCHWELCOME;
1172  }
1173 
1174  if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1175  av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1176  return AVERROR_INVALIDDATA;
1177  } else
1179 
1180 
1181  /* Initialize variable relations */
1183 
1184  /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1185  if (q->subpacket[s].total_subbands > 53) {
1186  avpriv_request_sample(avctx, "total_subbands > 53");
1187  return AVERROR_PATCHWELCOME;
1188  }
1189 
1190  if ((q->subpacket[s].js_vlc_bits > 6) ||
1191  (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1192  av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1193  q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1194  return AVERROR_INVALIDDATA;
1195  }
1196 
1197  if (q->subpacket[s].subbands > 50) {
1198  avpriv_request_sample(avctx, "subbands > 50");
1199  return AVERROR_PATCHWELCOME;
1200  }
1201  if (q->subpacket[s].subbands == 0) {
1202  avpriv_request_sample(avctx, "subbands = 0");
1203  return AVERROR_PATCHWELCOME;
1204  }
1205  q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1207  q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1209 
1210  if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
1211  av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
1212  return AVERROR_INVALIDDATA;
1213  }
1214 
1215  q->num_subpackets++;
1216  s++;
1217  if (s > MAX_SUBPACKETS) {
1218  avpriv_request_sample(avctx, "subpackets > %d", MAX_SUBPACKETS);
1219  return AVERROR_PATCHWELCOME;
1220  }
1221  }
1222  /* Generate tables */
1223  init_pow2table();
1224  init_gain_table(q);
1226 
1227  if ((ret = init_cook_vlc_tables(q)))
1228  return ret;
1229 
1230 
1231  if (avctx->block_align >= UINT_MAX / 2)
1232  return AVERROR(EINVAL);
1233 
1234  /* Pad the databuffer with:
1235  DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1236  FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1238  av_mallocz(avctx->block_align
1239  + DECODE_BYTES_PAD1(avctx->block_align)
1241  if (q->decoded_bytes_buffer == NULL)
1242  return AVERROR(ENOMEM);
1243 
1244  /* Initialize transform. */
1245  if ((ret = init_cook_mlt(q)))
1246  return ret;
1247 
1248  /* Initialize COOK signal arithmetic handling */
1249  if (1) {
1251  q->decouple = decouple_float;
1255  }
1256 
1257  /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1258  if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
1259  q->samples_per_channel != 1024) {
1260  avpriv_request_sample(avctx, "samples_per_channel = %d",
1261  q->samples_per_channel);
1262  return AVERROR_PATCHWELCOME;
1263  }
1264 
1265  avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1266  if (channel_mask)
1267  avctx->channel_layout = channel_mask;
1268  else
1269  avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1270 
1271 #ifdef DEBUG
1272  dump_cook_context(q);
1273 #endif
1274  return 0;
1275 }
1276 
1278  .name = "cook",
1279  .long_name = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1280  .type = AVMEDIA_TYPE_AUDIO,
1281  .id = AV_CODEC_ID_COOK,
1282  .priv_data_size = sizeof(COOKContext),
1286  .capabilities = CODEC_CAP_DR1,
1287  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1289 };