FFmpeg
Main Page
Related Pages
Modules
Namespaces
Data Structures
Files
Examples
File List
Globals
•
All
Data Structures
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Macros
Groups
Pages
libavresample
avresample.h
Go to the documentation of this file.
1
/*
2
* Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
3
*
4
* This file is part of FFmpeg.
5
*
6
* FFmpeg is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU Lesser General Public
8
* License as published by the Free Software Foundation; either
9
* version 2.1 of the License, or (at your option) any later version.
10
*
11
* FFmpeg is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public
17
* License along with FFmpeg; if not, write to the Free Software
18
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
*/
20
21
#ifndef AVRESAMPLE_AVRESAMPLE_H
22
#define AVRESAMPLE_AVRESAMPLE_H
23
24
/**
25
* @file
26
* @ingroup lavr
27
* external API header
28
*/
29
30
/**
31
* @defgroup lavr Libavresample
32
* @{
33
*
34
* Libavresample (lavr) is a library that handles audio resampling, sample
35
* format conversion and mixing.
36
*
37
* Interaction with lavr is done through AVAudioResampleContext, which is
38
* allocated with avresample_alloc_context(). It is opaque, so all parameters
39
* must be set with the @ref avoptions API.
40
*
41
* For example the following code will setup conversion from planar float sample
42
* format to interleaved signed 16-bit integer, downsampling from 48kHz to
43
* 44.1kHz and downmixing from 5.1 channels to stereo (using the default mixing
44
* matrix):
45
* @code
46
* AVAudioResampleContext *avr = avresample_alloc_context();
47
* av_opt_set_int(avr, "in_channel_layout", AV_CH_LAYOUT_5POINT1, 0);
48
* av_opt_set_int(avr, "out_channel_layout", AV_CH_LAYOUT_STEREO, 0);
49
* av_opt_set_int(avr, "in_sample_rate", 48000, 0);
50
* av_opt_set_int(avr, "out_sample_rate", 44100, 0);
51
* av_opt_set_int(avr, "in_sample_fmt", AV_SAMPLE_FMT_FLTP, 0);
52
* av_opt_set_int(avr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
53
* @endcode
54
*
55
* Once the context is initialized, it must be opened with avresample_open(). If
56
* you need to change the conversion parameters, you must close the context with
57
* avresample_close(), change the parameters as described above, then reopen it
58
* again.
59
*
60
* The conversion itself is done by repeatedly calling avresample_convert().
61
* Note that the samples may get buffered in two places in lavr. The first one
62
* is the output FIFO, where the samples end up if the output buffer is not
63
* large enough. The data stored in there may be retrieved at any time with
64
* avresample_read(). The second place is the resampling delay buffer,
65
* applicable only when resampling is done. The samples in it require more input
66
* before they can be processed. Their current amount is returned by
67
* avresample_get_delay(). At the end of conversion the resampling buffer can be
68
* flushed by calling avresample_convert() with NULL input.
69
*
70
* The following code demonstrates the conversion loop assuming the parameters
71
* from above and caller-defined functions get_input() and handle_output():
72
* @code
73
* uint8_t **input;
74
* int in_linesize, in_samples;
75
*
76
* while (get_input(&input, &in_linesize, &in_samples)) {
77
* uint8_t *output
78
* int out_linesize;
79
* int out_samples = avresample_get_out_samples(avr, in_samples);
80
*
81
* av_samples_alloc(&output, &out_linesize, 2, out_samples,
82
* AV_SAMPLE_FMT_S16, 0);
83
* out_samples = avresample_convert(avr, &output, out_linesize, out_samples,
84
* input, in_linesize, in_samples);
85
* handle_output(output, out_linesize, out_samples);
86
* av_freep(&output);
87
* }
88
* @endcode
89
*
90
* When the conversion is finished and the FIFOs are flushed if required, the
91
* conversion context and everything associated with it must be freed with
92
* avresample_free().
93
*/
94
95
#include "
libavutil/avutil.h
"
96
#include "
libavutil/channel_layout.h
"
97
#include "
libavutil/dict.h
"
98
#include "
libavutil/frame.h
"
99
#include "
libavutil/log.h
"
100
#include "
libavutil/mathematics.h
"
101
102
#include "
libavresample/version.h
"
103
104
#define AVRESAMPLE_MAX_CHANNELS 32
105
106
typedef
struct
AVAudioResampleContext
AVAudioResampleContext
;
107
108
/** Mixing Coefficient Types */
109
enum
AVMixCoeffType
{
110
AV_MIX_COEFF_TYPE_Q8
,
/** 16-bit 8.8 fixed-point */
111
AV_MIX_COEFF_TYPE_Q15
,
/** 32-bit 17.15 fixed-point */
112
AV_MIX_COEFF_TYPE_FLT
,
/** floating-point */
113
AV_MIX_COEFF_TYPE_NB
,
/** Number of coeff types. Not part of ABI */
114
};
115
116
/** Resampling Filter Types */
117
enum
AVResampleFilterType
{
118
AV_RESAMPLE_FILTER_TYPE_CUBIC
,
/**< Cubic */
119
AV_RESAMPLE_FILTER_TYPE_BLACKMAN_NUTTALL
,
/**< Blackman Nuttall Windowed Sinc */
120
AV_RESAMPLE_FILTER_TYPE_KAISER
,
/**< Kaiser Windowed Sinc */
121
};
122
123
enum
AVResampleDitherMethod
{
124
AV_RESAMPLE_DITHER_NONE
,
/**< Do not use dithering */
125
AV_RESAMPLE_DITHER_RECTANGULAR
,
/**< Rectangular Dither */
126
AV_RESAMPLE_DITHER_TRIANGULAR
,
/**< Triangular Dither*/
127
AV_RESAMPLE_DITHER_TRIANGULAR_HP
,
/**< Triangular Dither with High Pass */
128
AV_RESAMPLE_DITHER_TRIANGULAR_NS
,
/**< Triangular Dither with Noise Shaping */
129
AV_RESAMPLE_DITHER_NB
,
/**< Number of dither types. Not part of ABI. */
130
};
131
132
/**
133
* Return the LIBAVRESAMPLE_VERSION_INT constant.
134
*/
135
unsigned
avresample_version
(
void
);
136
137
/**
138
* Return the libavresample build-time configuration.
139
* @return configure string
140
*/
141
const
char
*
avresample_configuration
(
void
);
142
143
/**
144
* Return the libavresample license.
145
*/
146
const
char
*
avresample_license
(
void
);
147
148
/**
149
* Get the AVClass for AVAudioResampleContext.
150
*
151
* Can be used in combination with AV_OPT_SEARCH_FAKE_OBJ for examining options
152
* without allocating a context.
153
*
154
* @see av_opt_find().
155
*
156
* @return AVClass for AVAudioResampleContext
157
*/
158
const
AVClass
*
avresample_get_class
(
void
);
159
160
/**
161
* Allocate AVAudioResampleContext and set options.
162
*
163
* @return allocated audio resample context, or NULL on failure
164
*/
165
AVAudioResampleContext
*
avresample_alloc_context
(
void
);
166
167
/**
168
* Initialize AVAudioResampleContext.
169
* @note The context must be configured using the AVOption API.
170
*
171
* @see av_opt_set_int()
172
* @see av_opt_set_dict()
173
*
174
* @param avr audio resample context
175
* @return 0 on success, negative AVERROR code on failure
176
*/
177
int
avresample_open
(
AVAudioResampleContext
*avr);
178
179
/**
180
* Check whether an AVAudioResampleContext is open or closed.
181
*
182
* @param avr AVAudioResampleContext to check
183
* @return 1 if avr is open, 0 if avr is closed.
184
*/
185
int
avresample_is_open
(
AVAudioResampleContext
*avr);
186
187
/**
188
* Close AVAudioResampleContext.
189
*
190
* This closes the context, but it does not change the parameters. The context
191
* can be reopened with avresample_open(). It does, however, clear the output
192
* FIFO and any remaining leftover samples in the resampling delay buffer. If
193
* there was a custom matrix being used, that is also cleared.
194
*
195
* @see avresample_convert()
196
* @see avresample_set_matrix()
197
*
198
* @param avr audio resample context
199
*/
200
void
avresample_close
(
AVAudioResampleContext
*avr);
201
202
/**
203
* Free AVAudioResampleContext and associated AVOption values.
204
*
205
* This also calls avresample_close() before freeing.
206
*
207
* @param avr audio resample context
208
*/
209
void
avresample_free
(
AVAudioResampleContext
**avr);
210
211
/**
212
* Generate a channel mixing matrix.
213
*
214
* This function is the one used internally by libavresample for building the
215
* default mixing matrix. It is made public just as a utility function for
216
* building custom matrices.
217
*
218
* @param in_layout input channel layout
219
* @param out_layout output channel layout
220
* @param center_mix_level mix level for the center channel
221
* @param surround_mix_level mix level for the surround channel(s)
222
* @param lfe_mix_level mix level for the low-frequency effects channel
223
* @param normalize if 1, coefficients will be normalized to prevent
224
* overflow. if 0, coefficients will not be
225
* normalized.
226
* @param[out] matrix mixing coefficients; matrix[i + stride * o] is
227
* the weight of input channel i in output channel o.
228
* @param stride distance between adjacent input channels in the
229
* matrix array
230
* @param matrix_encoding matrixed stereo downmix mode (e.g. dplii)
231
* @return 0 on success, negative AVERROR code on failure
232
*/
233
int
avresample_build_matrix
(uint64_t in_layout, uint64_t out_layout,
234
double
center_mix_level
,
double
surround_mix_level
,
235
double
lfe_mix_level
,
int
normalize,
double
*matrix,
236
int
stride
,
enum
AVMatrixEncoding
matrix_encoding
);
237
238
/**
239
* Get the current channel mixing matrix.
240
*
241
* If no custom matrix has been previously set or the AVAudioResampleContext is
242
* not open, an error is returned.
243
*
244
* @param avr audio resample context
245
* @param matrix mixing coefficients; matrix[i + stride * o] is the weight of
246
* input channel i in output channel o.
247
* @param stride distance between adjacent input channels in the matrix array
248
* @return 0 on success, negative AVERROR code on failure
249
*/
250
int
avresample_get_matrix
(
AVAudioResampleContext
*avr,
double
*matrix,
251
int
stride
);
252
253
/**
254
* Set channel mixing matrix.
255
*
256
* Allows for setting a custom mixing matrix, overriding the default matrix
257
* generated internally during avresample_open(). This function can be called
258
* anytime on an allocated context, either before or after calling
259
* avresample_open(), as long as the channel layouts have been set.
260
* avresample_convert() always uses the current matrix.
261
* Calling avresample_close() on the context will clear the current matrix.
262
*
263
* @see avresample_close()
264
*
265
* @param avr audio resample context
266
* @param matrix mixing coefficients; matrix[i + stride * o] is the weight of
267
* input channel i in output channel o.
268
* @param stride distance between adjacent input channels in the matrix array
269
* @return 0 on success, negative AVERROR code on failure
270
*/
271
int
avresample_set_matrix
(
AVAudioResampleContext
*avr,
const
double
*matrix,
272
int
stride
);
273
274
/**
275
* Set a customized input channel mapping.
276
*
277
* This function can only be called when the allocated context is not open.
278
* Also, the input channel layout must have already been set.
279
*
280
* Calling avresample_close() on the context will clear the channel mapping.
281
*
282
* The map for each input channel specifies the channel index in the source to
283
* use for that particular channel, or -1 to mute the channel. Source channels
284
* can be duplicated by using the same index for multiple input channels.
285
*
286
* Examples:
287
*
288
* Reordering 5.1 AAC order (C,L,R,Ls,Rs,LFE) to FFmpeg order (L,R,C,LFE,Ls,Rs):
289
* { 1, 2, 0, 5, 3, 4 }
290
*
291
* Muting the 3rd channel in 4-channel input:
292
* { 0, 1, -1, 3 }
293
*
294
* Duplicating the left channel of stereo input:
295
* { 0, 0 }
296
*
297
* @param avr audio resample context
298
* @param channel_map customized input channel mapping
299
* @return 0 on success, negative AVERROR code on failure
300
*/
301
int
avresample_set_channel_mapping
(
AVAudioResampleContext
*avr,
302
const
int
*channel_map);
303
304
/**
305
* Set compensation for resampling.
306
*
307
* This can be called anytime after avresample_open(). If resampling is not
308
* automatically enabled because of a sample rate conversion, the
309
* "force_resampling" option must have been set to 1 when opening the context
310
* in order to use resampling compensation.
311
*
312
* @param avr audio resample context
313
* @param sample_delta compensation delta, in samples
314
* @param compensation_distance compensation distance, in samples
315
* @return 0 on success, negative AVERROR code on failure
316
*/
317
int
avresample_set_compensation
(
AVAudioResampleContext
*avr,
int
sample_delta,
318
int
compensation_distance);
319
320
/**
321
* Provide the upper bound on the number of samples the configured
322
* conversion would output.
323
*
324
* @param avr audio resample context
325
* @param in_nb_samples number of input samples
326
*
327
* @return number of samples or AVERROR(EINVAL) if the value
328
* would exceed INT_MAX
329
*/
330
331
int
avresample_get_out_samples
(
AVAudioResampleContext
*avr,
int
in_nb_samples);
332
333
/**
334
* Convert input samples and write them to the output FIFO.
335
*
336
* The upper bound on the number of output samples can be obtained through
337
* avresample_get_out_samples().
338
*
339
* The output data can be NULL or have fewer allocated samples than required.
340
* In this case, any remaining samples not written to the output will be added
341
* to an internal FIFO buffer, to be returned at the next call to this function
342
* or to avresample_read().
343
*
344
* If converting sample rate, there may be data remaining in the internal
345
* resampling delay buffer. avresample_get_delay() tells the number of remaining
346
* samples. To get this data as output, call avresample_convert() with NULL
347
* input.
348
*
349
* At the end of the conversion process, there may be data remaining in the
350
* internal FIFO buffer. avresample_available() tells the number of remaining
351
* samples. To get this data as output, either call avresample_convert() with
352
* NULL input or call avresample_read().
353
*
354
* @see avresample_get_out_samples()
355
* @see avresample_read()
356
* @see avresample_get_delay()
357
*
358
* @param avr audio resample context
359
* @param output output data pointers
360
* @param out_plane_size output plane size, in bytes.
361
* This can be 0 if unknown, but that will lead to
362
* optimized functions not being used directly on the
363
* output, which could slow down some conversions.
364
* @param out_samples maximum number of samples that the output buffer can hold
365
* @param input input data pointers
366
* @param in_plane_size input plane size, in bytes
367
* This can be 0 if unknown, but that will lead to
368
* optimized functions not being used directly on the
369
* input, which could slow down some conversions.
370
* @param in_samples number of input samples to convert
371
* @return number of samples written to the output buffer,
372
* not including converted samples added to the internal
373
* output FIFO
374
*/
375
int
avresample_convert
(
AVAudioResampleContext
*avr,
uint8_t
**output,
376
int
out_plane_size,
int
out_samples,
uint8_t
**input,
377
int
in_plane_size,
int
in_samples);
378
379
/**
380
* Return the number of samples currently in the resampling delay buffer.
381
*
382
* When resampling, there may be a delay between the input and output. Any
383
* unconverted samples in each call are stored internally in a delay buffer.
384
* This function allows the user to determine the current number of samples in
385
* the delay buffer, which can be useful for synchronization.
386
*
387
* @see avresample_convert()
388
*
389
* @param avr audio resample context
390
* @return number of samples currently in the resampling delay buffer
391
*/
392
int
avresample_get_delay
(
AVAudioResampleContext
*avr);
393
394
/**
395
* Return the number of available samples in the output FIFO.
396
*
397
* During conversion, if the user does not specify an output buffer or
398
* specifies an output buffer that is smaller than what is needed, remaining
399
* samples that are not written to the output are stored to an internal FIFO
400
* buffer. The samples in the FIFO can be read with avresample_read() or
401
* avresample_convert().
402
*
403
* @see avresample_read()
404
* @see avresample_convert()
405
*
406
* @param avr audio resample context
407
* @return number of samples available for reading
408
*/
409
int
avresample_available
(
AVAudioResampleContext
*avr);
410
411
/**
412
* Read samples from the output FIFO.
413
*
414
* During conversion, if the user does not specify an output buffer or
415
* specifies an output buffer that is smaller than what is needed, remaining
416
* samples that are not written to the output are stored to an internal FIFO
417
* buffer. This function can be used to read samples from that internal FIFO.
418
*
419
* @see avresample_available()
420
* @see avresample_convert()
421
*
422
* @param avr audio resample context
423
* @param output output data pointers. May be NULL, in which case
424
* nb_samples of data is discarded from output FIFO.
425
* @param nb_samples number of samples to read from the FIFO
426
* @return the number of samples written to output
427
*/
428
int
avresample_read
(
AVAudioResampleContext
*avr,
uint8_t
**output,
int
nb_samples);
429
430
/**
431
* Convert the samples in the input AVFrame and write them to the output AVFrame.
432
*
433
* Input and output AVFrames must have channel_layout, sample_rate and format set.
434
*
435
* The upper bound on the number of output samples is obtained through
436
* avresample_get_out_samples().
437
*
438
* If the output AVFrame does not have the data pointers allocated the nb_samples
439
* field will be set using avresample_get_out_samples() and av_frame_get_buffer()
440
* is called to allocate the frame.
441
*
442
* The output AVFrame can be NULL or have fewer allocated samples than required.
443
* In this case, any remaining samples not written to the output will be added
444
* to an internal FIFO buffer, to be returned at the next call to this function
445
* or to avresample_convert() or to avresample_read().
446
*
447
* If converting sample rate, there may be data remaining in the internal
448
* resampling delay buffer. avresample_get_delay() tells the number of
449
* remaining samples. To get this data as output, call this function or
450
* avresample_convert() with NULL input.
451
*
452
* At the end of the conversion process, there may be data remaining in the
453
* internal FIFO buffer. avresample_available() tells the number of remaining
454
* samples. To get this data as output, either call this function or
455
* avresample_convert() with NULL input or call avresample_read().
456
*
457
* If the AVAudioResampleContext configuration does not match the output and
458
* input AVFrame settings the conversion does not take place and depending on
459
* which AVFrame is not matching AVERROR_OUTPUT_CHANGED, AVERROR_INPUT_CHANGED
460
* or AVERROR_OUTPUT_CHANGED|AVERROR_INPUT_CHANGED is returned.
461
*
462
* @see avresample_get_out_samples()
463
* @see avresample_available()
464
* @see avresample_convert()
465
* @see avresample_read()
466
* @see avresample_get_delay()
467
*
468
* @param avr audio resample context
469
* @param output output AVFrame
470
* @param input input AVFrame
471
* @return 0 on success, AVERROR on failure or nonmatching
472
* configuration.
473
*/
474
int
avresample_convert_frame
(
AVAudioResampleContext
*avr,
475
AVFrame
*output,
AVFrame
*input);
476
477
/**
478
* Configure or reconfigure the AVAudioResampleContext using the information
479
* provided by the AVFrames.
480
*
481
* The original resampling context is reset even on failure.
482
* The function calls avresample_close() internally if the context is open.
483
*
484
* @see avresample_open();
485
* @see avresample_close();
486
*
487
* @param avr audio resample context
488
* @param output output AVFrame
489
* @param input input AVFrame
490
* @return 0 on success, AVERROR on failure.
491
*/
492
int
avresample_config
(
AVAudioResampleContext
*avr,
AVFrame
*
out
,
AVFrame
*
in
);
493
494
/**
495
* @}
496
*/
497
498
#endif
/* AVRESAMPLE_AVRESAMPLE_H */
Generated on Fri Dec 5 2014 04:42:15 for FFmpeg by
1.8.2