FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aacsbr.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * AAC Spectral Band Replication decoding functions
26  * @author Robert Swain ( rob opendot cl )
27  */
28 
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "aacsbr_tablegen.h"
34 #include "fft.h"
35 #include "aacps.h"
36 #include "sbrdsp.h"
37 #include "libavutil/internal.h"
38 #include "libavutil/libm.h"
39 #include "libavutil/avassert.h"
40 
41 #include <stdint.h>
42 #include <float.h>
43 #include <math.h>
44 
45 #define ENVELOPE_ADJUSTMENT_OFFSET 2
46 #define NOISE_FLOOR_OFFSET 6.0f
47 
48 #if ARCH_MIPS
49 #include "mips/aacsbr_mips.h"
50 #endif /* ARCH_MIPS */
51 
52 /**
53  * SBR VLC tables
54  */
55 enum {
66 };
67 
68 /**
69  * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
70  */
71 enum {
76 };
77 
78 enum {
80 };
81 
82 static VLC vlc_sbr[10];
83 static const int8_t vlc_sbr_lav[10] =
84  { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
85 
86 #define SBR_INIT_VLC_STATIC(num, size) \
87  INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
88  sbr_tmp[num].sbr_bits , 1, 1, \
89  sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
90  size)
91 
92 #define SBR_VLC_ROW(name) \
93  { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
94 
96 
98 {
99  static const struct {
100  const void *sbr_codes, *sbr_bits;
101  const unsigned int table_size, elem_size;
102  } sbr_tmp[] = {
103  SBR_VLC_ROW(t_huffman_env_1_5dB),
104  SBR_VLC_ROW(f_huffman_env_1_5dB),
105  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
106  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
107  SBR_VLC_ROW(t_huffman_env_3_0dB),
108  SBR_VLC_ROW(f_huffman_env_3_0dB),
109  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
110  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
111  SBR_VLC_ROW(t_huffman_noise_3_0dB),
112  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
113  };
114 
115  // SBR VLC table initialization
116  SBR_INIT_VLC_STATIC(0, 1098);
117  SBR_INIT_VLC_STATIC(1, 1092);
118  SBR_INIT_VLC_STATIC(2, 768);
119  SBR_INIT_VLC_STATIC(3, 1026);
120  SBR_INIT_VLC_STATIC(4, 1058);
121  SBR_INIT_VLC_STATIC(5, 1052);
122  SBR_INIT_VLC_STATIC(6, 544);
123  SBR_INIT_VLC_STATIC(7, 544);
124  SBR_INIT_VLC_STATIC(8, 592);
125  SBR_INIT_VLC_STATIC(9, 512);
126 
128 
129  ff_ps_init();
130 }
131 
132 /** Places SBR in pure upsampling mode. */
134  sbr->start = 0;
135  // Init defults used in pure upsampling mode
136  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
137  sbr->m[1] = 0;
138  // Reset values for first SBR header
139  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
140  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
141 }
142 
144 {
145  if(sbr->mdct.mdct_bits)
146  return;
147  sbr->kx[0] = sbr->kx[1];
148  sbr_turnoff(sbr);
151  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
152  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
153  * and scale back down at synthesis. */
154  ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
155  ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
156  ff_ps_ctx_init(&sbr->ps);
157  ff_sbrdsp_init(&sbr->dsp);
158  aacsbr_func_ptr_init(&sbr->c);
159 }
160 
162 {
163  ff_mdct_end(&sbr->mdct);
164  ff_mdct_end(&sbr->mdct_ana);
165 }
166 
167 static int qsort_comparison_function_int16(const void *a, const void *b)
168 {
169  return *(const int16_t *)a - *(const int16_t *)b;
170 }
171 
172 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
173 {
174  int i;
175  for (i = 0; i <= last_el; i++)
176  if (table[i] == needle)
177  return 1;
178  return 0;
179 }
180 
181 /// Limiter Frequency Band Table (14496-3 sp04 p198)
183 {
184  int k;
185  if (sbr->bs_limiter_bands > 0) {
186  static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
187  1.18509277094158210129f, //2^(0.49/2)
188  1.11987160404675912501f }; //2^(0.49/3)
189  const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
190  int16_t patch_borders[7];
191  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
192 
193  patch_borders[0] = sbr->kx[1];
194  for (k = 1; k <= sbr->num_patches; k++)
195  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
196 
197  memcpy(sbr->f_tablelim, sbr->f_tablelow,
198  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
199  if (sbr->num_patches > 1)
200  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
201  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
202 
203  qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
204  sizeof(sbr->f_tablelim[0]),
206 
207  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
208  while (out < sbr->f_tablelim + sbr->n_lim) {
209  if (*in >= *out * lim_bands_per_octave_warped) {
210  *++out = *in++;
211  } else if (*in == *out ||
212  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
213  in++;
214  sbr->n_lim--;
215  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
216  *out = *in++;
217  sbr->n_lim--;
218  } else {
219  *++out = *in++;
220  }
221  }
222  } else {
223  sbr->f_tablelim[0] = sbr->f_tablelow[0];
224  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
225  sbr->n_lim = 1;
226  }
227 }
228 
230 {
231  unsigned int cnt = get_bits_count(gb);
232  uint8_t bs_header_extra_1;
233  uint8_t bs_header_extra_2;
234  int old_bs_limiter_bands = sbr->bs_limiter_bands;
235  SpectrumParameters old_spectrum_params;
236 
237  sbr->start = 1;
238 
239  // Save last spectrum parameters variables to compare to new ones
240  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
241 
242  sbr->bs_amp_res_header = get_bits1(gb);
243  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
244  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
245  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
246  skip_bits(gb, 2); // bs_reserved
247 
248  bs_header_extra_1 = get_bits1(gb);
249  bs_header_extra_2 = get_bits1(gb);
250 
251  if (bs_header_extra_1) {
252  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
255  } else {
259  }
260 
261  // Check if spectrum parameters changed
262  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
263  sbr->reset = 1;
264 
265  if (bs_header_extra_2) {
266  sbr->bs_limiter_bands = get_bits(gb, 2);
267  sbr->bs_limiter_gains = get_bits(gb, 2);
268  sbr->bs_interpol_freq = get_bits1(gb);
269  sbr->bs_smoothing_mode = get_bits1(gb);
270  } else {
271  sbr->bs_limiter_bands = 2;
272  sbr->bs_limiter_gains = 2;
273  sbr->bs_interpol_freq = 1;
274  sbr->bs_smoothing_mode = 1;
275  }
276 
277  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
278  sbr_make_f_tablelim(sbr);
279 
280  return get_bits_count(gb) - cnt;
281 }
282 
283 static int array_min_int16(const int16_t *array, int nel)
284 {
285  int i, min = array[0];
286  for (i = 1; i < nel; i++)
287  min = FFMIN(array[i], min);
288  return min;
289 }
290 
291 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
292 {
293  int k, previous, present;
294  float base, prod;
295 
296  base = powf((float)stop / start, 1.0f / num_bands);
297  prod = start;
298  previous = start;
299 
300  for (k = 0; k < num_bands-1; k++) {
301  prod *= base;
302  present = lrintf(prod);
303  bands[k] = present - previous;
304  previous = present;
305  }
306  bands[num_bands-1] = stop - previous;
307 }
308 
309 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
310 {
311  // Requirements (14496-3 sp04 p205)
312  if (n_master <= 0) {
313  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
314  return -1;
315  }
316  if (bs_xover_band >= n_master) {
317  av_log(avctx, AV_LOG_ERROR,
318  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
319  bs_xover_band);
320  return -1;
321  }
322  return 0;
323 }
324 
325 /// Master Frequency Band Table (14496-3 sp04 p194)
327  SpectrumParameters *spectrum)
328 {
329  unsigned int temp, max_qmf_subbands;
330  unsigned int start_min, stop_min;
331  int k;
332  const int8_t *sbr_offset_ptr;
333  int16_t stop_dk[13];
334 
335  if (sbr->sample_rate < 32000) {
336  temp = 3000;
337  } else if (sbr->sample_rate < 64000) {
338  temp = 4000;
339  } else
340  temp = 5000;
341 
342  switch (sbr->sample_rate) {
343  case 16000:
344  sbr_offset_ptr = sbr_offset[0];
345  break;
346  case 22050:
347  sbr_offset_ptr = sbr_offset[1];
348  break;
349  case 24000:
350  sbr_offset_ptr = sbr_offset[2];
351  break;
352  case 32000:
353  sbr_offset_ptr = sbr_offset[3];
354  break;
355  case 44100: case 48000: case 64000:
356  sbr_offset_ptr = sbr_offset[4];
357  break;
358  case 88200: case 96000: case 128000: case 176400: case 192000:
359  sbr_offset_ptr = sbr_offset[5];
360  break;
361  default:
363  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
364  return -1;
365  }
366 
367  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
368  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
369 
370  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
371 
372  if (spectrum->bs_stop_freq < 14) {
373  sbr->k[2] = stop_min;
374  make_bands(stop_dk, stop_min, 64, 13);
375  qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
376  for (k = 0; k < spectrum->bs_stop_freq; k++)
377  sbr->k[2] += stop_dk[k];
378  } else if (spectrum->bs_stop_freq == 14) {
379  sbr->k[2] = 2*sbr->k[0];
380  } else if (spectrum->bs_stop_freq == 15) {
381  sbr->k[2] = 3*sbr->k[0];
382  } else {
384  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
385  return -1;
386  }
387  sbr->k[2] = FFMIN(64, sbr->k[2]);
388 
389  // Requirements (14496-3 sp04 p205)
390  if (sbr->sample_rate <= 32000) {
391  max_qmf_subbands = 48;
392  } else if (sbr->sample_rate == 44100) {
393  max_qmf_subbands = 35;
394  } else if (sbr->sample_rate >= 48000)
395  max_qmf_subbands = 32;
396  else
397  av_assert0(0);
398 
399  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
401  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
402  return -1;
403  }
404 
405  if (!spectrum->bs_freq_scale) {
406  int dk, k2diff;
407 
408  dk = spectrum->bs_alter_scale + 1;
409  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
411  return -1;
412 
413  for (k = 1; k <= sbr->n_master; k++)
414  sbr->f_master[k] = dk;
415 
416  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
417  if (k2diff < 0) {
418  sbr->f_master[1]--;
419  sbr->f_master[2]-= (k2diff < -1);
420  } else if (k2diff) {
421  sbr->f_master[sbr->n_master]++;
422  }
423 
424  sbr->f_master[0] = sbr->k[0];
425  for (k = 1; k <= sbr->n_master; k++)
426  sbr->f_master[k] += sbr->f_master[k - 1];
427 
428  } else {
429  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
430  int two_regions, num_bands_0;
431  int vdk0_max, vdk1_min;
432  int16_t vk0[49];
433 
434  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
435  two_regions = 1;
436  sbr->k[1] = 2 * sbr->k[0];
437  } else {
438  two_regions = 0;
439  sbr->k[1] = sbr->k[2];
440  }
441 
442  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
443 
444  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
445  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
446  return -1;
447  }
448 
449  vk0[0] = 0;
450 
451  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
452 
453  qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
454  vdk0_max = vk0[num_bands_0];
455 
456  vk0[0] = sbr->k[0];
457  for (k = 1; k <= num_bands_0; k++) {
458  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
459  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
460  return -1;
461  }
462  vk0[k] += vk0[k-1];
463  }
464 
465  if (two_regions) {
466  int16_t vk1[49];
467  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
468  : 1.0f; // bs_alter_scale = {0,1}
469  int num_bands_1 = lrintf(half_bands * invwarp *
470  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
471 
472  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
473 
474  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
475 
476  if (vdk1_min < vdk0_max) {
477  int change;
478  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
479  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
480  vk1[1] += change;
481  vk1[num_bands_1] -= change;
482  }
483 
484  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
485 
486  vk1[0] = sbr->k[1];
487  for (k = 1; k <= num_bands_1; k++) {
488  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
489  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
490  return -1;
491  }
492  vk1[k] += vk1[k-1];
493  }
494 
495  sbr->n_master = num_bands_0 + num_bands_1;
497  return -1;
498  memcpy(&sbr->f_master[0], vk0,
499  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
500  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
501  num_bands_1 * sizeof(sbr->f_master[0]));
502 
503  } else {
504  sbr->n_master = num_bands_0;
506  return -1;
507  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
508  }
509  }
510 
511  return 0;
512 }
513 
514 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
516 {
517  int i, k, sb = 0;
518  int msb = sbr->k[0];
519  int usb = sbr->kx[1];
520  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
521 
522  sbr->num_patches = 0;
523 
524  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
525  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
526  } else
527  k = sbr->n_master;
528 
529  do {
530  int odd = 0;
531  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
532  sb = sbr->f_master[i];
533  odd = (sb + sbr->k[0]) & 1;
534  }
535 
536  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
537  // After this check the final number of patches can still be six which is
538  // illegal however the Coding Technologies decoder check stream has a final
539  // count of 6 patches
540  if (sbr->num_patches > 5) {
541  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
542  return -1;
543  }
544 
545  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
546  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
547 
548  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
549  usb = sb;
550  msb = sb;
551  sbr->num_patches++;
552  } else
553  msb = sbr->kx[1];
554 
555  if (sbr->f_master[k] - sb < 3)
556  k = sbr->n_master;
557  } while (sb != sbr->kx[1] + sbr->m[1]);
558 
559  if (sbr->num_patches > 1 && sbr->patch_num_subbands[sbr->num_patches-1] < 3)
560  sbr->num_patches--;
561 
562  return 0;
563 }
564 
565 /// Derived Frequency Band Tables (14496-3 sp04 p197)
567 {
568  int k, temp;
569 
570  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
571  sbr->n[0] = (sbr->n[1] + 1) >> 1;
572 
573  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
574  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
575  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
576  sbr->kx[1] = sbr->f_tablehigh[0];
577 
578  // Requirements (14496-3 sp04 p205)
579  if (sbr->kx[1] + sbr->m[1] > 64) {
581  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
582  return -1;
583  }
584  if (sbr->kx[1] > 32) {
585  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
586  return -1;
587  }
588 
589  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
590  temp = sbr->n[1] & 1;
591  for (k = 1; k <= sbr->n[0]; k++)
592  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
593 
595  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
596  if (sbr->n_q > 5) {
597  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
598  return -1;
599  }
600 
601  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
602  temp = 0;
603  for (k = 1; k <= sbr->n_q; k++) {
604  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
605  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
606  }
607 
608  if (sbr_hf_calc_npatches(ac, sbr) < 0)
609  return -1;
610 
611  sbr_make_f_tablelim(sbr);
612 
613  sbr->data[0].f_indexnoise = 0;
614  sbr->data[1].f_indexnoise = 0;
615 
616  return 0;
617 }
618 
620  int elements)
621 {
622  int i;
623  for (i = 0; i < elements; i++) {
624  vec[i] = get_bits1(gb);
625  }
626 }
627 
628 /** ceil(log2(index+1)) */
629 static const int8_t ceil_log2[] = {
630  0, 1, 2, 2, 3, 3,
631 };
632 
634  GetBitContext *gb, SBRData *ch_data)
635 {
636  int i;
637  unsigned bs_pointer = 0;
638  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
639  int abs_bord_trail = 16;
640  int num_rel_lead, num_rel_trail;
641  unsigned bs_num_env_old = ch_data->bs_num_env;
642 
643  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
644  ch_data->bs_amp_res = sbr->bs_amp_res_header;
645  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
646 
647  switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
648  case FIXFIX:
649  ch_data->bs_num_env = 1 << get_bits(gb, 2);
650  num_rel_lead = ch_data->bs_num_env - 1;
651  if (ch_data->bs_num_env == 1)
652  ch_data->bs_amp_res = 0;
653 
654  if (ch_data->bs_num_env > 4) {
656  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
657  ch_data->bs_num_env);
658  return -1;
659  }
660 
661  ch_data->t_env[0] = 0;
662  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
663 
664  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
665  ch_data->bs_num_env;
666  for (i = 0; i < num_rel_lead; i++)
667  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
668 
669  ch_data->bs_freq_res[1] = get_bits1(gb);
670  for (i = 1; i < ch_data->bs_num_env; i++)
671  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
672  break;
673  case FIXVAR:
674  abs_bord_trail += get_bits(gb, 2);
675  num_rel_trail = get_bits(gb, 2);
676  ch_data->bs_num_env = num_rel_trail + 1;
677  ch_data->t_env[0] = 0;
678  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
679 
680  for (i = 0; i < num_rel_trail; i++)
681  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
682  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
683 
684  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
685 
686  for (i = 0; i < ch_data->bs_num_env; i++)
687  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
688  break;
689  case VARFIX:
690  ch_data->t_env[0] = get_bits(gb, 2);
691  num_rel_lead = get_bits(gb, 2);
692  ch_data->bs_num_env = num_rel_lead + 1;
693  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
694 
695  for (i = 0; i < num_rel_lead; i++)
696  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
697 
698  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
699 
700  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
701  break;
702  case VARVAR:
703  ch_data->t_env[0] = get_bits(gb, 2);
704  abs_bord_trail += get_bits(gb, 2);
705  num_rel_lead = get_bits(gb, 2);
706  num_rel_trail = get_bits(gb, 2);
707  ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
708 
709  if (ch_data->bs_num_env > 5) {
711  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
712  ch_data->bs_num_env);
713  return -1;
714  }
715 
716  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
717 
718  for (i = 0; i < num_rel_lead; i++)
719  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
720  for (i = 0; i < num_rel_trail; i++)
721  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
722  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
723 
724  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
725 
726  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
727  break;
728  }
729 
730  if (bs_pointer > ch_data->bs_num_env + 1) {
732  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
733  bs_pointer);
734  return -1;
735  }
736 
737  for (i = 1; i <= ch_data->bs_num_env; i++) {
738  if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
739  av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
740  return -1;
741  }
742  }
743 
744  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
745 
746  ch_data->t_q[0] = ch_data->t_env[0];
747  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
748  if (ch_data->bs_num_noise > 1) {
749  unsigned int idx;
750  if (ch_data->bs_frame_class == FIXFIX) {
751  idx = ch_data->bs_num_env >> 1;
752  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
753  idx = ch_data->bs_num_env - FFMAX((int)bs_pointer - 1, 1);
754  } else { // VARFIX
755  if (!bs_pointer)
756  idx = 1;
757  else if (bs_pointer == 1)
758  idx = ch_data->bs_num_env - 1;
759  else // bs_pointer > 1
760  idx = bs_pointer - 1;
761  }
762  ch_data->t_q[1] = ch_data->t_env[idx];
763  }
764 
765  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
766  ch_data->e_a[1] = -1;
767  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
768  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
769  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
770  ch_data->e_a[1] = bs_pointer - 1;
771 
772  return 0;
773 }
774 
775 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
776  //These variables are saved from the previous frame rather than copied
777  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
778  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
779  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
780 
781  //These variables are read from the bitstream and therefore copied
782  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
783  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
784  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
785  dst->bs_num_env = src->bs_num_env;
786  dst->bs_amp_res = src->bs_amp_res;
787  dst->bs_num_noise = src->bs_num_noise;
788  dst->bs_frame_class = src->bs_frame_class;
789  dst->e_a[1] = src->e_a[1];
790 }
791 
792 /// Read how the envelope and noise floor data is delta coded
794  SBRData *ch_data)
795 {
796  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
797  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
798 }
799 
800 /// Read inverse filtering data
802  SBRData *ch_data)
803 {
804  int i;
805 
806  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
807  for (i = 0; i < sbr->n_q; i++)
808  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
809 }
810 
812  SBRData *ch_data, int ch)
813 {
814  int bits;
815  int i, j, k;
816  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
817  int t_lav, f_lav;
818  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
819  const int odd = sbr->n[1] & 1;
820 
821  if (sbr->bs_coupling && ch) {
822  if (ch_data->bs_amp_res) {
823  bits = 5;
824  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
826  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
828  } else {
829  bits = 6;
830  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
832  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
834  }
835  } else {
836  if (ch_data->bs_amp_res) {
837  bits = 6;
838  t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
840  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
842  } else {
843  bits = 7;
844  t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
846  f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
848  }
849  }
850 
851  for (i = 0; i < ch_data->bs_num_env; i++) {
852  if (ch_data->bs_df_env[i]) {
853  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
854  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
855  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
856  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
857  } else if (ch_data->bs_freq_res[i + 1]) {
858  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
859  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
860  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
861  }
862  } else {
863  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
864  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
865  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
866  }
867  }
868  } else {
869  ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
870  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
871  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
872  }
873  }
874 
875  //assign 0th elements of env_facs from last elements
876  memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
877  sizeof(ch_data->env_facs[0]));
878 }
879 
881  SBRData *ch_data, int ch)
882 {
883  int i, j;
884  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
885  int t_lav, f_lav;
886  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
887 
888  if (sbr->bs_coupling && ch) {
889  t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
891  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
893  } else {
894  t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
896  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
898  }
899 
900  for (i = 0; i < ch_data->bs_num_noise; i++) {
901  if (ch_data->bs_df_noise[i]) {
902  for (j = 0; j < sbr->n_q; j++)
903  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
904  } else {
905  ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
906  for (j = 1; j < sbr->n_q; j++)
907  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
908  }
909  }
910 
911  //assign 0th elements of noise_facs from last elements
912  memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
913  sizeof(ch_data->noise_facs[0]));
914 }
915 
917  GetBitContext *gb,
918  int bs_extension_id, int *num_bits_left)
919 {
920  switch (bs_extension_id) {
921  case EXTENSION_ID_PS:
922  if (!ac->oc[1].m4ac.ps) {
923  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
924  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
925  *num_bits_left = 0;
926  } else {
927 #if 1
928  *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
930 #else
931  avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
932  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
933  *num_bits_left = 0;
934 #endif
935  }
936  break;
937  default:
938  // some files contain 0-padding
939  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
940  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
941  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
942  *num_bits_left = 0;
943  break;
944  }
945 }
946 
949  GetBitContext *gb)
950 {
951  if (get_bits1(gb)) // bs_data_extra
952  skip_bits(gb, 4); // bs_reserved
953 
954  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
955  return -1;
956  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
957  read_sbr_invf(sbr, gb, &sbr->data[0]);
958  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
959  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
960 
961  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
962  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
963 
964  return 0;
965 }
966 
969  GetBitContext *gb)
970 {
971  if (get_bits1(gb)) // bs_data_extra
972  skip_bits(gb, 8); // bs_reserved
973 
974  if ((sbr->bs_coupling = get_bits1(gb))) {
975  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
976  return -1;
977  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
978  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
979  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
980  read_sbr_invf(sbr, gb, &sbr->data[0]);
981  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
982  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
983  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
984  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
985  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
986  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
987  } else {
988  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
989  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
990  return -1;
991  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
992  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
993  read_sbr_invf(sbr, gb, &sbr->data[0]);
994  read_sbr_invf(sbr, gb, &sbr->data[1]);
995  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
996  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
997  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
998  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
999  }
1000 
1001  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1002  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1003  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1004  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1005 
1006  return 0;
1007 }
1008 
1009 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1010  GetBitContext *gb, int id_aac)
1011 {
1012  unsigned int cnt = get_bits_count(gb);
1013 
1014  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1015  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1016  sbr_turnoff(sbr);
1017  return get_bits_count(gb) - cnt;
1018  }
1019  } else if (id_aac == TYPE_CPE) {
1020  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1021  sbr_turnoff(sbr);
1022  return get_bits_count(gb) - cnt;
1023  }
1024  } else {
1025  av_log(ac->avctx, AV_LOG_ERROR,
1026  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1027  sbr_turnoff(sbr);
1028  return get_bits_count(gb) - cnt;
1029  }
1030  if (get_bits1(gb)) { // bs_extended_data
1031  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1032  if (num_bits_left == 15)
1033  num_bits_left += get_bits(gb, 8); // bs_esc_count
1034 
1035  num_bits_left <<= 3;
1036  while (num_bits_left > 7) {
1037  num_bits_left -= 2;
1038  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1039  }
1040  if (num_bits_left < 0) {
1041  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1042  }
1043  if (num_bits_left > 0)
1044  skip_bits(gb, num_bits_left);
1045  }
1046 
1047  return get_bits_count(gb) - cnt;
1048 }
1049 
1051 {
1052  int err;
1053  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1054  if (err >= 0)
1055  err = sbr_make_f_derived(ac, sbr);
1056  if (err < 0) {
1057  av_log(ac->avctx, AV_LOG_ERROR,
1058  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1059  sbr_turnoff(sbr);
1060  }
1061 }
1062 
1063 /**
1064  * Decode Spectral Band Replication extension data; reference: table 4.55.
1065  *
1066  * @param crc flag indicating the presence of CRC checksum
1067  * @param cnt length of TYPE_FIL syntactic element in bytes
1068  *
1069  * @return Returns number of bytes consumed from the TYPE_FIL element.
1070  */
1072  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1073 {
1074  unsigned int num_sbr_bits = 0, num_align_bits;
1075  unsigned bytes_read;
1076  GetBitContext gbc = *gb_host, *gb = &gbc;
1077  skip_bits_long(gb_host, cnt*8 - 4);
1078 
1079  sbr->reset = 0;
1080 
1081  if (!sbr->sample_rate)
1082  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1083  if (!ac->oc[1].m4ac.ext_sample_rate)
1084  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1085 
1086  if (crc) {
1087  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1088  num_sbr_bits += 10;
1089  }
1090 
1091  //Save some state from the previous frame.
1092  sbr->kx[0] = sbr->kx[1];
1093  sbr->m[0] = sbr->m[1];
1094  sbr->kx_and_m_pushed = 1;
1095 
1096  num_sbr_bits++;
1097  if (get_bits1(gb)) // bs_header_flag
1098  num_sbr_bits += read_sbr_header(sbr, gb);
1099 
1100  if (sbr->reset)
1101  sbr_reset(ac, sbr);
1102 
1103  if (sbr->start)
1104  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1105 
1106  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1107  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1108 
1109  if (bytes_read > cnt) {
1110  av_log(ac->avctx, AV_LOG_ERROR,
1111  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1112  }
1113  return cnt;
1114 }
1115 
1116 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1117 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1118 {
1119  int k, e;
1120  int ch;
1121 
1122  if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1123  float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1124  float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1125  for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1126  for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1127  float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1128  float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1129  float fac;
1130  if (temp1 > 1E20) {
1131  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1132  temp1 = 1;
1133  }
1134  fac = temp1 / (1.0f + temp2);
1135  sbr->data[0].env_facs[e][k] = fac;
1136  sbr->data[1].env_facs[e][k] = fac * temp2;
1137  }
1138  }
1139  for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1140  for (k = 0; k < sbr->n_q; k++) {
1141  float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1142  float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1143  float fac;
1144  if (temp1 > 1E20) {
1145  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1146  temp1 = 1;
1147  }
1148  fac = temp1 / (1.0f + temp2);
1149  sbr->data[0].noise_facs[e][k] = fac;
1150  sbr->data[1].noise_facs[e][k] = fac * temp2;
1151  }
1152  }
1153  } else { // SCE or one non-coupled CPE
1154  for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1155  float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1156  for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1157  for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
1158  sbr->data[ch].env_facs[e][k] =
1159  exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1160  if (sbr->data[ch].env_facs[e][k] > 1E20) {
1161  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1162  sbr->data[ch].env_facs[e][k] = 1;
1163  }
1164  }
1165 
1166  for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1167  for (k = 0; k < sbr->n_q; k++)
1168  sbr->data[ch].noise_facs[e][k] =
1169  exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1170  }
1171  }
1172 }
1173 
1174 /**
1175  * Analysis QMF Bank (14496-3 sp04 p206)
1176  *
1177  * @param x pointer to the beginning of the first sample window
1178  * @param W array of complex-valued samples split into subbands
1179  */
1180 #ifndef sbr_qmf_analysis
1182  SBRDSPContext *sbrdsp, const float *in, float *x,
1183  float z[320], float W[2][32][32][2], int buf_idx)
1184 {
1185  int i;
1186  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1187  memcpy(x+288, in, 1024*sizeof(x[0]));
1188  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1189  // are not supported
1190  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1191  sbrdsp->sum64x5(z);
1192  sbrdsp->qmf_pre_shuffle(z);
1193  mdct->imdct_half(mdct, z, z+64);
1194  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1195  x += 32;
1196  }
1197 }
1198 #endif
1199 
1200 /**
1201  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1202  * (14496-3 sp04 p206)
1203  */
1204 #ifndef sbr_qmf_synthesis
1205 static void sbr_qmf_synthesis(FFTContext *mdct,
1206  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1207  float *out, float X[2][38][64],
1208  float mdct_buf[2][64],
1209  float *v0, int *v_off, const unsigned int div)
1210 {
1211  int i, n;
1212  const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1213  const int step = 128 >> div;
1214  float *v;
1215  for (i = 0; i < 32; i++) {
1216  if (*v_off < step) {
1217  int saved_samples = (1280 - 128) >> div;
1218  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1219  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1220  } else {
1221  *v_off -= step;
1222  }
1223  v = v0 + *v_off;
1224  if (div) {
1225  for (n = 0; n < 32; n++) {
1226  X[0][i][ n] = -X[0][i][n];
1227  X[0][i][32+n] = X[1][i][31-n];
1228  }
1229  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1230  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1231  } else {
1232  sbrdsp->neg_odd_64(X[1][i]);
1233  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1234  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1235  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1236  }
1237  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1238  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1239  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1240  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1241  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1242  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1243  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1244  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1245  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1246  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1247  out += 64 >> div;
1248  }
1249 }
1250 #endif
1251 
1252 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1253  * (14496-3 sp04 p214)
1254  * Warning: This routine does not seem numerically stable.
1255  */
1257  float (*alpha0)[2], float (*alpha1)[2],
1258  const float X_low[32][40][2], int k0)
1259 {
1260  int k;
1261  for (k = 0; k < k0; k++) {
1262  LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
1263  float dk;
1264 
1265  dsp->autocorrelate(X_low[k], phi);
1266 
1267  dk = phi[2][1][0] * phi[1][0][0] -
1268  (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1269 
1270  if (!dk) {
1271  alpha1[k][0] = 0;
1272  alpha1[k][1] = 0;
1273  } else {
1274  float temp_real, temp_im;
1275  temp_real = phi[0][0][0] * phi[1][1][0] -
1276  phi[0][0][1] * phi[1][1][1] -
1277  phi[0][1][0] * phi[1][0][0];
1278  temp_im = phi[0][0][0] * phi[1][1][1] +
1279  phi[0][0][1] * phi[1][1][0] -
1280  phi[0][1][1] * phi[1][0][0];
1281 
1282  alpha1[k][0] = temp_real / dk;
1283  alpha1[k][1] = temp_im / dk;
1284  }
1285 
1286  if (!phi[1][0][0]) {
1287  alpha0[k][0] = 0;
1288  alpha0[k][1] = 0;
1289  } else {
1290  float temp_real, temp_im;
1291  temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1292  alpha1[k][1] * phi[1][1][1];
1293  temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1294  alpha1[k][0] * phi[1][1][1];
1295 
1296  alpha0[k][0] = -temp_real / phi[1][0][0];
1297  alpha0[k][1] = -temp_im / phi[1][0][0];
1298  }
1299 
1300  if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1301  alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1302  alpha1[k][0] = 0;
1303  alpha1[k][1] = 0;
1304  alpha0[k][0] = 0;
1305  alpha0[k][1] = 0;
1306  }
1307  }
1308 }
1309 
1310 /// Chirp Factors (14496-3 sp04 p214)
1311 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1312 {
1313  int i;
1314  float new_bw;
1315  static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1316 
1317  for (i = 0; i < sbr->n_q; i++) {
1318  if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1319  new_bw = 0.6f;
1320  } else
1321  new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1322 
1323  if (new_bw < ch_data->bw_array[i]) {
1324  new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1325  } else
1326  new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1327  ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1328  }
1329 }
1330 
1331 /// Generate the subband filtered lowband
1333  float X_low[32][40][2], const float W[2][32][32][2],
1334  int buf_idx)
1335 {
1336  int i, k;
1337  const int t_HFGen = 8;
1338  const int i_f = 32;
1339  memset(X_low, 0, 32*sizeof(*X_low));
1340  for (k = 0; k < sbr->kx[1]; k++) {
1341  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1342  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1343  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1344  }
1345  }
1346  buf_idx = 1-buf_idx;
1347  for (k = 0; k < sbr->kx[0]; k++) {
1348  for (i = 0; i < t_HFGen; i++) {
1349  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1350  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1351  }
1352  }
1353  return 0;
1354 }
1355 
1356 /// High Frequency Generator (14496-3 sp04 p215)
1358  float X_high[64][40][2], const float X_low[32][40][2],
1359  const float (*alpha0)[2], const float (*alpha1)[2],
1360  const float bw_array[5], const uint8_t *t_env,
1361  int bs_num_env)
1362 {
1363  int j, x;
1364  int g = 0;
1365  int k = sbr->kx[1];
1366  for (j = 0; j < sbr->num_patches; j++) {
1367  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1368  const int p = sbr->patch_start_subband[j] + x;
1369  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1370  g++;
1371  g--;
1372 
1373  if (g < 0) {
1374  av_log(ac->avctx, AV_LOG_ERROR,
1375  "ERROR : no subband found for frequency %d\n", k);
1376  return -1;
1377  }
1378 
1379  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1380  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1381  alpha0[p], alpha1[p], bw_array[g],
1382  2 * t_env[0], 2 * t_env[bs_num_env]);
1383  }
1384  }
1385  if (k < sbr->m[1] + sbr->kx[1])
1386  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1387 
1388  return 0;
1389 }
1390 
1391 /// Generate the subband filtered lowband
1392 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1393  const float Y0[38][64][2], const float Y1[38][64][2],
1394  const float X_low[32][40][2], int ch)
1395 {
1396  int k, i;
1397  const int i_f = 32;
1398  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1399  memset(X, 0, 2*sizeof(*X));
1400  for (k = 0; k < sbr->kx[0]; k++) {
1401  for (i = 0; i < i_Temp; i++) {
1402  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1403  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1404  }
1405  }
1406  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1407  for (i = 0; i < i_Temp; i++) {
1408  X[0][i][k] = Y0[i + i_f][k][0];
1409  X[1][i][k] = Y0[i + i_f][k][1];
1410  }
1411  }
1412 
1413  for (k = 0; k < sbr->kx[1]; k++) {
1414  for (i = i_Temp; i < 38; i++) {
1415  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1416  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1417  }
1418  }
1419  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1420  for (i = i_Temp; i < i_f; i++) {
1421  X[0][i][k] = Y1[i][k][0];
1422  X[1][i][k] = Y1[i][k][1];
1423  }
1424  }
1425  return 0;
1426 }
1427 
1428 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1429  * (14496-3 sp04 p217)
1430  */
1432  SBRData *ch_data, int e_a[2])
1433 {
1434  int e, i, m;
1435 
1436  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1437  for (e = 0; e < ch_data->bs_num_env; e++) {
1438  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1439  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1440  int k;
1441 
1442  if (sbr->kx[1] != table[0]) {
1443  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1444  "Derived frequency tables were not regenerated.\n");
1445  sbr_turnoff(sbr);
1446  return AVERROR_BUG;
1447  }
1448  for (i = 0; i < ilim; i++)
1449  for (m = table[i]; m < table[i + 1]; m++)
1450  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1451 
1452  // ch_data->bs_num_noise > 1 => 2 noise floors
1453  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1454  for (i = 0; i < sbr->n_q; i++)
1455  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1456  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1457 
1458  for (i = 0; i < sbr->n[1]; i++) {
1459  if (ch_data->bs_add_harmonic_flag) {
1460  const unsigned int m_midpoint =
1461  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1462 
1463  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1464  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1465  }
1466  }
1467 
1468  for (i = 0; i < ilim; i++) {
1469  int additional_sinusoid_present = 0;
1470  for (m = table[i]; m < table[i + 1]; m++) {
1471  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1472  additional_sinusoid_present = 1;
1473  break;
1474  }
1475  }
1476  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1477  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1478  }
1479  }
1480 
1481  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1482  return 0;
1483 }
1484 
1485 /// Estimation of current envelope (14496-3 sp04 p218)
1486 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1487  SpectralBandReplication *sbr, SBRData *ch_data)
1488 {
1489  int e, m;
1490  int kx1 = sbr->kx[1];
1491 
1492  if (sbr->bs_interpol_freq) {
1493  for (e = 0; e < ch_data->bs_num_env; e++) {
1494  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1495  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1496  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1497 
1498  for (m = 0; m < sbr->m[1]; m++) {
1499  float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1500  e_curr[e][m] = sum * recip_env_size;
1501  }
1502  }
1503  } else {
1504  int k, p;
1505 
1506  for (e = 0; e < ch_data->bs_num_env; e++) {
1507  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1508  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1509  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1510  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1511 
1512  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1513  float sum = 0.0f;
1514  const int den = env_size * (table[p + 1] - table[p]);
1515 
1516  for (k = table[p]; k < table[p + 1]; k++) {
1517  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1518  }
1519  sum /= den;
1520  for (k = table[p]; k < table[p + 1]; k++) {
1521  e_curr[e][k - kx1] = sum;
1522  }
1523  }
1524  }
1525  }
1526 }
1527 
1528 /**
1529  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1530  * and Calculation of gain (14496-3 sp04 p219)
1531  */
1533  SBRData *ch_data, const int e_a[2])
1534 {
1535  int e, k, m;
1536  // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1537  static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1538 
1539  for (e = 0; e < ch_data->bs_num_env; e++) {
1540  int delta = !((e == e_a[1]) || (e == e_a[0]));
1541  for (k = 0; k < sbr->n_lim; k++) {
1542  float gain_boost, gain_max;
1543  float sum[2] = { 0.0f, 0.0f };
1544  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1545  const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1546  sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1547  sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1548  if (!sbr->s_mapped[e][m]) {
1549  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1550  ((1.0f + sbr->e_curr[e][m]) *
1551  (1.0f + sbr->q_mapped[e][m] * delta)));
1552  } else {
1553  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1554  ((1.0f + sbr->e_curr[e][m]) *
1555  (1.0f + sbr->q_mapped[e][m])));
1556  }
1557  }
1558  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1559  sum[0] += sbr->e_origmapped[e][m];
1560  sum[1] += sbr->e_curr[e][m];
1561  }
1562  gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1563  gain_max = FFMIN(100000.f, gain_max);
1564  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1565  float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1566  sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1567  sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1568  }
1569  sum[0] = sum[1] = 0.0f;
1570  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1571  sum[0] += sbr->e_origmapped[e][m];
1572  sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1573  + sbr->s_m[e][m] * sbr->s_m[e][m]
1574  + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1575  }
1576  gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1577  gain_boost = FFMIN(1.584893192f, gain_boost);
1578  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1579  sbr->gain[e][m] *= gain_boost;
1580  sbr->q_m[e][m] *= gain_boost;
1581  sbr->s_m[e][m] *= gain_boost;
1582  }
1583  }
1584  }
1585 }
1586 
1587 /// Assembling HF Signals (14496-3 sp04 p220)
1588 static void sbr_hf_assemble(float Y1[38][64][2],
1589  const float X_high[64][40][2],
1590  SpectralBandReplication *sbr, SBRData *ch_data,
1591  const int e_a[2])
1592 {
1593  int e, i, j, m;
1594  const int h_SL = 4 * !sbr->bs_smoothing_mode;
1595  const int kx = sbr->kx[1];
1596  const int m_max = sbr->m[1];
1597  static const float h_smooth[5] = {
1598  0.33333333333333,
1599  0.30150283239582,
1600  0.21816949906249,
1601  0.11516383427084,
1602  0.03183050093751,
1603  };
1604  float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1605  int indexnoise = ch_data->f_indexnoise;
1606  int indexsine = ch_data->f_indexsine;
1607 
1608  if (sbr->reset) {
1609  for (i = 0; i < h_SL; i++) {
1610  memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1611  memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1612  }
1613  } else if (h_SL) {
1614  memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1615  memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1616  }
1617 
1618  for (e = 0; e < ch_data->bs_num_env; e++) {
1619  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1620  memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1621  memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1622  }
1623  }
1624 
1625  for (e = 0; e < ch_data->bs_num_env; e++) {
1626  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1627  LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
1628  LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
1629  float *g_filt, *q_filt;
1630 
1631  if (h_SL && e != e_a[0] && e != e_a[1]) {
1632  g_filt = g_filt_tab;
1633  q_filt = q_filt_tab;
1634  for (m = 0; m < m_max; m++) {
1635  const int idx1 = i + h_SL;
1636  g_filt[m] = 0.0f;
1637  q_filt[m] = 0.0f;
1638  for (j = 0; j <= h_SL; j++) {
1639  g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1640  q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1641  }
1642  }
1643  } else {
1644  g_filt = g_temp[i + h_SL];
1645  q_filt = q_temp[i];
1646  }
1647 
1648  sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1650 
1651  if (e != e_a[0] && e != e_a[1]) {
1652  sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
1653  q_filt, indexnoise,
1654  kx, m_max);
1655  } else {
1656  int idx = indexsine&1;
1657  int A = (1-((indexsine+(kx & 1))&2));
1658  int B = (A^(-idx)) + idx;
1659  float *out = &Y1[i][kx][idx];
1660  float *in = sbr->s_m[e];
1661  for (m = 0; m+1 < m_max; m+=2) {
1662  out[2*m ] += in[m ] * A;
1663  out[2*m+2] += in[m+1] * B;
1664  }
1665  if(m_max&1)
1666  out[2*m ] += in[m ] * A;
1667  }
1668  indexnoise = (indexnoise + m_max) & 0x1ff;
1669  indexsine = (indexsine + 1) & 3;
1670  }
1671  }
1672  ch_data->f_indexnoise = indexnoise;
1673  ch_data->f_indexsine = indexsine;
1674 }
1675 
1677  float* L, float* R)
1678 {
1679  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1680  int ch;
1681  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1682  int err;
1683 
1684  if (!sbr->kx_and_m_pushed) {
1685  sbr->kx[0] = sbr->kx[1];
1686  sbr->m[0] = sbr->m[1];
1687  } else {
1688  sbr->kx_and_m_pushed = 0;
1689  }
1690 
1691  if (sbr->start) {
1692  sbr_dequant(sbr, id_aac);
1693  }
1694  for (ch = 0; ch < nch; ch++) {
1695  /* decode channel */
1696  sbr_qmf_analysis(&ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1697  (float*)sbr->qmf_filter_scratch,
1698  sbr->data[ch].W, sbr->data[ch].Ypos);
1699  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1700  (const float (*)[32][32][2]) sbr->data[ch].W,
1701  sbr->data[ch].Ypos);
1702  sbr->data[ch].Ypos ^= 1;
1703  if (sbr->start) {
1704  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1705  (const float (*)[40][2]) sbr->X_low, sbr->k[0]);
1706  sbr_chirp(sbr, &sbr->data[ch]);
1707  sbr_hf_gen(ac, sbr, sbr->X_high,
1708  (const float (*)[40][2]) sbr->X_low,
1709  (const float (*)[2]) sbr->alpha0,
1710  (const float (*)[2]) sbr->alpha1,
1711  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1712  sbr->data[ch].bs_num_env);
1713 
1714  // hf_adj
1715  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1716  if (!err) {
1717  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1718  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1719  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1720  (const float (*)[40][2]) sbr->X_high,
1721  sbr, &sbr->data[ch],
1722  sbr->data[ch].e_a);
1723  }
1724  }
1725 
1726  /* synthesis */
1727  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1728  (const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1729  (const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1730  (const float (*)[40][2]) sbr->X_low, ch);
1731  }
1732 
1733  if (ac->oc[1].m4ac.ps == 1) {
1734  if (sbr->ps.start) {
1735  ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1736  } else {
1737  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1738  }
1739  nch = 2;
1740  }
1741 
1742  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
1743  L, sbr->X[0], sbr->qmf_filter_scratch,
1746  downsampled);
1747  if (nch == 2)
1748  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
1749  R, sbr->X[1], sbr->qmf_filter_scratch,
1752  downsampled);
1753 }
1754 
1756 {
1757  c->sbr_lf_gen = sbr_lf_gen;
1759  c->sbr_x_gen = sbr_x_gen;
1761 
1762  if(ARCH_MIPS)
1764 }