FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
matroskadec.c
Go to the documentation of this file.
1 /*
2  * Matroska file demuxer
3  * Copyright (c) 2003-2008 The FFmpeg Project
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Matroska file demuxer
25  * @author Ronald Bultje <rbultje@ronald.bitfreak.net>
26  * @author with a little help from Moritz Bunkus <moritz@bunkus.org>
27  * @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
28  * @see specs available on the Matroska project page: http://www.matroska.org/
29  */
30 
31 #include "config.h"
32 
33 #include <inttypes.h>
34 #include <stdio.h>
35 #if CONFIG_BZLIB
36 #include <bzlib.h>
37 #endif
38 #if CONFIG_ZLIB
39 #include <zlib.h>
40 #endif
41 
42 #include "libavutil/avstring.h"
43 #include "libavutil/base64.h"
44 #include "libavutil/dict.h"
45 #include "libavutil/intfloat.h"
46 #include "libavutil/intreadwrite.h"
47 #include "libavutil/lzo.h"
48 #include "libavutil/mathematics.h"
49 
50 #include "libavcodec/bytestream.h"
51 #include "libavcodec/flac.h"
52 #include "libavcodec/mpeg4audio.h"
53 
54 #include "avformat.h"
55 #include "avio_internal.h"
56 #include "internal.h"
57 #include "isom.h"
58 #include "matroska.h"
59 #include "oggdec.h"
60 /* For ff_codec_get_id(). */
61 #include "riff.h"
62 #include "rmsipr.h"
63 
64 typedef enum {
76 } EbmlType;
77 
78 typedef const struct EbmlSyntax {
79  uint32_t id;
83  union {
84  uint64_t u;
85  double f;
86  const char *s;
87  const struct EbmlSyntax *n;
88  } def;
89 } EbmlSyntax;
90 
91 typedef struct {
92  int nb_elem;
93  void *elem;
94 } EbmlList;
95 
96 typedef struct {
97  int size;
99  int64_t pos;
100 } EbmlBin;
101 
102 typedef struct {
103  uint64_t version;
104  uint64_t max_size;
105  uint64_t id_length;
106  char *doctype;
107  uint64_t doctype_version;
108 } Ebml;
109 
110 typedef struct {
111  uint64_t algo;
114 
115 typedef struct {
116  uint64_t algo;
119 
120 typedef struct {
121  uint64_t scope;
122  uint64_t type;
126 
127 typedef struct {
128  double frame_rate;
129  uint64_t display_width;
130  uint64_t display_height;
131  uint64_t pixel_width;
132  uint64_t pixel_height;
134  uint64_t stereo_mode;
135  uint64_t alpha_mode;
137 
138 typedef struct {
139  double samplerate;
141  uint64_t bitdepth;
142  uint64_t channels;
143 
144  /* real audio header (extracted from extradata) */
150  int pkt_cnt;
151  uint64_t buf_timecode;
154 
155 typedef struct {
156  uint64_t uid;
157  uint64_t type;
159 
160 typedef struct {
163 
164 typedef struct {
165  uint64_t num;
166  uint64_t uid;
167  uint64_t type;
168  char *name;
169  char *codec_id;
171  char *language;
172  double time_scale;
174  uint64_t flag_default;
175  uint64_t flag_forced;
176  uint64_t seek_preroll;
181  uint64_t codec_delay;
182 
184  int64_t end_timecode;
187 } MatroskaTrack;
188 
189 typedef struct {
190  uint64_t uid;
191  char *filename;
192  char *mime;
194 
197 
198 typedef struct {
199  uint64_t start;
200  uint64_t end;
201  uint64_t uid;
202  char *title;
203 
206 
207 typedef struct {
208  uint64_t track;
209  uint64_t pos;
211 
212 typedef struct {
213  uint64_t time;
215 } MatroskaIndex;
216 
217 typedef struct {
218  char *name;
219  char *string;
220  char *lang;
221  uint64_t def;
223 } MatroskaTag;
224 
225 typedef struct {
226  char *type;
227  uint64_t typevalue;
228  uint64_t trackuid;
229  uint64_t chapteruid;
230  uint64_t attachuid;
232 
233 typedef struct {
236 } MatroskaTags;
237 
238 typedef struct {
239  uint64_t id;
240  uint64_t pos;
242 
243 typedef struct {
244  uint64_t start;
245  uint64_t length;
246 } MatroskaLevel;
247 
248 typedef struct {
249  uint64_t timecode;
252 
253 typedef struct {
255 
256  /* EBML stuff */
259  int level_up;
260  uint32_t current_id;
261 
262  uint64_t time_scale;
263  double duration;
264  char *title;
265  char *muxingapp;
273 
274  /* byte position of the segment inside the stream */
275  int64_t segment_start;
276 
277  /* the packet queue */
281 
282  int done;
283 
284  /* What to skip before effectively reading a packet. */
287 
288  /* File has a CUES element, but we defer parsing until it is needed. */
290 
294 
295  /* File has SSA subtitles which prevent incremental cluster parsing. */
298 
299 typedef struct {
300  uint64_t duration;
301  int64_t reference;
302  uint64_t non_simple;
304  uint64_t additional_id;
307 } MatroskaBlock;
308 
310  { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
311  { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
312  { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
313  { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
314  { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
317  { 0 }
318 };
319 
321  { EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
322  { 0 }
323 };
324 
326  { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
328  { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
330  { MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) },
331  { MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) },
333  { 0 }
334 };
335 
337  { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
338  { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } },
339  { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } },
340  { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
341  { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
342  { MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) },
343  { MATROSKA_ID_VIDEOSTEREOMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, stereo_mode) },
344  { MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) },
352  { 0 }
353 };
354 
356  { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
357  { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
359  { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
360  { 0 }
361 };
362 
366  { 0 }
367 };
368 
377  { 0 }
378 };
380  { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
381  { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
382  { MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
383  { MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } },
385  { 0 }
386 };
387 
389  { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
390  { 0 }
391 };
392 
396  { 0 }
397 };
398 
400  { MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} },
401  { 0 }
402 };
403 
405  { MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} },
406  { 0 }
407 };
408 
410  { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
412  { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
415  { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
416  { MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
417  { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
418  { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
419  { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
420  { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
421  { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
422  { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
423  { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
424  { MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } },
425  { MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
426  { MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) },
427  { MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) },
436  { 0 }
437 };
438 
440  { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
441  { 0 }
442 };
443 
445  { MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachment, uid) },
446  { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
447  { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
448  { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
450  { 0 }
451 };
452 
454  { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
455  { 0 }
456 };
457 
459  { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
461  { 0 }
462 };
463 
467  { MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter, uid) },
468  { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
473  { 0 }
474 };
475 
477  { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
482  { 0 }
483 };
484 
486  { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
487  { 0 }
488 };
489 
491  { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
496  { 0 }
497 };
498 
500  { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
501  { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
502  { 0 }
503 };
504 
506  { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
507  { 0 }
508 };
509 
511  { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
512  { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
513  { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
514  { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
515  { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
516  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
517  { 0 }
518 };
519 
522  { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
523  { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
524  { MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
525  { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
526  { 0 }
527 };
528 
530  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
531  { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
532  { 0 }
533 };
534 
536  { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
537  { 0 }
538 };
539 
541  { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
542  { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
543  { 0 }
544 };
545 
547  { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
548  { 0 }
549 };
550 
552  { MATROSKA_ID_INFO, EBML_NEST, 0, 0, { .n = matroska_info } },
553  { MATROSKA_ID_TRACKS, EBML_NEST, 0, 0, { .n = matroska_tracks } },
554  { MATROSKA_ID_ATTACHMENTS, EBML_NEST, 0, 0, { .n = matroska_attachments } },
555  { MATROSKA_ID_CHAPTERS, EBML_NEST, 0, 0, { .n = matroska_chapters } },
556  { MATROSKA_ID_CUES, EBML_NEST, 0, 0, { .n = matroska_index } },
557  { MATROSKA_ID_TAGS, EBML_NEST, 0, 0, { .n = matroska_tags } },
558  { MATROSKA_ID_SEEKHEAD, EBML_NEST, 0, 0, { .n = matroska_seekhead } },
560  { 0 }
561 };
562 
564  { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
565  { 0 }
566 };
567 
569  { MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) },
570  { MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) },
571  { 0 }
572 };
573 
575  { MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} },
576  { 0 }
577 };
578 
580  { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
581  { MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} },
582  { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
584  { MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) },
585  { MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference) },
587  { 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
588  { 0 }
589 };
590 
592  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
593  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
594  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
597  { 0 }
598 };
599 
601  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster } },
606  { 0 }
607 };
608 
610  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
611  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
612  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
620  { 0 }
621 };
622 
624  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
629  { 0 }
630 };
631 
633  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster_incremental } },
638  { 0 }
639 };
640 
641 static const char *const matroska_doctypes[] = { "matroska", "webm" };
642 
643 static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
644 {
645  AVIOContext *pb = matroska->ctx->pb;
646  uint32_t id;
647  matroska->current_id = 0;
648  matroska->num_levels = 0;
649 
650  /* seek to next position to resync from */
651  if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0)
652  goto eof;
653 
654  id = avio_rb32(pb);
655 
656  // try to find a toplevel element
657  while (!url_feof(pb)) {
658  if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
659  id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
661  id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
662  matroska->current_id = id;
663  return 0;
664  }
665  id = (id << 8) | avio_r8(pb);
666  }
667 
668 eof:
669  matroska->done = 1;
670  return AVERROR_EOF;
671 }
672 
673 /*
674  * Return: Whether we reached the end of a level in the hierarchy or not.
675  */
677 {
678  AVIOContext *pb = matroska->ctx->pb;
679  int64_t pos = avio_tell(pb);
680 
681  if (matroska->num_levels > 0) {
682  MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
683  if (pos - level->start >= level->length || matroska->current_id) {
684  matroska->num_levels--;
685  return 1;
686  }
687  }
688  return 0;
689 }
690 
691 /*
692  * Read: an "EBML number", which is defined as a variable-length
693  * array of bytes. The first byte indicates the length by giving a
694  * number of 0-bits followed by a one. The position of the first
695  * "one" bit inside the first byte indicates the length of this
696  * number.
697  * Returns: number of bytes read, < 0 on error
698  */
700  int max_size, uint64_t *number)
701 {
702  int read = 1, n = 1;
703  uint64_t total = 0;
704 
705  /* The first byte tells us the length in bytes - avio_r8() can normally
706  * return 0, but since that's not a valid first ebmlID byte, we can
707  * use it safely here to catch EOS. */
708  if (!(total = avio_r8(pb))) {
709  /* we might encounter EOS here */
710  if (!url_feof(pb)) {
711  int64_t pos = avio_tell(pb);
712  av_log(matroska->ctx, AV_LOG_ERROR,
713  "Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
714  pos, pos);
715  return pb->error ? pb->error : AVERROR(EIO);
716  }
717  return AVERROR_EOF;
718  }
719 
720  /* get the length of the EBML number */
721  read = 8 - ff_log2_tab[total];
722  if (read > max_size) {
723  int64_t pos = avio_tell(pb) - 1;
724  av_log(matroska->ctx, AV_LOG_ERROR,
725  "Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
726  (uint8_t) total, pos, pos);
727  return AVERROR_INVALIDDATA;
728  }
729 
730  /* read out length */
731  total ^= 1 << ff_log2_tab[total];
732  while (n++ < read)
733  total = (total << 8) | avio_r8(pb);
734 
735  *number = total;
736 
737  return read;
738 }
739 
740 /**
741  * Read a EBML length value.
742  * This needs special handling for the "unknown length" case which has multiple
743  * encodings.
744  */
746  uint64_t *number)
747 {
748  int res = ebml_read_num(matroska, pb, 8, number);
749  if (res > 0 && *number + 1 == 1ULL << (7 * res))
750  *number = 0xffffffffffffffULL;
751  return res;
752 }
753 
754 /*
755  * Read the next element as an unsigned int.
756  * 0 is success, < 0 is failure.
757  */
758 static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
759 {
760  int n = 0;
761 
762  if (size > 8)
763  return AVERROR_INVALIDDATA;
764 
765  /* big-endian ordering; build up number */
766  *num = 0;
767  while (n++ < size)
768  *num = (*num << 8) | avio_r8(pb);
769 
770  return 0;
771 }
772 
773 /*
774  * Read the next element as a signed int.
775  * 0 is success, < 0 is failure.
776  */
777 static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num)
778 {
779  int n = 1;
780 
781  if (size > 8)
782  return AVERROR_INVALIDDATA;
783 
784  if (size == 0) {
785  *num = 0;
786  } else {
787  *num = sign_extend(avio_r8(pb), 8);
788 
789  /* big-endian ordering; build up number */
790  while (n++ < size)
791  *num = (*num << 8) | avio_r8(pb);
792  }
793 
794  return 0;
795 }
796 
797 /*
798  * Read the next element as a float.
799  * 0 is success, < 0 is failure.
800  */
801 static int ebml_read_float(AVIOContext *pb, int size, double *num)
802 {
803  if (size == 0)
804  *num = 0;
805  else if (size == 4)
806  *num = av_int2float(avio_rb32(pb));
807  else if (size == 8)
808  *num = av_int2double(avio_rb64(pb));
809  else
810  return AVERROR_INVALIDDATA;
811 
812  return 0;
813 }
814 
815 /*
816  * Read the next element as an ASCII string.
817  * 0 is success, < 0 is failure.
818  */
819 static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
820 {
821  char *res;
822 
823  /* EBML strings are usually not 0-terminated, so we allocate one
824  * byte more, read the string and NULL-terminate it ourselves. */
825  if (!(res = av_malloc(size + 1)))
826  return AVERROR(ENOMEM);
827  if (avio_read(pb, (uint8_t *) res, size) != size) {
828  av_free(res);
829  return AVERROR(EIO);
830  }
831  (res)[size] = '\0';
832  av_free(*str);
833  *str = res;
834 
835  return 0;
836 }
837 
838 /*
839  * Read the next element as binary data.
840  * 0 is success, < 0 is failure.
841  */
842 static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
843 {
844  av_fast_padded_malloc(&bin->data, &bin->size, length);
845  if (!bin->data)
846  return AVERROR(ENOMEM);
847 
848  bin->size = length;
849  bin->pos = avio_tell(pb);
850  if (avio_read(pb, bin->data, length) != length) {
851  av_freep(&bin->data);
852  bin->size = 0;
853  return AVERROR(EIO);
854  }
855 
856  return 0;
857 }
858 
859 /*
860  * Read the next element, but only the header. The contents
861  * are supposed to be sub-elements which can be read separately.
862  * 0 is success, < 0 is failure.
863  */
864 static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
865 {
866  AVIOContext *pb = matroska->ctx->pb;
868 
869  if (matroska->num_levels >= EBML_MAX_DEPTH) {
870  av_log(matroska->ctx, AV_LOG_ERROR,
871  "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
872  return AVERROR(ENOSYS);
873  }
874 
875  level = &matroska->levels[matroska->num_levels++];
876  level->start = avio_tell(pb);
877  level->length = length;
878 
879  return 0;
880 }
881 
882 /*
883  * Read signed/unsigned "EBML" numbers.
884  * Return: number of bytes processed, < 0 on error
885  */
887  uint8_t *data, uint32_t size, uint64_t *num)
888 {
889  AVIOContext pb;
890  ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
891  return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
892 }
893 
894 /*
895  * Same as above, but signed.
896  */
898  uint8_t *data, uint32_t size, int64_t *num)
899 {
900  uint64_t unum;
901  int res;
902 
903  /* read as unsigned number first */
904  if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
905  return res;
906 
907  /* make signed (weird way) */
908  *num = unum - ((1LL << (7 * res - 1)) - 1);
909 
910  return res;
911 }
912 
913 static int ebml_parse_elem(MatroskaDemuxContext *matroska,
914  EbmlSyntax *syntax, void *data);
915 
916 static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
917  uint32_t id, void *data)
918 {
919  int i;
920  for (i = 0; syntax[i].id; i++)
921  if (id == syntax[i].id)
922  break;
923  if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
924  matroska->num_levels > 0 &&
925  matroska->levels[matroska->num_levels - 1].length == 0xffffffffffffff)
926  return 0; // we reached the end of an unknown size cluster
927  if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
928  av_log(matroska->ctx, AV_LOG_INFO, "Unknown entry 0x%"PRIX32"\n", id);
929  if (matroska->ctx->error_recognition & AV_EF_EXPLODE)
930  return AVERROR_INVALIDDATA;
931  }
932  return ebml_parse_elem(matroska, &syntax[i], data);
933 }
934 
935 static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
936  void *data)
937 {
938  if (!matroska->current_id) {
939  uint64_t id;
940  int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
941  if (res < 0)
942  return res;
943  matroska->current_id = id | 1 << 7 * res;
944  }
945  return ebml_parse_id(matroska, syntax, matroska->current_id, data);
946 }
947 
948 static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
949  void *data)
950 {
951  int i, res = 0;
952 
953  for (i = 0; syntax[i].id; i++)
954  switch (syntax[i].type) {
955  case EBML_UINT:
956  *(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
957  break;
958  case EBML_FLOAT:
959  *(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
960  break;
961  case EBML_STR:
962  case EBML_UTF8:
963  // the default may be NULL
964  if (syntax[i].def.s) {
965  uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
966  *dst = av_strdup(syntax[i].def.s);
967  if (!*dst)
968  return AVERROR(ENOMEM);
969  }
970  break;
971  }
972 
973  while (!res && !ebml_level_end(matroska))
974  res = ebml_parse(matroska, syntax, data);
975 
976  return res;
977 }
978 
980  EbmlSyntax *syntax, void *data)
981 {
982  static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
983  [EBML_UINT] = 8,
984  [EBML_FLOAT] = 8,
985  // max. 16 MB for strings
986  [EBML_STR] = 0x1000000,
987  [EBML_UTF8] = 0x1000000,
988  // max. 256 MB for binary data
989  [EBML_BIN] = 0x10000000,
990  // no limits for anything else
991  };
992  AVIOContext *pb = matroska->ctx->pb;
993  uint32_t id = syntax->id;
994  uint64_t length;
995  int res;
996  void *newelem;
997 
998  data = (char *) data + syntax->data_offset;
999  if (syntax->list_elem_size) {
1000  EbmlList *list = data;
1001  newelem = av_realloc_array(list->elem, list->nb_elem + 1, syntax->list_elem_size);
1002  if (!newelem)
1003  return AVERROR(ENOMEM);
1004  list->elem = newelem;
1005  data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
1006  memset(data, 0, syntax->list_elem_size);
1007  list->nb_elem++;
1008  }
1009 
1010  if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
1011  matroska->current_id = 0;
1012  if ((res = ebml_read_length(matroska, pb, &length)) < 0)
1013  return res;
1014  if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
1015  av_log(matroska->ctx, AV_LOG_ERROR,
1016  "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
1017  length, max_lengths[syntax->type], syntax->type);
1018  return AVERROR_INVALIDDATA;
1019  }
1020  }
1021 
1022  switch (syntax->type) {
1023  case EBML_UINT:
1024  res = ebml_read_uint(pb, length, data);
1025  break;
1026  case EBML_SINT:
1027  res = ebml_read_sint(pb, length, data);
1028  break;
1029  case EBML_FLOAT:
1030  res = ebml_read_float(pb, length, data);
1031  break;
1032  case EBML_STR:
1033  case EBML_UTF8:
1034  res = ebml_read_ascii(pb, length, data);
1035  break;
1036  case EBML_BIN:
1037  res = ebml_read_binary(pb, length, data);
1038  break;
1039  case EBML_NEST:
1040  if ((res = ebml_read_master(matroska, length)) < 0)
1041  return res;
1042  if (id == MATROSKA_ID_SEGMENT)
1043  matroska->segment_start = avio_tell(matroska->ctx->pb);
1044  return ebml_parse_nest(matroska, syntax->def.n, data);
1045  case EBML_PASS:
1046  return ebml_parse_id(matroska, syntax->def.n, id, data);
1047  case EBML_STOP:
1048  return 1;
1049  default:
1050  if (ffio_limit(pb, length) != length)
1051  return AVERROR(EIO);
1052  return avio_skip(pb, length) < 0 ? AVERROR(EIO) : 0;
1053  }
1054  if (res == AVERROR_INVALIDDATA)
1055  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
1056  else if (res == AVERROR(EIO))
1057  av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
1058  return res;
1059 }
1060 
1061 static void ebml_free(EbmlSyntax *syntax, void *data)
1062 {
1063  int i, j;
1064  for (i = 0; syntax[i].id; i++) {
1065  void *data_off = (char *) data + syntax[i].data_offset;
1066  switch (syntax[i].type) {
1067  case EBML_STR:
1068  case EBML_UTF8:
1069  av_freep(data_off);
1070  break;
1071  case EBML_BIN:
1072  av_freep(&((EbmlBin *) data_off)->data);
1073  break;
1074  case EBML_NEST:
1075  if (syntax[i].list_elem_size) {
1076  EbmlList *list = data_off;
1077  char *ptr = list->elem;
1078  for (j = 0; j < list->nb_elem;
1079  j++, ptr += syntax[i].list_elem_size)
1080  ebml_free(syntax[i].def.n, ptr);
1081  av_free(list->elem);
1082  } else
1083  ebml_free(syntax[i].def.n, data_off);
1084  default:
1085  break;
1086  }
1087  }
1088 }
1089 
1090 /*
1091  * Autodetecting...
1092  */
1094 {
1095  uint64_t total = 0;
1096  int len_mask = 0x80, size = 1, n = 1, i;
1097 
1098  /* EBML header? */
1099  if (AV_RB32(p->buf) != EBML_ID_HEADER)
1100  return 0;
1101 
1102  /* length of header */
1103  total = p->buf[4];
1104  while (size <= 8 && !(total & len_mask)) {
1105  size++;
1106  len_mask >>= 1;
1107  }
1108  if (size > 8)
1109  return 0;
1110  total &= (len_mask - 1);
1111  while (n < size)
1112  total = (total << 8) | p->buf[4 + n++];
1113 
1114  /* Does the probe data contain the whole header? */
1115  if (p->buf_size < 4 + size + total)
1116  return 0;
1117 
1118  /* The header should contain a known document type. For now,
1119  * we don't parse the whole header but simply check for the
1120  * availability of that array of characters inside the header.
1121  * Not fully fool-proof, but good enough. */
1122  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
1123  int probelen = strlen(matroska_doctypes[i]);
1124  if (total < probelen)
1125  continue;
1126  for (n = 4 + size; n <= 4 + size + total - probelen; n++)
1127  if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
1128  return AVPROBE_SCORE_MAX;
1129  }
1130 
1131  // probably valid EBML header but no recognized doctype
1132  return AVPROBE_SCORE_EXTENSION;
1133 }
1134 
1136  int num)
1137 {
1138  MatroskaTrack *tracks = matroska->tracks.elem;
1139  int i;
1140 
1141  for (i = 0; i < matroska->tracks.nb_elem; i++)
1142  if (tracks[i].num == num)
1143  return &tracks[i];
1144 
1145  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
1146  return NULL;
1147 }
1148 
1149 static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
1150  MatroskaTrack *track)
1151 {
1152  MatroskaTrackEncoding *encodings = track->encodings.elem;
1153  uint8_t *data = *buf;
1154  int isize = *buf_size;
1155  uint8_t *pkt_data = NULL;
1156  uint8_t av_unused *newpktdata;
1157  int pkt_size = isize;
1158  int result = 0;
1159  int olen;
1160 
1161  if (pkt_size >= 10000000U)
1162  return AVERROR_INVALIDDATA;
1163 
1164  switch (encodings[0].compression.algo) {
1166  {
1167  int header_size = encodings[0].compression.settings.size;
1168  uint8_t *header = encodings[0].compression.settings.data;
1169 
1170  if (header_size && !header) {
1171  av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
1172  return -1;
1173  }
1174 
1175  if (!header_size)
1176  return 0;
1177 
1178  pkt_size = isize + header_size;
1179  pkt_data = av_malloc(pkt_size);
1180  if (!pkt_data)
1181  return AVERROR(ENOMEM);
1182 
1183  memcpy(pkt_data, header, header_size);
1184  memcpy(pkt_data + header_size, data, isize);
1185  break;
1186  }
1187 #if CONFIG_LZO
1189  do {
1190  olen = pkt_size *= 3;
1191  newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING);
1192  if (!newpktdata) {
1193  result = AVERROR(ENOMEM);
1194  goto failed;
1195  }
1196  pkt_data = newpktdata;
1197  result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
1198  } while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
1199  if (result) {
1200  result = AVERROR_INVALIDDATA;
1201  goto failed;
1202  }
1203  pkt_size -= olen;
1204  break;
1205 #endif
1206 #if CONFIG_ZLIB
1208  {
1209  z_stream zstream = { 0 };
1210  if (inflateInit(&zstream) != Z_OK)
1211  return -1;
1212  zstream.next_in = data;
1213  zstream.avail_in = isize;
1214  do {
1215  pkt_size *= 3;
1216  newpktdata = av_realloc(pkt_data, pkt_size);
1217  if (!newpktdata) {
1218  inflateEnd(&zstream);
1219  goto failed;
1220  }
1221  pkt_data = newpktdata;
1222  zstream.avail_out = pkt_size - zstream.total_out;
1223  zstream.next_out = pkt_data + zstream.total_out;
1224  if (pkt_data) {
1225  result = inflate(&zstream, Z_NO_FLUSH);
1226  } else
1227  result = Z_MEM_ERROR;
1228  } while (result == Z_OK && pkt_size < 10000000);
1229  pkt_size = zstream.total_out;
1230  inflateEnd(&zstream);
1231  if (result != Z_STREAM_END) {
1232  if (result == Z_MEM_ERROR)
1233  result = AVERROR(ENOMEM);
1234  else
1235  result = AVERROR_INVALIDDATA;
1236  goto failed;
1237  }
1238  break;
1239  }
1240 #endif
1241 #if CONFIG_BZLIB
1243  {
1244  bz_stream bzstream = { 0 };
1245  if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
1246  return -1;
1247  bzstream.next_in = data;
1248  bzstream.avail_in = isize;
1249  do {
1250  pkt_size *= 3;
1251  newpktdata = av_realloc(pkt_data, pkt_size);
1252  if (!newpktdata) {
1253  BZ2_bzDecompressEnd(&bzstream);
1254  goto failed;
1255  }
1256  pkt_data = newpktdata;
1257  bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
1258  bzstream.next_out = pkt_data + bzstream.total_out_lo32;
1259  if (pkt_data) {
1260  result = BZ2_bzDecompress(&bzstream);
1261  } else
1262  result = BZ_MEM_ERROR;
1263  } while (result == BZ_OK && pkt_size < 10000000);
1264  pkt_size = bzstream.total_out_lo32;
1265  BZ2_bzDecompressEnd(&bzstream);
1266  if (result != BZ_STREAM_END) {
1267  if (result == BZ_MEM_ERROR)
1268  result = AVERROR(ENOMEM);
1269  else
1270  result = AVERROR_INVALIDDATA;
1271  goto failed;
1272  }
1273  break;
1274  }
1275 #endif
1276  default:
1277  return AVERROR_INVALIDDATA;
1278  }
1279 
1280  *buf = pkt_data;
1281  *buf_size = pkt_size;
1282  return 0;
1283 
1284 failed:
1285  av_free(pkt_data);
1286  return result;
1287 }
1288 
1289 #if FF_API_ASS_SSA
1290 static void matroska_fix_ass_packet(MatroskaDemuxContext *matroska,
1291  AVPacket *pkt, uint64_t display_duration)
1292 {
1293  AVBufferRef *line;
1294  char *layer, *ptr = pkt->data, *end = ptr + pkt->size;
1295 
1296  for (; *ptr != ',' && ptr < end - 1; ptr++)
1297  ;
1298  if (*ptr == ',')
1299  ptr++;
1300  layer = ptr;
1301  for (; *ptr != ',' && ptr < end - 1; ptr++)
1302  ;
1303  if (*ptr == ',') {
1304  int64_t end_pts = pkt->pts + display_duration;
1305  int sc = matroska->time_scale * pkt->pts / 10000000;
1306  int ec = matroska->time_scale * end_pts / 10000000;
1307  int sh, sm, ss, eh, em, es, len;
1308  sh = sc / 360000;
1309  sc -= 360000 * sh;
1310  sm = sc / 6000;
1311  sc -= 6000 * sm;
1312  ss = sc / 100;
1313  sc -= 100 * ss;
1314  eh = ec / 360000;
1315  ec -= 360000 * eh;
1316  em = ec / 6000;
1317  ec -= 6000 * em;
1318  es = ec / 100;
1319  ec -= 100 * es;
1320  *ptr++ = '\0';
1321  len = 50 + end - ptr + FF_INPUT_BUFFER_PADDING_SIZE;
1322  if (!(line = av_buffer_alloc(len)))
1323  return;
1324  snprintf(line->data, len,
1325  "Dialogue: %s,%d:%02d:%02d.%02d,%d:%02d:%02d.%02d,%s\r\n",
1326  layer, sh, sm, ss, sc, eh, em, es, ec, ptr);
1327  av_buffer_unref(&pkt->buf);
1328  pkt->buf = line;
1329  pkt->data = line->data;
1330  pkt->size = strlen(line->data);
1331  }
1332 }
1333 
1334 static int matroska_merge_packets(AVPacket *out, AVPacket *in)
1335 {
1336  int ret = av_grow_packet(out, in->size);
1337  if (ret < 0)
1338  return ret;
1339 
1340  memcpy(out->data + out->size - in->size, in->data, in->size);
1341 
1342  av_free_packet(in);
1343  av_free(in);
1344  return 0;
1345 }
1346 #endif
1347 
1349  AVDictionary **metadata, char *prefix)
1350 {
1351  MatroskaTag *tags = list->elem;
1352  char key[1024];
1353  int i;
1354 
1355  for (i = 0; i < list->nb_elem; i++) {
1356  const char *lang = tags[i].lang &&
1357  strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
1358 
1359  if (!tags[i].name) {
1360  av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
1361  continue;
1362  }
1363  if (prefix)
1364  snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
1365  else
1366  av_strlcpy(key, tags[i].name, sizeof(key));
1367  if (tags[i].def || !lang) {
1368  av_dict_set(metadata, key, tags[i].string, 0);
1369  if (tags[i].sub.nb_elem)
1370  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1371  }
1372  if (lang) {
1373  av_strlcat(key, "-", sizeof(key));
1374  av_strlcat(key, lang, sizeof(key));
1375  av_dict_set(metadata, key, tags[i].string, 0);
1376  if (tags[i].sub.nb_elem)
1377  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1378  }
1379  }
1380  ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
1381 }
1382 
1384 {
1385  MatroskaDemuxContext *matroska = s->priv_data;
1386  MatroskaTags *tags = matroska->tags.elem;
1387  int i, j;
1388 
1389  for (i = 0; i < matroska->tags.nb_elem; i++) {
1390  if (tags[i].target.attachuid) {
1391  MatroskaAttachment *attachment = matroska->attachments.elem;
1392  for (j = 0; j < matroska->attachments.nb_elem; j++)
1393  if (attachment[j].uid == tags[i].target.attachuid &&
1394  attachment[j].stream)
1395  matroska_convert_tag(s, &tags[i].tag,
1396  &attachment[j].stream->metadata, NULL);
1397  } else if (tags[i].target.chapteruid) {
1398  MatroskaChapter *chapter = matroska->chapters.elem;
1399  for (j = 0; j < matroska->chapters.nb_elem; j++)
1400  if (chapter[j].uid == tags[i].target.chapteruid &&
1401  chapter[j].chapter)
1402  matroska_convert_tag(s, &tags[i].tag,
1403  &chapter[j].chapter->metadata, NULL);
1404  } else if (tags[i].target.trackuid) {
1405  MatroskaTrack *track = matroska->tracks.elem;
1406  for (j = 0; j < matroska->tracks.nb_elem; j++)
1407  if (track[j].uid == tags[i].target.trackuid && track[j].stream)
1408  matroska_convert_tag(s, &tags[i].tag,
1409  &track[j].stream->metadata, NULL);
1410  } else {
1411  matroska_convert_tag(s, &tags[i].tag, &s->metadata,
1412  tags[i].target.type);
1413  }
1414  }
1415 }
1416 
1418  int idx)
1419 {
1420  EbmlList *seekhead_list = &matroska->seekhead;
1421  uint32_t level_up = matroska->level_up;
1422  uint32_t saved_id = matroska->current_id;
1423  MatroskaSeekhead *seekhead = seekhead_list->elem;
1424  int64_t before_pos = avio_tell(matroska->ctx->pb);
1426  int64_t offset;
1427  int ret = 0;
1428 
1429  if (idx >= seekhead_list->nb_elem ||
1430  seekhead[idx].id == MATROSKA_ID_SEEKHEAD ||
1431  seekhead[idx].id == MATROSKA_ID_CLUSTER)
1432  return 0;
1433 
1434  /* seek */
1435  offset = seekhead[idx].pos + matroska->segment_start;
1436  if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
1437  /* We don't want to lose our seekhead level, so we add
1438  * a dummy. This is a crude hack. */
1439  if (matroska->num_levels == EBML_MAX_DEPTH) {
1440  av_log(matroska->ctx, AV_LOG_INFO,
1441  "Max EBML element depth (%d) reached, "
1442  "cannot parse further.\n", EBML_MAX_DEPTH);
1443  ret = AVERROR_INVALIDDATA;
1444  } else {
1445  level.start = 0;
1446  level.length = (uint64_t) -1;
1447  matroska->levels[matroska->num_levels] = level;
1448  matroska->num_levels++;
1449  matroska->current_id = 0;
1450 
1451  ret = ebml_parse(matroska, matroska_segment, matroska);
1452 
1453  /* remove dummy level */
1454  while (matroska->num_levels) {
1455  uint64_t length = matroska->levels[--matroska->num_levels].length;
1456  if (length == (uint64_t) -1)
1457  break;
1458  }
1459  }
1460  }
1461  /* seek back */
1462  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
1463  matroska->level_up = level_up;
1464  matroska->current_id = saved_id;
1465 
1466  return ret;
1467 }
1468 
1470 {
1471  EbmlList *seekhead_list = &matroska->seekhead;
1472  int64_t before_pos = avio_tell(matroska->ctx->pb);
1473  int i;
1474 
1475  // we should not do any seeking in the streaming case
1476  if (!matroska->ctx->pb->seekable ||
1477  (matroska->ctx->flags & AVFMT_FLAG_IGNIDX))
1478  return;
1479 
1480  for (i = 0; i < seekhead_list->nb_elem; i++) {
1481  MatroskaSeekhead *seekhead = seekhead_list->elem;
1482  if (seekhead[i].pos <= before_pos)
1483  continue;
1484 
1485  // defer cues parsing until we actually need cue data.
1486  if (seekhead[i].id == MATROSKA_ID_CUES) {
1487  matroska->cues_parsing_deferred = 1;
1488  continue;
1489  }
1490 
1491  if (matroska_parse_seekhead_entry(matroska, i) < 0) {
1492  // mark index as broken
1493  matroska->cues_parsing_deferred = -1;
1494  break;
1495  }
1496  }
1497 }
1498 
1500 {
1501  EbmlList *index_list;
1503  int index_scale = 1;
1504  int i, j;
1505 
1506  index_list = &matroska->index;
1507  index = index_list->elem;
1508  if (index_list->nb_elem &&
1509  index[0].time > 1E14 / matroska->time_scale) {
1510  av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
1511  index_scale = matroska->time_scale;
1512  }
1513  for (i = 0; i < index_list->nb_elem; i++) {
1514  EbmlList *pos_list = &index[i].pos;
1515  MatroskaIndexPos *pos = pos_list->elem;
1516  for (j = 0; j < pos_list->nb_elem; j++) {
1517  MatroskaTrack *track = matroska_find_track_by_num(matroska,
1518  pos[j].track);
1519  if (track && track->stream)
1520  av_add_index_entry(track->stream,
1521  pos[j].pos + matroska->segment_start,
1522  index[i].time / index_scale, 0, 0,
1524  }
1525  }
1526 }
1527 
1529  EbmlList *seekhead_list = &matroska->seekhead;
1530  MatroskaSeekhead *seekhead = seekhead_list->elem;
1531  int i;
1532 
1533  for (i = 0; i < seekhead_list->nb_elem; i++)
1534  if (seekhead[i].id == MATROSKA_ID_CUES)
1535  break;
1536  av_assert1(i <= seekhead_list->nb_elem);
1537 
1538  if (matroska_parse_seekhead_entry(matroska, i) < 0)
1539  matroska->cues_parsing_deferred = -1;
1540  matroska_add_index_entries(matroska);
1541 }
1542 
1544 {
1545  static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
1546  int profile;
1547 
1548  for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
1549  if (strstr(codec_id, aac_profiles[profile]))
1550  break;
1551  return profile + 1;
1552 }
1553 
1554 static int matroska_aac_sri(int samplerate)
1555 {
1556  int sri;
1557 
1558  for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
1559  if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
1560  break;
1561  return sri;
1562 }
1563 
1564 static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
1565 {
1566  char buffer[32];
1567  /* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
1568  time_t creation_time = date_utc / 1000000000 + 978307200;
1569  struct tm *ptm = gmtime(&creation_time);
1570  if (!ptm) return;
1571  strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", ptm);
1572  av_dict_set(metadata, "creation_time", buffer, 0);
1573 }
1574 
1576  MatroskaTrack *track,
1577  int *offset)
1578 {
1579  AVStream *st = track->stream;
1580  uint8_t *p = track->codec_priv.data;
1581  int size = track->codec_priv.size;
1582 
1583  if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
1584  av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
1585  track->codec_priv.size = 0;
1586  return 0;
1587  }
1588  *offset = 8;
1589  track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
1590 
1591  p += track->codec_priv.size;
1592  size -= track->codec_priv.size;
1593 
1594  /* parse the remaining metadata blocks if present */
1595  while (size >= 4) {
1596  int block_last, block_type, block_size;
1597 
1598  flac_parse_block_header(p, &block_last, &block_type, &block_size);
1599 
1600  p += 4;
1601  size -= 4;
1602  if (block_size > size)
1603  return 0;
1604 
1605  /* check for the channel mask */
1606  if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
1607  AVDictionary *dict = NULL;
1608  AVDictionaryEntry *chmask;
1609 
1610  ff_vorbis_comment(s, &dict, p, block_size, 0);
1611  chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
1612  if (chmask) {
1613  uint64_t mask = strtol(chmask->value, NULL, 0);
1614  if (!mask || mask & ~0x3ffffULL) {
1616  "Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
1617  } else
1618  st->codec->channel_layout = mask;
1619  }
1620  av_dict_free(&dict);
1621  }
1622 
1623  p += block_size;
1624  size -= block_size;
1625  }
1626 
1627  return 0;
1628 }
1629 
1631 {
1632  MatroskaDemuxContext *matroska = s->priv_data;
1633  MatroskaTrack *tracks = matroska->tracks.elem;
1634  AVStream *st;
1635  int i, j, ret;
1636  int k;
1637 
1638  for (i = 0; i < matroska->tracks.nb_elem; i++) {
1639  MatroskaTrack *track = &tracks[i];
1641  EbmlList *encodings_list = &track->encodings;
1642  MatroskaTrackEncoding *encodings = encodings_list->elem;
1643  uint8_t *extradata = NULL;
1644  int extradata_size = 0;
1645  int extradata_offset = 0;
1646  uint32_t fourcc = 0;
1647  AVIOContext b;
1648  char* key_id_base64 = NULL;
1649  int bit_depth = -1;
1650 
1651  /* Apply some sanity checks. */
1652  if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
1653  track->type != MATROSKA_TRACK_TYPE_AUDIO &&
1654  track->type != MATROSKA_TRACK_TYPE_SUBTITLE &&
1655  track->type != MATROSKA_TRACK_TYPE_METADATA) {
1656  av_log(matroska->ctx, AV_LOG_INFO,
1657  "Unknown or unsupported track type %"PRIu64"\n",
1658  track->type);
1659  continue;
1660  }
1661  if (track->codec_id == NULL)
1662  continue;
1663 
1664  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1665  if (!track->default_duration && track->video.frame_rate > 0)
1666  track->default_duration = 1000000000 / track->video.frame_rate;
1667  if (track->video.display_width == -1)
1668  track->video.display_width = track->video.pixel_width;
1669  if (track->video.display_height == -1)
1670  track->video.display_height = track->video.pixel_height;
1671  if (track->video.color_space.size == 4)
1672  fourcc = AV_RL32(track->video.color_space.data);
1673  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
1674  if (!track->audio.out_samplerate)
1675  track->audio.out_samplerate = track->audio.samplerate;
1676  }
1677  if (encodings_list->nb_elem > 1) {
1678  av_log(matroska->ctx, AV_LOG_ERROR,
1679  "Multiple combined encodings not supported");
1680  } else if (encodings_list->nb_elem == 1) {
1681  if (encodings[0].type) {
1682  if (encodings[0].encryption.key_id.size > 0) {
1683  /* Save the encryption key id to be stored later as a
1684  metadata tag. */
1685  const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size);
1686  key_id_base64 = av_malloc(b64_size);
1687  if (key_id_base64 == NULL)
1688  return AVERROR(ENOMEM);
1689 
1690  av_base64_encode(key_id_base64, b64_size,
1691  encodings[0].encryption.key_id.data,
1692  encodings[0].encryption.key_id.size);
1693  } else {
1694  encodings[0].scope = 0;
1695  av_log(matroska->ctx, AV_LOG_ERROR,
1696  "Unsupported encoding type");
1697  }
1698  } else if (
1699 #if CONFIG_ZLIB
1700  encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
1701 #endif
1702 #if CONFIG_BZLIB
1704 #endif
1705 #if CONFIG_LZO
1707 #endif
1709  encodings[0].scope = 0;
1710  av_log(matroska->ctx, AV_LOG_ERROR,
1711  "Unsupported encoding type");
1712  } else if (track->codec_priv.size && encodings[0].scope & 2) {
1713  uint8_t *codec_priv = track->codec_priv.data;
1714  int ret = matroska_decode_buffer(&track->codec_priv.data,
1715  &track->codec_priv.size,
1716  track);
1717  if (ret < 0) {
1718  track->codec_priv.data = NULL;
1719  track->codec_priv.size = 0;
1720  av_log(matroska->ctx, AV_LOG_ERROR,
1721  "Failed to decode codec private data\n");
1722  }
1723 
1724  if (codec_priv != track->codec_priv.data)
1725  av_free(codec_priv);
1726  }
1727  }
1728 
1729  for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
1730  if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
1731  strlen(ff_mkv_codec_tags[j].str))) {
1732  codec_id = ff_mkv_codec_tags[j].id;
1733  break;
1734  }
1735  }
1736 
1737  st = track->stream = avformat_new_stream(s, NULL);
1738  if (st == NULL) {
1739  av_free(key_id_base64);
1740  return AVERROR(ENOMEM);
1741  }
1742 
1743  if (key_id_base64) {
1744  /* export encryption key id as base64 metadata tag */
1745  av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0);
1746  av_freep(&key_id_base64);
1747  }
1748 
1749  if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
1750  track->codec_priv.size >= 40 &&
1751  track->codec_priv.data != NULL) {
1752  track->ms_compat = 1;
1753  bit_depth = AV_RL16(track->codec_priv.data + 14);
1754  fourcc = AV_RL32(track->codec_priv.data + 16);
1756  fourcc);
1757  if (!codec_id)
1759  fourcc);
1760  extradata_offset = 40;
1761  } else if (!strcmp(track->codec_id, "A_MS/ACM") &&
1762  track->codec_priv.size >= 14 &&
1763  track->codec_priv.data != NULL) {
1764  int ret;
1765  ffio_init_context(&b, track->codec_priv.data,
1766  track->codec_priv.size,
1767  0, NULL, NULL, NULL, NULL);
1768  ret = ff_get_wav_header(&b, st->codec, track->codec_priv.size);
1769  if (ret < 0)
1770  return ret;
1771  codec_id = st->codec->codec_id;
1772  extradata_offset = FFMIN(track->codec_priv.size, 18);
1773  } else if (!strcmp(track->codec_id, "A_QUICKTIME")
1774  && (track->codec_priv.size >= 86)
1775  && (track->codec_priv.data != NULL)) {
1776  fourcc = AV_RL32(track->codec_priv.data + 4);
1777  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1779  fourcc = AV_RL32(track->codec_priv.data);
1780  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1781  }
1782  } else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
1783  (track->codec_priv.size >= 21) &&
1784  (track->codec_priv.data != NULL)) {
1785  fourcc = AV_RL32(track->codec_priv.data + 4);
1786  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1788  fourcc = AV_RL32(track->codec_priv.data);
1789  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1790  }
1791  if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI "))
1792  codec_id = AV_CODEC_ID_SVQ3;
1793  } else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
1794  switch (track->audio.bitdepth) {
1795  case 8:
1796  codec_id = AV_CODEC_ID_PCM_U8;
1797  break;
1798  case 24:
1799  codec_id = AV_CODEC_ID_PCM_S24BE;
1800  break;
1801  case 32:
1802  codec_id = AV_CODEC_ID_PCM_S32BE;
1803  break;
1804  }
1805  } else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
1806  switch (track->audio.bitdepth) {
1807  case 8:
1808  codec_id = AV_CODEC_ID_PCM_U8;
1809  break;
1810  case 24:
1811  codec_id = AV_CODEC_ID_PCM_S24LE;
1812  break;
1813  case 32:
1814  codec_id = AV_CODEC_ID_PCM_S32LE;
1815  break;
1816  }
1817  } else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
1818  track->audio.bitdepth == 64) {
1819  codec_id = AV_CODEC_ID_PCM_F64LE;
1820  } else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
1821  int profile = matroska_aac_profile(track->codec_id);
1822  int sri = matroska_aac_sri(track->audio.samplerate);
1823  extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
1824  if (extradata == NULL)
1825  return AVERROR(ENOMEM);
1826  extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
1827  extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
1828  if (strstr(track->codec_id, "SBR")) {
1829  sri = matroska_aac_sri(track->audio.out_samplerate);
1830  extradata[2] = 0x56;
1831  extradata[3] = 0xE5;
1832  extradata[4] = 0x80 | (sri << 3);
1833  extradata_size = 5;
1834  } else
1835  extradata_size = 2;
1836  } else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - FF_INPUT_BUFFER_PADDING_SIZE) {
1837  /* Only ALAC's magic cookie is stored in Matroska's track headers.
1838  * Create the "atom size", "tag", and "tag version" fields the
1839  * decoder expects manually. */
1840  extradata_size = 12 + track->codec_priv.size;
1841  extradata = av_mallocz(extradata_size +
1842  FF_INPUT_BUFFER_PADDING_SIZE);
1843  if (extradata == NULL)
1844  return AVERROR(ENOMEM);
1845  AV_WB32(extradata, extradata_size);
1846  memcpy(&extradata[4], "alac", 4);
1847  AV_WB32(&extradata[8], 0);
1848  memcpy(&extradata[12], track->codec_priv.data,
1849  track->codec_priv.size);
1850  } else if (codec_id == AV_CODEC_ID_TTA) {
1851  extradata_size = 30;
1852  extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
1853  if (extradata == NULL)
1854  return AVERROR(ENOMEM);
1855  ffio_init_context(&b, extradata, extradata_size, 1,
1856  NULL, NULL, NULL, NULL);
1857  avio_write(&b, "TTA1", 4);
1858  avio_wl16(&b, 1);
1859  avio_wl16(&b, track->audio.channels);
1860  avio_wl16(&b, track->audio.bitdepth);
1861  if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX)
1862  return AVERROR_INVALIDDATA;
1863  avio_wl32(&b, track->audio.out_samplerate);
1864  avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale),
1865  track->audio.out_samplerate,
1866  AV_TIME_BASE * 1000));
1867  } else if (codec_id == AV_CODEC_ID_RV10 ||
1868  codec_id == AV_CODEC_ID_RV20 ||
1869  codec_id == AV_CODEC_ID_RV30 ||
1870  codec_id == AV_CODEC_ID_RV40) {
1871  extradata_offset = 26;
1872  } else if (codec_id == AV_CODEC_ID_RA_144) {
1873  track->audio.out_samplerate = 8000;
1874  track->audio.channels = 1;
1875  } else if ((codec_id == AV_CODEC_ID_RA_288 ||
1876  codec_id == AV_CODEC_ID_COOK ||
1877  codec_id == AV_CODEC_ID_ATRAC3 ||
1878  codec_id == AV_CODEC_ID_SIPR)
1879  && track->codec_priv.data) {
1880  int flavor;
1881 
1882  ffio_init_context(&b, track->codec_priv.data,
1883  track->codec_priv.size,
1884  0, NULL, NULL, NULL, NULL);
1885  avio_skip(&b, 22);
1886  flavor = avio_rb16(&b);
1887  track->audio.coded_framesize = avio_rb32(&b);
1888  avio_skip(&b, 12);
1889  track->audio.sub_packet_h = avio_rb16(&b);
1890  track->audio.frame_size = avio_rb16(&b);
1891  track->audio.sub_packet_size = avio_rb16(&b);
1892  if (flavor < 0 ||
1893  track->audio.coded_framesize <= 0 ||
1894  track->audio.sub_packet_h <= 0 ||
1895  track->audio.frame_size <= 0 ||
1896  track->audio.sub_packet_size <= 0)
1897  return AVERROR_INVALIDDATA;
1898  track->audio.buf = av_malloc_array(track->audio.sub_packet_h,
1899  track->audio.frame_size);
1900  if (!track->audio.buf)
1901  return AVERROR(ENOMEM);
1902  if (codec_id == AV_CODEC_ID_RA_288) {
1903  st->codec->block_align = track->audio.coded_framesize;
1904  track->codec_priv.size = 0;
1905  } else {
1906  if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
1907  static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
1908  track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
1909  st->codec->bit_rate = sipr_bit_rate[flavor];
1910  }
1911  st->codec->block_align = track->audio.sub_packet_size;
1912  extradata_offset = 78;
1913  }
1914  } else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
1915  ret = matroska_parse_flac(s, track, &extradata_offset);
1916  if (ret < 0)
1917  return ret;
1918  } else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) {
1919  fourcc = AV_RL32(track->codec_priv.data);
1920  }
1921  track->codec_priv.size -= extradata_offset;
1922 
1923  if (codec_id == AV_CODEC_ID_NONE)
1924  av_log(matroska->ctx, AV_LOG_INFO,
1925  "Unknown/unsupported AVCodecID %s.\n", track->codec_id);
1926 
1927  if (track->time_scale < 0.01)
1928  track->time_scale = 1.0;
1929  avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
1930  1000 * 1000 * 1000); /* 64 bit pts in ns */
1931 
1932  /* convert the delay from ns to the track timebase */
1933  track->codec_delay = av_rescale_q(track->codec_delay,
1934  (AVRational){ 1, 1000000000 },
1935  st->time_base);
1936 
1937  st->codec->codec_id = codec_id;
1938 
1939  if (strcmp(track->language, "und"))
1940  av_dict_set(&st->metadata, "language", track->language, 0);
1941  av_dict_set(&st->metadata, "title", track->name, 0);
1942 
1943  if (track->flag_default)
1945  if (track->flag_forced)
1947 
1948  if (!st->codec->extradata) {
1949  if (extradata) {
1950  st->codec->extradata = extradata;
1951  st->codec->extradata_size = extradata_size;
1952  } else if (track->codec_priv.data && track->codec_priv.size > 0) {
1953  if (ff_alloc_extradata(st->codec, track->codec_priv.size))
1954  return AVERROR(ENOMEM);
1955  memcpy(st->codec->extradata,
1956  track->codec_priv.data + extradata_offset,
1957  track->codec_priv.size);
1958  }
1959  }
1960 
1961  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1962  MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
1963 
1965  st->codec->codec_tag = fourcc;
1966  if (bit_depth >= 0)
1967  st->codec->bits_per_coded_sample = bit_depth;
1968  st->codec->width = track->video.pixel_width;
1969  st->codec->height = track->video.pixel_height;
1971  &st->sample_aspect_ratio.den,
1972  st->codec->height * track->video.display_width,
1973  st->codec->width * track->video.display_height,
1974  255);
1975  if (st->codec->codec_id != AV_CODEC_ID_HEVC)
1977 
1978  if (track->default_duration) {
1980  1000000000, track->default_duration, 30000);
1981 #if FF_API_R_FRAME_RATE
1982  if (st->avg_frame_rate.num < st->avg_frame_rate.den * 1000L)
1983  st->r_frame_rate = st->avg_frame_rate;
1984 #endif
1985  }
1986 
1987  /* export stereo mode flag as metadata tag */
1988  if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREO_MODE_COUNT)
1989  av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0);
1990 
1991  /* export alpha mode flag as metadata tag */
1992  if (track->video.alpha_mode)
1993  av_dict_set(&st->metadata, "alpha_mode", "1", 0);
1994 
1995  /* if we have virtual track, mark the real tracks */
1996  for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
1997  char buf[32];
1998  if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
1999  continue;
2000  snprintf(buf, sizeof(buf), "%s_%d",
2001  ff_matroska_video_stereo_plane[planes[j].type], i);
2002  for (k=0; k < matroska->tracks.nb_elem; k++)
2003  if (planes[j].uid == tracks[k].uid) {
2004  av_dict_set(&s->streams[k]->metadata,
2005  "stereo_mode", buf, 0);
2006  break;
2007  }
2008  }
2009  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
2011  st->codec->sample_rate = track->audio.out_samplerate;
2012  st->codec->channels = track->audio.channels;
2013  if (!st->codec->bits_per_coded_sample)
2014  st->codec->bits_per_coded_sample = track->audio.bitdepth;
2015  if (st->codec->codec_id != AV_CODEC_ID_AAC)
2017  if (track->codec_delay > 0) {
2018  st->codec->delay = av_rescale_q(track->codec_delay,
2019  st->time_base,
2020  (AVRational){1, st->codec->sample_rate});
2021  }
2022  if (track->seek_preroll > 0) {
2024  av_rescale_q(track->seek_preroll,
2025  (AVRational){1, 1000000000},
2026  (AVRational){1, st->codec->sample_rate}));
2027  }
2028  } else if (codec_id == AV_CODEC_ID_WEBVTT) {
2029  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
2030 
2031  if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) {
2032  st->disposition |= AV_DISPOSITION_CAPTIONS;
2033  } else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) {
2034  st->disposition |= AV_DISPOSITION_DESCRIPTIONS;
2035  } else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) {
2036  st->disposition |= AV_DISPOSITION_METADATA;
2037  }
2038  } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
2039  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
2040 #if FF_API_ASS_SSA
2041  if (st->codec->codec_id == AV_CODEC_ID_SSA ||
2042  st->codec->codec_id == AV_CODEC_ID_ASS)
2043 #else
2044  if (st->codec->codec_id == AV_CODEC_ID_ASS)
2045 #endif
2046  matroska->contains_ssa = 1;
2047  }
2048  }
2049 
2050  return 0;
2051 }
2052 
2054 {
2055  MatroskaDemuxContext *matroska = s->priv_data;
2056  EbmlList *attachments_list = &matroska->attachments;
2057  EbmlList *chapters_list = &matroska->chapters;
2058  MatroskaAttachment *attachments;
2059  MatroskaChapter *chapters;
2060  uint64_t max_start = 0;
2061  int64_t pos;
2062  Ebml ebml = { 0 };
2063  int i, j, res;
2064 
2065  matroska->ctx = s;
2066 
2067  /* First read the EBML header. */
2068  if (ebml_parse(matroska, ebml_syntax, &ebml) ||
2069  ebml.version > EBML_VERSION ||
2070  ebml.max_size > sizeof(uint64_t) ||
2071  ebml.id_length > sizeof(uint32_t) ||
2072  ebml.doctype_version > 3 ||
2073  !ebml.doctype) {
2074  av_log(matroska->ctx, AV_LOG_ERROR,
2075  "EBML header using unsupported features\n"
2076  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2077  ebml.version, ebml.doctype, ebml.doctype_version);
2078  ebml_free(ebml_syntax, &ebml);
2079  return AVERROR_PATCHWELCOME;
2080  } else if (ebml.doctype_version == 3) {
2081  av_log(matroska->ctx, AV_LOG_WARNING,
2082  "EBML header using unsupported features\n"
2083  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2084  ebml.version, ebml.doctype, ebml.doctype_version);
2085  }
2086  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
2087  if (!strcmp(ebml.doctype, matroska_doctypes[i]))
2088  break;
2089  if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
2090  av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
2091  if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
2092  ebml_free(ebml_syntax, &ebml);
2093  return AVERROR_INVALIDDATA;
2094  }
2095  }
2096  ebml_free(ebml_syntax, &ebml);
2097 
2098  /* The next thing is a segment. */
2099  pos = avio_tell(matroska->ctx->pb);
2100  res = ebml_parse(matroska, matroska_segments, matroska);
2101  // try resyncing until we find a EBML_STOP type element.
2102  while (res != 1) {
2103  res = matroska_resync(matroska, pos);
2104  if (res < 0)
2105  return res;
2106  pos = avio_tell(matroska->ctx->pb);
2107  res = ebml_parse(matroska, matroska_segment, matroska);
2108  }
2109  matroska_execute_seekhead(matroska);
2110 
2111  if (!matroska->time_scale)
2112  matroska->time_scale = 1000000;
2113  if (matroska->duration)
2114  matroska->ctx->duration = matroska->duration * matroska->time_scale *
2115  1000 / AV_TIME_BASE;
2116  av_dict_set(&s->metadata, "title", matroska->title, 0);
2117  av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0);
2118 
2119  if (matroska->date_utc.size == 8)
2121 
2122  res = matroska_parse_tracks(s);
2123  if (res < 0)
2124  return res;
2125 
2126  attachments = attachments_list->elem;
2127  for (j = 0; j < attachments_list->nb_elem; j++) {
2128  if (!(attachments[j].filename && attachments[j].mime &&
2129  attachments[j].bin.data && attachments[j].bin.size > 0)) {
2130  av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
2131  } else {
2132  AVStream *st = avformat_new_stream(s, NULL);
2133  if (st == NULL)
2134  break;
2135  av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
2136  av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
2139  if (ff_alloc_extradata(st->codec, attachments[j].bin.size))
2140  break;
2141  memcpy(st->codec->extradata, attachments[j].bin.data,
2142  attachments[j].bin.size);
2143 
2144  for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
2145  if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
2146  strlen(ff_mkv_mime_tags[i].str))) {
2147  st->codec->codec_id = ff_mkv_mime_tags[i].id;
2148  break;
2149  }
2150  }
2151  attachments[j].stream = st;
2152  }
2153  }
2154 
2155  chapters = chapters_list->elem;
2156  for (i = 0; i < chapters_list->nb_elem; i++)
2157  if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
2158  (max_start == 0 || chapters[i].start > max_start)) {
2159  chapters[i].chapter =
2160  avpriv_new_chapter(s, chapters[i].uid,
2161  (AVRational) { 1, 1000000000 },
2162  chapters[i].start, chapters[i].end,
2163  chapters[i].title);
2164  av_dict_set(&chapters[i].chapter->metadata,
2165  "title", chapters[i].title, 0);
2166  max_start = chapters[i].start;
2167  }
2168 
2169  matroska_add_index_entries(matroska);
2170 
2172 
2173  return 0;
2174 }
2175 
2176 /*
2177  * Put one packet in an application-supplied AVPacket struct.
2178  * Returns 0 on success or -1 on failure.
2179  */
2181  AVPacket *pkt)
2182 {
2183  if (matroska->num_packets > 0) {
2184  memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
2185  av_free(matroska->packets[0]);
2186  if (matroska->num_packets > 1) {
2187  void *newpackets;
2188  memmove(&matroska->packets[0], &matroska->packets[1],
2189  (matroska->num_packets - 1) * sizeof(AVPacket *));
2190  newpackets = av_realloc(matroska->packets,
2191  (matroska->num_packets - 1) *
2192  sizeof(AVPacket *));
2193  if (newpackets)
2194  matroska->packets = newpackets;
2195  } else {
2196  av_freep(&matroska->packets);
2197  matroska->prev_pkt = NULL;
2198  }
2199  matroska->num_packets--;
2200  return 0;
2201  }
2202 
2203  return -1;
2204 }
2205 
2206 /*
2207  * Free all packets in our internal queue.
2208  */
2210 {
2211  matroska->prev_pkt = NULL;
2212  if (matroska->packets) {
2213  int n;
2214  for (n = 0; n < matroska->num_packets; n++) {
2215  av_free_packet(matroska->packets[n]);
2216  av_free(matroska->packets[n]);
2217  }
2218  av_freep(&matroska->packets);
2219  matroska->num_packets = 0;
2220  }
2221 }
2222 
2224  int *buf_size, int type,
2225  uint32_t **lace_buf, int *laces)
2226 {
2227  int res = 0, n, size = *buf_size;
2228  uint8_t *data = *buf;
2229  uint32_t *lace_size;
2230 
2231  if (!type) {
2232  *laces = 1;
2233  *lace_buf = av_mallocz(sizeof(int));
2234  if (!*lace_buf)
2235  return AVERROR(ENOMEM);
2236 
2237  *lace_buf[0] = size;
2238  return 0;
2239  }
2240 
2241  av_assert0(size > 0);
2242  *laces = *data + 1;
2243  data += 1;
2244  size -= 1;
2245  lace_size = av_mallocz(*laces * sizeof(int));
2246  if (!lace_size)
2247  return AVERROR(ENOMEM);
2248 
2249  switch (type) {
2250  case 0x1: /* Xiph lacing */
2251  {
2252  uint8_t temp;
2253  uint32_t total = 0;
2254  for (n = 0; res == 0 && n < *laces - 1; n++) {
2255  while (1) {
2256  if (size <= total) {
2257  res = AVERROR_INVALIDDATA;
2258  break;
2259  }
2260  temp = *data;
2261  total += temp;
2262  lace_size[n] += temp;
2263  data += 1;
2264  size -= 1;
2265  if (temp != 0xff)
2266  break;
2267  }
2268  }
2269  if (size <= total) {
2270  res = AVERROR_INVALIDDATA;
2271  break;
2272  }
2273 
2274  lace_size[n] = size - total;
2275  break;
2276  }
2277 
2278  case 0x2: /* fixed-size lacing */
2279  if (size % (*laces)) {
2280  res = AVERROR_INVALIDDATA;
2281  break;
2282  }
2283  for (n = 0; n < *laces; n++)
2284  lace_size[n] = size / *laces;
2285  break;
2286 
2287  case 0x3: /* EBML lacing */
2288  {
2289  uint64_t num;
2290  uint64_t total;
2291  n = matroska_ebmlnum_uint(matroska, data, size, &num);
2292  if (n < 0 || num > INT_MAX) {
2293  av_log(matroska->ctx, AV_LOG_INFO,
2294  "EBML block data error\n");
2295  res = n<0 ? n : AVERROR_INVALIDDATA;
2296  break;
2297  }
2298  data += n;
2299  size -= n;
2300  total = lace_size[0] = num;
2301  for (n = 1; res == 0 && n < *laces - 1; n++) {
2302  int64_t snum;
2303  int r;
2304  r = matroska_ebmlnum_sint(matroska, data, size, &snum);
2305  if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) {
2306  av_log(matroska->ctx, AV_LOG_INFO,
2307  "EBML block data error\n");
2308  res = r<0 ? r : AVERROR_INVALIDDATA;
2309  break;
2310  }
2311  data += r;
2312  size -= r;
2313  lace_size[n] = lace_size[n - 1] + snum;
2314  total += lace_size[n];
2315  }
2316  if (size <= total) {
2317  res = AVERROR_INVALIDDATA;
2318  break;
2319  }
2320  lace_size[*laces - 1] = size - total;
2321  break;
2322  }
2323  }
2324 
2325  *buf = data;
2326  *lace_buf = lace_size;
2327  *buf_size = size;
2328 
2329  return res;
2330 }
2331 
2333  MatroskaTrack *track, AVStream *st,
2334  uint8_t *data, int size, uint64_t timecode,
2335  int64_t pos)
2336 {
2337  int a = st->codec->block_align;
2338  int sps = track->audio.sub_packet_size;
2339  int cfs = track->audio.coded_framesize;
2340  int h = track->audio.sub_packet_h;
2341  int y = track->audio.sub_packet_cnt;
2342  int w = track->audio.frame_size;
2343  int x;
2344 
2345  if (!track->audio.pkt_cnt) {
2346  if (track->audio.sub_packet_cnt == 0)
2347  track->audio.buf_timecode = timecode;
2348  if (st->codec->codec_id == AV_CODEC_ID_RA_288) {
2349  if (size < cfs * h / 2) {
2350  av_log(matroska->ctx, AV_LOG_ERROR,
2351  "Corrupt int4 RM-style audio packet size\n");
2352  return AVERROR_INVALIDDATA;
2353  }
2354  for (x = 0; x < h / 2; x++)
2355  memcpy(track->audio.buf + x * 2 * w + y * cfs,
2356  data + x * cfs, cfs);
2357  } else if (st->codec->codec_id == AV_CODEC_ID_SIPR) {
2358  if (size < w) {
2359  av_log(matroska->ctx, AV_LOG_ERROR,
2360  "Corrupt sipr RM-style audio packet size\n");
2361  return AVERROR_INVALIDDATA;
2362  }
2363  memcpy(track->audio.buf + y * w, data, w);
2364  } else {
2365  if (size < sps * w / sps || h<=0 || w%sps) {
2366  av_log(matroska->ctx, AV_LOG_ERROR,
2367  "Corrupt generic RM-style audio packet size\n");
2368  return AVERROR_INVALIDDATA;
2369  }
2370  for (x = 0; x < w / sps; x++)
2371  memcpy(track->audio.buf +
2372  sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
2373  data + x * sps, sps);
2374  }
2375 
2376  if (++track->audio.sub_packet_cnt >= h) {
2377  if (st->codec->codec_id == AV_CODEC_ID_SIPR)
2378  ff_rm_reorder_sipr_data(track->audio.buf, h, w);
2379  track->audio.sub_packet_cnt = 0;
2380  track->audio.pkt_cnt = h * w / a;
2381  }
2382  }
2383 
2384  while (track->audio.pkt_cnt) {
2385  AVPacket *pkt = NULL;
2386  if (!(pkt = av_mallocz(sizeof(AVPacket))) || av_new_packet(pkt, a) < 0) {
2387  av_free(pkt);
2388  return AVERROR(ENOMEM);
2389  }
2390  memcpy(pkt->data,
2391  track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
2392  a);
2393  pkt->pts = track->audio.buf_timecode;
2395  pkt->pos = pos;
2396  pkt->stream_index = st->index;
2397  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2398  }
2399 
2400  return 0;
2401 }
2402 
2403 /* reconstruct full wavpack blocks from mangled matroska ones */
2405  uint8_t **pdst, int *size)
2406 {
2407  uint8_t *dst = NULL;
2408  int dstlen = 0;
2409  int srclen = *size;
2410  uint32_t samples;
2411  uint16_t ver;
2412  int ret, offset = 0;
2413 
2414  if (srclen < 12 || track->stream->codec->extradata_size < 2)
2415  return AVERROR_INVALIDDATA;
2416 
2417  ver = AV_RL16(track->stream->codec->extradata);
2418 
2419  samples = AV_RL32(src);
2420  src += 4;
2421  srclen -= 4;
2422 
2423  while (srclen >= 8) {
2424  int multiblock;
2425  uint32_t blocksize;
2426  uint8_t *tmp;
2427 
2428  uint32_t flags = AV_RL32(src);
2429  uint32_t crc = AV_RL32(src + 4);
2430  src += 8;
2431  srclen -= 8;
2432 
2433  multiblock = (flags & 0x1800) != 0x1800;
2434  if (multiblock) {
2435  if (srclen < 4) {
2436  ret = AVERROR_INVALIDDATA;
2437  goto fail;
2438  }
2439  blocksize = AV_RL32(src);
2440  src += 4;
2441  srclen -= 4;
2442  } else
2443  blocksize = srclen;
2444 
2445  if (blocksize > srclen) {
2446  ret = AVERROR_INVALIDDATA;
2447  goto fail;
2448  }
2449 
2450  tmp = av_realloc(dst, dstlen + blocksize + 32);
2451  if (!tmp) {
2452  ret = AVERROR(ENOMEM);
2453  goto fail;
2454  }
2455  dst = tmp;
2456  dstlen += blocksize + 32;
2457 
2458  AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
2459  AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
2460  AV_WL16(dst + offset + 8, ver); // version
2461  AV_WL16(dst + offset + 10, 0); // track/index_no
2462  AV_WL32(dst + offset + 12, 0); // total samples
2463  AV_WL32(dst + offset + 16, 0); // block index
2464  AV_WL32(dst + offset + 20, samples); // number of samples
2465  AV_WL32(dst + offset + 24, flags); // flags
2466  AV_WL32(dst + offset + 28, crc); // crc
2467  memcpy(dst + offset + 32, src, blocksize); // block data
2468 
2469  src += blocksize;
2470  srclen -= blocksize;
2471  offset += blocksize + 32;
2472  }
2473 
2474  *pdst = dst;
2475  *size = dstlen;
2476 
2477  return 0;
2478 
2479 fail:
2480  av_freep(&dst);
2481  return ret;
2482 }
2483 
2485  MatroskaTrack *track,
2486  AVStream *st,
2487  uint8_t *data, int data_len,
2488  uint64_t timecode,
2489  uint64_t duration,
2490  int64_t pos)
2491 {
2492  AVPacket *pkt;
2493  uint8_t *id, *settings, *text, *buf;
2494  int id_len, settings_len, text_len;
2495  uint8_t *p, *q;
2496  int err;
2497 
2498  if (data_len <= 0)
2499  return AVERROR_INVALIDDATA;
2500 
2501  p = data;
2502  q = data + data_len;
2503 
2504  id = p;
2505  id_len = -1;
2506  while (p < q) {
2507  if (*p == '\r' || *p == '\n') {
2508  id_len = p - id;
2509  if (*p == '\r')
2510  p++;
2511  break;
2512  }
2513  p++;
2514  }
2515 
2516  if (p >= q || *p != '\n')
2517  return AVERROR_INVALIDDATA;
2518  p++;
2519 
2520  settings = p;
2521  settings_len = -1;
2522  while (p < q) {
2523  if (*p == '\r' || *p == '\n') {
2524  settings_len = p - settings;
2525  if (*p == '\r')
2526  p++;
2527  break;
2528  }
2529  p++;
2530  }
2531 
2532  if (p >= q || *p != '\n')
2533  return AVERROR_INVALIDDATA;
2534  p++;
2535 
2536  text = p;
2537  text_len = q - p;
2538  while (text_len > 0) {
2539  const int len = text_len - 1;
2540  const uint8_t c = p[len];
2541  if (c != '\r' && c != '\n')
2542  break;
2543  text_len = len;
2544  }
2545 
2546  if (text_len <= 0)
2547  return AVERROR_INVALIDDATA;
2548 
2549  pkt = av_mallocz(sizeof(*pkt));
2550  err = av_new_packet(pkt, text_len);
2551  if (err < 0) {
2552  av_free(pkt);
2553  return AVERROR(err);
2554  }
2555 
2556  memcpy(pkt->data, text, text_len);
2557 
2558  if (id_len > 0) {
2559  buf = av_packet_new_side_data(pkt,
2561  id_len);
2562  if (buf == NULL) {
2563  av_free(pkt);
2564  return AVERROR(ENOMEM);
2565  }
2566  memcpy(buf, id, id_len);
2567  }
2568 
2569  if (settings_len > 0) {
2570  buf = av_packet_new_side_data(pkt,
2572  settings_len);
2573  if (buf == NULL) {
2574  av_free(pkt);
2575  return AVERROR(ENOMEM);
2576  }
2577  memcpy(buf, settings, settings_len);
2578  }
2579 
2580  // Do we need this for subtitles?
2581  // pkt->flags = AV_PKT_FLAG_KEY;
2582 
2583  pkt->stream_index = st->index;
2584  pkt->pts = timecode;
2585 
2586  // Do we need this for subtitles?
2587  // pkt->dts = timecode;
2588 
2589  pkt->duration = duration;
2590  pkt->pos = pos;
2591 
2592  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2593  matroska->prev_pkt = pkt;
2594 
2595  return 0;
2596 }
2597 
2599  MatroskaTrack *track, AVStream *st,
2600  uint8_t *data, int pkt_size,
2601  uint64_t timecode, uint64_t lace_duration,
2602  int64_t pos, int is_keyframe,
2603  uint8_t *additional, uint64_t additional_id, int additional_size,
2604  int64_t discard_padding)
2605 {
2606  MatroskaTrackEncoding *encodings = track->encodings.elem;
2607  uint8_t *pkt_data = data;
2608  int offset = 0, res;
2609  AVPacket *pkt;
2610 
2611  if (encodings && !encodings->type && encodings->scope & 1) {
2612  res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
2613  if (res < 0)
2614  return res;
2615  }
2616 
2617  if (st->codec->codec_id == AV_CODEC_ID_WAVPACK) {
2618  uint8_t *wv_data;
2619  res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
2620  if (res < 0) {
2621  av_log(matroska->ctx, AV_LOG_ERROR,
2622  "Error parsing a wavpack block.\n");
2623  goto fail;
2624  }
2625  if (pkt_data != data)
2626  av_freep(&pkt_data);
2627  pkt_data = wv_data;
2628  }
2629 
2630  if (st->codec->codec_id == AV_CODEC_ID_PRORES &&
2631  AV_RB32(&data[4]) != MKBETAG('i', 'c', 'p', 'f'))
2632  offset = 8;
2633 
2634  pkt = av_mallocz(sizeof(AVPacket));
2635  /* XXX: prevent data copy... */
2636  if (av_new_packet(pkt, pkt_size + offset) < 0) {
2637  av_free(pkt);
2638  res = AVERROR(ENOMEM);
2639  goto fail;
2640  }
2641 
2642  if (st->codec->codec_id == AV_CODEC_ID_PRORES && offset == 8) {
2643  uint8_t *buf = pkt->data;
2644  bytestream_put_be32(&buf, pkt_size);
2645  bytestream_put_be32(&buf, MKBETAG('i', 'c', 'p', 'f'));
2646  }
2647 
2648  memcpy(pkt->data + offset, pkt_data, pkt_size);
2649 
2650  if (pkt_data != data)
2651  av_freep(&pkt_data);
2652 
2653  pkt->flags = is_keyframe;
2654  pkt->stream_index = st->index;
2655 
2656  if (additional_size > 0) {
2657  uint8_t *side_data = av_packet_new_side_data(pkt,
2659  additional_size + 8);
2660  if (side_data == NULL) {
2661  av_free_packet(pkt);
2662  av_free(pkt);
2663  return AVERROR(ENOMEM);
2664  }
2665  AV_WB64(side_data, additional_id);
2666  memcpy(side_data + 8, additional, additional_size);
2667  }
2668 
2669  if (discard_padding) {
2670  uint8_t *side_data = av_packet_new_side_data(pkt,
2672  10);
2673  if (side_data == NULL) {
2674  av_free_packet(pkt);
2675  av_free(pkt);
2676  return AVERROR(ENOMEM);
2677  }
2678  AV_WL32(side_data, 0);
2679  AV_WL32(side_data + 4, av_rescale_q(discard_padding,
2680  (AVRational){1, 1000000000},
2681  (AVRational){1, st->codec->sample_rate}));
2682  }
2683 
2684  if (track->ms_compat)
2685  pkt->dts = timecode;
2686  else
2687  pkt->pts = timecode;
2688  pkt->pos = pos;
2689  if (st->codec->codec_id == AV_CODEC_ID_SUBRIP) {
2690  /*
2691  * For backward compatibility.
2692  * Historically, we have put subtitle duration
2693  * in convergence_duration, on the off chance
2694  * that the time_scale is less than 1us, which
2695  * could result in a 32bit overflow on the
2696  * normal duration field.
2697  */
2698  pkt->convergence_duration = lace_duration;
2699  }
2700 
2701  if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE ||
2702  lace_duration <= INT_MAX) {
2703  /*
2704  * For non subtitle tracks, just store the duration
2705  * as normal.
2706  *
2707  * If it's a subtitle track and duration value does
2708  * not overflow a uint32, then also store it normally.
2709  */
2710  pkt->duration = lace_duration;
2711  }
2712 
2713 #if FF_API_ASS_SSA
2714  if (st->codec->codec_id == AV_CODEC_ID_SSA)
2715  matroska_fix_ass_packet(matroska, pkt, lace_duration);
2716 
2717  if (matroska->prev_pkt &&
2718  timecode != AV_NOPTS_VALUE &&
2719  matroska->prev_pkt->pts == timecode &&
2720  matroska->prev_pkt->stream_index == st->index &&
2721  st->codec->codec_id == AV_CODEC_ID_SSA)
2722  matroska_merge_packets(matroska->prev_pkt, pkt);
2723  else {
2724  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2725  matroska->prev_pkt = pkt;
2726  }
2727 #else
2728  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2729  matroska->prev_pkt = pkt;
2730 #endif
2731 
2732  return 0;
2733 
2734 fail:
2735  if (pkt_data != data)
2736  av_freep(&pkt_data);
2737  return res;
2738 }
2739 
2741  int size, int64_t pos, uint64_t cluster_time,
2742  uint64_t block_duration, int is_keyframe,
2743  uint8_t *additional, uint64_t additional_id, int additional_size,
2744  int64_t cluster_pos, int64_t discard_padding)
2745 {
2746  uint64_t timecode = AV_NOPTS_VALUE;
2747  MatroskaTrack *track;
2748  int res = 0;
2749  AVStream *st;
2750  int16_t block_time;
2751  uint32_t *lace_size = NULL;
2752  int n, flags, laces = 0;
2753  uint64_t num;
2754  int trust_default_duration = 1;
2755 
2756  if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
2757  av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
2758  return n;
2759  }
2760  data += n;
2761  size -= n;
2762 
2763  track = matroska_find_track_by_num(matroska, num);
2764  if (!track || !track->stream) {
2765  av_log(matroska->ctx, AV_LOG_INFO,
2766  "Invalid stream %"PRIu64" or size %u\n", num, size);
2767  return AVERROR_INVALIDDATA;
2768  } else if (size <= 3)
2769  return 0;
2770  st = track->stream;
2771  if (st->discard >= AVDISCARD_ALL)
2772  return res;
2773  av_assert1(block_duration != AV_NOPTS_VALUE);
2774 
2775  block_time = sign_extend(AV_RB16(data), 16);
2776  data += 2;
2777  flags = *data++;
2778  size -= 3;
2779  if (is_keyframe == -1)
2780  is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
2781 
2782  if (cluster_time != (uint64_t) -1 &&
2783  (block_time >= 0 || cluster_time >= -block_time)) {
2784  timecode = cluster_time + block_time - track->codec_delay;
2785  if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
2786  timecode < track->end_timecode)
2787  is_keyframe = 0; /* overlapping subtitles are not key frame */
2788  if (is_keyframe)
2789  av_add_index_entry(st, cluster_pos, timecode, 0, 0,
2791  }
2792 
2793  if (matroska->skip_to_keyframe &&
2794  track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
2795  if (timecode < matroska->skip_to_timecode)
2796  return res;
2797  if (is_keyframe)
2798  matroska->skip_to_keyframe = 0;
2799  else if (!st->skip_to_keyframe) {
2800  av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
2801  matroska->skip_to_keyframe = 0;
2802  }
2803  }
2804 
2805  res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
2806  &lace_size, &laces);
2807 
2808  if (res)
2809  goto end;
2810 
2811  if (track->audio.samplerate == 8000) {
2812  // If this is needed for more codecs, then add them here
2813  if (st->codec->codec_id == AV_CODEC_ID_AC3) {
2814  if (track->audio.samplerate != st->codec->sample_rate || !st->codec->frame_size)
2815  trust_default_duration = 0;
2816  }
2817  }
2818 
2819  if (!block_duration && trust_default_duration)
2820  block_duration = track->default_duration * laces / matroska->time_scale;
2821 
2822  if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time))
2823  track->end_timecode =
2824  FFMAX(track->end_timecode, timecode + block_duration);
2825 
2826  for (n = 0; n < laces; n++) {
2827  int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces;
2828 
2829  if (lace_size[n] > size) {
2830  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
2831  break;
2832  }
2833 
2834  if ((st->codec->codec_id == AV_CODEC_ID_RA_288 ||
2835  st->codec->codec_id == AV_CODEC_ID_COOK ||
2836  st->codec->codec_id == AV_CODEC_ID_SIPR ||
2837  st->codec->codec_id == AV_CODEC_ID_ATRAC3) &&
2838  st->codec->block_align && track->audio.sub_packet_size) {
2839  res = matroska_parse_rm_audio(matroska, track, st, data,
2840  lace_size[n],
2841  timecode, pos);
2842  if (res)
2843  goto end;
2844 
2845  } else if (st->codec->codec_id == AV_CODEC_ID_WEBVTT) {
2846  res = matroska_parse_webvtt(matroska, track, st,
2847  data, lace_size[n],
2848  timecode, lace_duration,
2849  pos);
2850  if (res)
2851  goto end;
2852  } else {
2853  res = matroska_parse_frame(matroska, track, st, data, lace_size[n],
2854  timecode, lace_duration, pos,
2855  !n ? is_keyframe : 0,
2856  additional, additional_id, additional_size,
2857  discard_padding);
2858  if (res)
2859  goto end;
2860  }
2861 
2862  if (timecode != AV_NOPTS_VALUE)
2863  timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE;
2864  data += lace_size[n];
2865  size -= lace_size[n];
2866  }
2867 
2868 end:
2869  av_free(lace_size);
2870  return res;
2871 }
2872 
2874 {
2875  EbmlList *blocks_list;
2876  MatroskaBlock *blocks;
2877  int i, res;
2878  res = ebml_parse(matroska,
2879  matroska_cluster_incremental_parsing,
2880  &matroska->current_cluster);
2881  if (res == 1) {
2882  /* New Cluster */
2883  if (matroska->current_cluster_pos)
2884  ebml_level_end(matroska);
2885  ebml_free(matroska_cluster, &matroska->current_cluster);
2886  memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
2887  matroska->current_cluster_num_blocks = 0;
2888  matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
2889  matroska->prev_pkt = NULL;
2890  /* sizeof the ID which was already read */
2891  if (matroska->current_id)
2892  matroska->current_cluster_pos -= 4;
2893  res = ebml_parse(matroska,
2894  matroska_clusters_incremental,
2895  &matroska->current_cluster);
2896  /* Try parsing the block again. */
2897  if (res == 1)
2898  res = ebml_parse(matroska,
2899  matroska_cluster_incremental_parsing,
2900  &matroska->current_cluster);
2901  }
2902 
2903  if (!res &&
2904  matroska->current_cluster_num_blocks <
2905  matroska->current_cluster.blocks.nb_elem) {
2906  blocks_list = &matroska->current_cluster.blocks;
2907  blocks = blocks_list->elem;
2908 
2909  matroska->current_cluster_num_blocks = blocks_list->nb_elem;
2910  i = blocks_list->nb_elem - 1;
2911  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2912  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2913  uint8_t* additional = blocks[i].additional.size > 0 ?
2914  blocks[i].additional.data : NULL;
2915  if (!blocks[i].non_simple)
2916  blocks[i].duration = 0;
2917  res = matroska_parse_block(matroska, blocks[i].bin.data,
2918  blocks[i].bin.size, blocks[i].bin.pos,
2919  matroska->current_cluster.timecode,
2920  blocks[i].duration, is_keyframe,
2921  additional, blocks[i].additional_id,
2922  blocks[i].additional.size,
2923  matroska->current_cluster_pos,
2924  blocks[i].discard_padding);
2925  }
2926  }
2927 
2928  return res;
2929 }
2930 
2932 {
2933  MatroskaCluster cluster = { 0 };
2934  EbmlList *blocks_list;
2935  MatroskaBlock *blocks;
2936  int i, res;
2937  int64_t pos;
2938 
2939  if (!matroska->contains_ssa)
2940  return matroska_parse_cluster_incremental(matroska);
2941  pos = avio_tell(matroska->ctx->pb);
2942  matroska->prev_pkt = NULL;
2943  if (matroska->current_id)
2944  pos -= 4; /* sizeof the ID which was already read */
2945  res = ebml_parse(matroska, matroska_clusters, &cluster);
2946  blocks_list = &cluster.blocks;
2947  blocks = blocks_list->elem;
2948  for (i = 0; i < blocks_list->nb_elem; i++)
2949  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2950  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2951  res = matroska_parse_block(matroska, blocks[i].bin.data,
2952  blocks[i].bin.size, blocks[i].bin.pos,
2953  cluster.timecode, blocks[i].duration,
2954  is_keyframe, NULL, 0, 0, pos,
2955  blocks[i].discard_padding);
2956  }
2957  ebml_free(matroska_cluster, &cluster);
2958  return res;
2959 }
2960 
2962 {
2963  MatroskaDemuxContext *matroska = s->priv_data;
2964 
2965  while (matroska_deliver_packet(matroska, pkt)) {
2966  int64_t pos = avio_tell(matroska->ctx->pb);
2967  if (matroska->done)
2968  return AVERROR_EOF;
2969  if (matroska_parse_cluster(matroska) < 0)
2970  matroska_resync(matroska, pos);
2971  }
2972 
2973  return 0;
2974 }
2975 
2976 static int matroska_read_seek(AVFormatContext *s, int stream_index,
2977  int64_t timestamp, int flags)
2978 {
2979  MatroskaDemuxContext *matroska = s->priv_data;
2980  MatroskaTrack *tracks = matroska->tracks.elem;
2981  AVStream *st = s->streams[stream_index];
2982  int i, index, index_sub, index_min;
2983 
2984  /* Parse the CUES now since we need the index data to seek. */
2985  if (matroska->cues_parsing_deferred > 0) {
2986  matroska->cues_parsing_deferred = 0;
2987  matroska_parse_cues(matroska);
2988  }
2989 
2990  if (!st->nb_index_entries)
2991  goto err;
2992  timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
2993 
2994  if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
2995  avio_seek(s->pb, st->index_entries[st->nb_index_entries - 1].pos,
2996  SEEK_SET);
2997  matroska->current_id = 0;
2998  while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
2999  matroska_clear_queue(matroska);
3000  if (matroska_parse_cluster(matroska) < 0)
3001  break;
3002  }
3003  }
3004 
3005  matroska_clear_queue(matroska);
3006  if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
3007  goto err;
3008 
3009  index_min = index;
3010  for (i = 0; i < matroska->tracks.nb_elem; i++) {
3011  tracks[i].audio.pkt_cnt = 0;
3012  tracks[i].audio.sub_packet_cnt = 0;
3013  tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
3014  tracks[i].end_timecode = 0;
3015  if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE &&
3016  tracks[i].stream->discard != AVDISCARD_ALL) {
3017  index_sub = av_index_search_timestamp(
3018  tracks[i].stream, st->index_entries[index].timestamp,
3020  while (index_sub >= 0 &&
3021  index_min > 0 &&
3022  tracks[i].stream->index_entries[index_sub].pos < st->index_entries[index_min].pos &&
3023  st->index_entries[index].timestamp - tracks[i].stream->index_entries[index_sub].timestamp < 30000000000 / matroska->time_scale)
3024  index_min--;
3025  }
3026  }
3027 
3028  avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
3029  matroska->current_id = 0;
3030  if (flags & AVSEEK_FLAG_ANY) {
3031  st->skip_to_keyframe = 0;
3032  matroska->skip_to_timecode = timestamp;
3033  } else {
3034  st->skip_to_keyframe = 1;
3035  matroska->skip_to_timecode = st->index_entries[index].timestamp;
3036  }
3037  matroska->skip_to_keyframe = 1;
3038  matroska->done = 0;
3039  matroska->num_levels = 0;
3040  ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
3041  return 0;
3042 err:
3043  // slightly hackish but allows proper fallback to
3044  // the generic seeking code.
3045  matroska_clear_queue(matroska);
3046  matroska->current_id = 0;
3047  st->skip_to_keyframe =
3048  matroska->skip_to_keyframe = 0;
3049  matroska->done = 0;
3050  matroska->num_levels = 0;
3051  return -1;
3052 }
3053 
3055 {
3056  MatroskaDemuxContext *matroska = s->priv_data;
3057  MatroskaTrack *tracks = matroska->tracks.elem;
3058  int n;
3059 
3060  matroska_clear_queue(matroska);
3061 
3062  for (n = 0; n < matroska->tracks.nb_elem; n++)
3063  if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
3064  av_free(tracks[n].audio.buf);
3065  ebml_free(matroska_cluster, &matroska->current_cluster);
3066  ebml_free(matroska_segment, matroska);
3067 
3068  return 0;
3069 }
3070 
3071 typedef struct {
3072  int64_t start_time_ns;
3073  int64_t end_time_ns;
3074  int64_t start_offset;
3075  int64_t end_offset;
3076 } CueDesc;
3077 
3078 /* This function searches all the Cues and returns the CueDesc corresponding the
3079  * the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts <
3080  * end_time_ns. All 4 fields will be set to -1 if ts >= file's duration.
3081  */
3082 static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) {
3083  MatroskaDemuxContext *matroska = s->priv_data;
3084  CueDesc cue_desc;
3085  int i;
3086  int nb_index_entries = s->streams[0]->nb_index_entries;
3087  AVIndexEntry *index_entries = s->streams[0]->index_entries;
3088  if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1};
3089  for (i = 1; i < nb_index_entries; i++) {
3090  if (index_entries[i - 1].timestamp * matroska->time_scale <= ts &&
3091  index_entries[i].timestamp * matroska->time_scale > ts) {
3092  break;
3093  }
3094  }
3095  --i;
3096  cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale;
3097  cue_desc.start_offset = index_entries[i].pos - matroska->segment_start;
3098  if (i != nb_index_entries - 1) {
3099  cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale;
3100  cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start;
3101  } else {
3102  cue_desc.end_time_ns = matroska->duration * matroska->time_scale;
3103  // FIXME: this needs special handling for files where Cues appear
3104  // before Clusters. the current logic assumes Cues appear after
3105  // Clusters.
3106  cue_desc.end_offset = cues_start - matroska->segment_start;
3107  }
3108  return cue_desc;
3109 }
3110 
3112 {
3113  MatroskaDemuxContext *matroska = s->priv_data;
3114  int64_t cluster_pos, before_pos;
3115  int index, rv = 1;
3116  if (s->streams[0]->nb_index_entries <= 0) return 0;
3117  // seek to the first cluster using cues.
3118  index = av_index_search_timestamp(s->streams[0], 0, 0);
3119  if (index < 0) return 0;
3120  cluster_pos = s->streams[0]->index_entries[index].pos;
3121  before_pos = avio_tell(s->pb);
3122  while (1) {
3123  int64_t cluster_id = 0, cluster_length = 0;
3124  AVPacket *pkt;
3125  avio_seek(s->pb, cluster_pos, SEEK_SET);
3126  // read cluster id and length
3127  ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id);
3128  ebml_read_length(matroska, matroska->ctx->pb, &cluster_length);
3129  if (cluster_id != 0xF43B675) { // done with all clusters
3130  break;
3131  }
3132  avio_seek(s->pb, cluster_pos, SEEK_SET);
3133  matroska->current_id = 0;
3134  matroska_clear_queue(matroska);
3135  if (matroska_parse_cluster(matroska) < 0 ||
3136  matroska->num_packets <= 0) {
3137  break;
3138  }
3139  pkt = matroska->packets[0];
3140  cluster_pos += cluster_length + 12; // 12 is the offset of the cluster id and length.
3141  if (!(pkt->flags & AV_PKT_FLAG_KEY)) {
3142  rv = 0;
3143  break;
3144  }
3145  }
3146  avio_seek(s->pb, before_pos, SEEK_SET);
3147  return rv;
3148 }
3149 
3150 static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps,
3151  double min_buffer, double* buffer,
3152  double* sec_to_download, AVFormatContext *s,
3153  int64_t cues_start)
3154 {
3155  double nano_seconds_per_second = 1000000000.0;
3156  double time_sec = time_ns / nano_seconds_per_second;
3157  int rv = 0;
3158  int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second);
3159  int64_t end_time_ns = time_ns + time_to_search_ns;
3160  double sec_downloaded = 0.0;
3161  CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start);
3162  if (desc_curr.start_time_ns == -1)
3163  return -1;
3164  *sec_to_download = 0.0;
3165 
3166  // Check for non cue start time.
3167  if (time_ns > desc_curr.start_time_ns) {
3168  int64_t cue_nano = desc_curr.end_time_ns - time_ns;
3169  double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns);
3170  double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent;
3171  double timeToDownload = (cueBytes * 8.0) / bps;
3172 
3173  sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload;
3174  *sec_to_download += timeToDownload;
3175 
3176  // Check if the search ends within the first cue.
3177  if (desc_curr.end_time_ns >= end_time_ns) {
3178  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3179  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3180  sec_downloaded = percent_to_sub * sec_downloaded;
3181  *sec_to_download = percent_to_sub * *sec_to_download;
3182  }
3183 
3184  if ((sec_downloaded + *buffer) <= min_buffer) {
3185  return 1;
3186  }
3187 
3188  // Get the next Cue.
3189  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3190  }
3191 
3192  while (desc_curr.start_time_ns != -1) {
3193  int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset;
3194  int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns;
3195  double desc_sec = desc_ns / nano_seconds_per_second;
3196  double bits = (desc_bytes * 8.0);
3197  double time_to_download = bits / bps;
3198 
3199  sec_downloaded += desc_sec - time_to_download;
3200  *sec_to_download += time_to_download;
3201 
3202  if (desc_curr.end_time_ns >= end_time_ns) {
3203  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3204  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3205  sec_downloaded = percent_to_sub * sec_downloaded;
3206  *sec_to_download = percent_to_sub * *sec_to_download;
3207 
3208  if ((sec_downloaded + *buffer) <= min_buffer)
3209  rv = 1;
3210  break;
3211  }
3212 
3213  if ((sec_downloaded + *buffer) <= min_buffer) {
3214  rv = 1;
3215  break;
3216  }
3217 
3218  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3219  }
3220  *buffer = *buffer + sec_downloaded;
3221  return rv;
3222 }
3223 
3224 /* This function computes the bandwidth of the WebM file with the help of
3225  * buffer_size_after_time_downloaded() function. Both of these functions are
3226  * adapted from WebM Tools project and are adapted to work with FFmpeg's
3227  * Matroska parsing mechanism.
3228  *
3229  * Returns the bandwidth of the file on success; -1 on error.
3230  * */
3231 static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start)
3232 {
3233  MatroskaDemuxContext *matroska = s->priv_data;
3234  AVStream *st = s->streams[0];
3235  double bandwidth = 0.0;
3236  int i;
3237 
3238  for (i = 0; i < st->nb_index_entries; i++) {
3239  int64_t prebuffer_ns = 1000000000;
3240  int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale;
3241  double nano_seconds_per_second = 1000000000.0;
3242  int64_t prebuffered_ns = time_ns + prebuffer_ns;
3243  double prebuffer_bytes = 0.0;
3244  int64_t temp_prebuffer_ns = prebuffer_ns;
3245  int64_t pre_bytes, pre_ns;
3246  double pre_sec, prebuffer, bits_per_second;
3247  CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start);
3248 
3249  // Start with the first Cue.
3250  CueDesc desc_end = desc_beg;
3251 
3252  // Figure out how much data we have downloaded for the prebuffer. This will
3253  // be used later to adjust the bits per sample to try.
3254  while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) {
3255  // Prebuffered the entire Cue.
3256  prebuffer_bytes += desc_end.end_offset - desc_end.start_offset;
3257  temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns;
3258  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3259  }
3260  if (desc_end.start_time_ns == -1) {
3261  // The prebuffer is larger than the duration.
3262  return (matroska->duration * matroska->time_scale >= prebuffered_ns) ? -1 : 0;
3263  }
3264 
3265  // The prebuffer ends in the last Cue. Estimate how much data was
3266  // prebuffered.
3267  pre_bytes = desc_end.end_offset - desc_end.start_offset;
3268  pre_ns = desc_end.end_time_ns - desc_end.start_time_ns;
3269  pre_sec = pre_ns / nano_seconds_per_second;
3270  prebuffer_bytes +=
3271  pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec);
3272 
3273  prebuffer = prebuffer_ns / nano_seconds_per_second;
3274 
3275  // Set this to 0.0 in case our prebuffer buffers the entire video.
3276  bits_per_second = 0.0;
3277  do {
3278  int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset;
3279  int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns;
3280  double desc_sec = desc_ns / nano_seconds_per_second;
3281  double calc_bits_per_second = (desc_bytes * 8) / desc_sec;
3282 
3283  // Drop the bps by the percentage of bytes buffered.
3284  double percent = (desc_bytes - prebuffer_bytes) / desc_bytes;
3285  double mod_bits_per_second = calc_bits_per_second * percent;
3286 
3287  if (prebuffer < desc_sec) {
3288  double search_sec =
3289  (double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second;
3290 
3291  // Add 1 so the bits per second should be a little bit greater than file
3292  // datarate.
3293  int64_t bps = (int64_t)(mod_bits_per_second) + 1;
3294  const double min_buffer = 0.0;
3295  double buffer = prebuffer;
3296  double sec_to_download = 0.0;
3297 
3298  int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps,
3299  min_buffer, &buffer, &sec_to_download,
3300  s, cues_start);
3301  if (rv < 0) {
3302  return -1;
3303  } else if (rv == 0) {
3304  bits_per_second = (double)(bps);
3305  break;
3306  }
3307  }
3308 
3309  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3310  } while (desc_end.start_time_ns != -1);
3311  if (bandwidth < bits_per_second) bandwidth = bits_per_second;
3312  }
3313  return (int64_t)bandwidth;
3314 }
3315 
3317 {
3318  MatroskaDemuxContext *matroska = s->priv_data;
3319  EbmlList *seekhead_list = &matroska->seekhead;
3320  MatroskaSeekhead *seekhead = seekhead_list->elem;
3321  char *buf;
3322  int64_t cues_start, cues_end, before_pos, bandwidth;
3323  int i;
3324 
3325  // determine cues start and end positions
3326  for (i = 0; i < seekhead_list->nb_elem; i++)
3327  if (seekhead[i].id == MATROSKA_ID_CUES)
3328  break;
3329 
3330  if (i >= seekhead_list->nb_elem) return -1;
3331 
3332  before_pos = avio_tell(matroska->ctx->pb);
3333  cues_start = seekhead[i].pos + matroska->segment_start;
3334  if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) {
3335  uint64_t cues_length = 0, cues_id = 0;
3336  ebml_read_num(matroska, matroska->ctx->pb, 4, &cues_id);
3337  ebml_read_length(matroska, matroska->ctx->pb, &cues_length);
3338  cues_end = cues_start + cues_length + 11; // 11 is the offset of Cues ID.
3339  }
3340  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
3341 
3342  // parse the cues
3343  matroska_parse_cues(matroska);
3344 
3345  // cues start
3346  buf = av_asprintf("%" PRId64, cues_start);
3347  if (!buf) return AVERROR(ENOMEM);
3348  av_dict_set(&s->streams[0]->metadata, CUES_START, buf, 0);
3349  av_free(buf);
3350 
3351  // cues end
3352  buf = av_asprintf("%" PRId64, cues_end);
3353  if (!buf) return AVERROR(ENOMEM);
3354  av_dict_set(&s->streams[0]->metadata, CUES_END, buf, 0);
3355  av_free(buf);
3356 
3357  // bandwidth
3358  bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start);
3359  if (bandwidth < 0) return -1;
3360  buf = av_asprintf("%" PRId64, bandwidth);
3361  if (!buf) return AVERROR(ENOMEM);
3362  av_dict_set(&s->streams[0]->metadata, BANDWIDTH, buf, 0);
3363  av_free(buf);
3364 
3365  // check if all clusters start with key frames
3367  if (!buf) return AVERROR(ENOMEM);
3368  av_dict_set(&s->streams[0]->metadata, CLUSTER_KEYFRAME, buf, 0);
3369  av_free(buf);
3370 
3371  // store cue point timestamps as a comma separated list for checking subsegment alignment in
3372  // the muxer. assumes that each timestamp cannot be more than 20 characters long.
3373  buf = av_malloc(s->streams[0]->nb_index_entries * 20 * sizeof(char));
3374  if (!buf) return -1;
3375  strcpy(buf, "");
3376  for (i = 0; i < s->streams[0]->nb_index_entries; i++) {
3377  snprintf(buf, (i + 1) * 20 * sizeof(char),
3378  "%s%" PRId64, buf, s->streams[0]->index_entries[i].timestamp);
3379  if (i != s->streams[0]->nb_index_entries - 1)
3380  strncat(buf, ",", sizeof(char));
3381  }
3382  av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0);
3383  av_free(buf);
3384 
3385  return 0;
3386 }
3387 
3389 {
3390  char *buf;
3391  int ret = matroska_read_header(s);
3392  MatroskaTrack *tracks;
3393  MatroskaDemuxContext *matroska = s->priv_data;
3394  if (ret) {
3395  av_log(s, AV_LOG_ERROR, "Failed to read file headers\n");
3396  return -1;
3397  }
3398 
3399  // initialization range
3400  buf = av_asprintf("%" PRId64, avio_tell(s->pb) - 5); // 5 is the offset of Cluster ID.
3401  if (!buf) return AVERROR(ENOMEM);
3403  av_free(buf);
3404 
3405  // basename of the file
3406  buf = strrchr(s->filename, '/');
3407  if (buf == NULL) return -1;
3408  av_dict_set(&s->streams[0]->metadata, FILENAME, ++buf, 0);
3409 
3410  // duration
3411  buf = av_asprintf("%g", matroska->duration);
3412  if (!buf) return AVERROR(ENOMEM);
3413  av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0);
3414  av_free(buf);
3415 
3416  // track number
3417  tracks = matroska->tracks.elem;
3418  buf = av_asprintf("%" PRId64, tracks[0].num);
3419  if (!buf) return AVERROR(ENOMEM);
3420  av_dict_set(&s->streams[0]->metadata, TRACK_NUMBER, buf, 0);
3421  av_free(buf);
3422 
3423  // parse the cues and populate Cue related fields
3424  return webm_dash_manifest_cues(s);
3425 }
3426 
3428 {
3429  return AVERROR_EOF;
3430 }
3431 
3433  .name = "matroska,webm",
3434  .long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
3435  .priv_data_size = sizeof(MatroskaDemuxContext),
3441 };
3442 
3444  .name = "webm_dash_manifest",
3445  .long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"),
3446  .priv_data_size = sizeof(MatroskaDemuxContext),
3450 };