FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
24 #define _DARWIN_C_SOURCE // needed for MAP_ANON
25 #include <inttypes.h>
26 #include <math.h>
27 #include <stdio.h>
28 #include <string.h>
29 #if HAVE_SYS_MMAN_H
30 #include <sys/mman.h>
31 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
32 #define MAP_ANONYMOUS MAP_ANON
33 #endif
34 #endif
35 #if HAVE_VIRTUALALLOC
36 #define WIN32_LEAN_AND_MEAN
37 #include <windows.h>
38 #endif
39 
40 #include "libavutil/attributes.h"
41 #include "libavutil/avassert.h"
42 #include "libavutil/avutil.h"
43 #include "libavutil/bswap.h"
44 #include "libavutil/cpu.h"
45 #include "libavutil/imgutils.h"
46 #include "libavutil/intreadwrite.h"
47 #include "libavutil/mathematics.h"
48 #include "libavutil/opt.h"
49 #include "libavutil/pixdesc.h"
50 #include "libavutil/ppc/cpu.h"
51 #include "libavutil/x86/asm.h"
52 #include "libavutil/x86/cpu.h"
53 #include "rgb2rgb.h"
54 #include "swscale.h"
55 #include "swscale_internal.h"
56 
57 static void handle_formats(SwsContext *c);
58 
59 unsigned swscale_version(void)
60 {
63 }
64 
65 const char *swscale_configuration(void)
66 {
67  return FFMPEG_CONFIGURATION;
68 }
69 
70 const char *swscale_license(void)
71 {
72 #define LICENSE_PREFIX "libswscale license: "
73  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
74 }
75 
76 typedef struct FormatEntry {
80 } FormatEntry;
81 
83  [AV_PIX_FMT_YUV420P] = { 1, 1 },
84  [AV_PIX_FMT_YUYV422] = { 1, 1 },
85  [AV_PIX_FMT_RGB24] = { 1, 1 },
86  [AV_PIX_FMT_BGR24] = { 1, 1 },
87  [AV_PIX_FMT_YUV422P] = { 1, 1 },
88  [AV_PIX_FMT_YUV444P] = { 1, 1 },
89  [AV_PIX_FMT_YUV410P] = { 1, 1 },
90  [AV_PIX_FMT_YUV411P] = { 1, 1 },
91  [AV_PIX_FMT_GRAY8] = { 1, 1 },
92  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
93  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
94  [AV_PIX_FMT_PAL8] = { 1, 0 },
95  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
96  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
97  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
98  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
99  [AV_PIX_FMT_YVYU422] = { 1, 1 },
100  [AV_PIX_FMT_UYVY422] = { 1, 1 },
101  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
102  [AV_PIX_FMT_BGR8] = { 1, 1 },
103  [AV_PIX_FMT_BGR4] = { 0, 1 },
104  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
105  [AV_PIX_FMT_RGB8] = { 1, 1 },
106  [AV_PIX_FMT_RGB4] = { 0, 1 },
107  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
108  [AV_PIX_FMT_NV12] = { 1, 1 },
109  [AV_PIX_FMT_NV21] = { 1, 1 },
110  [AV_PIX_FMT_ARGB] = { 1, 1 },
111  [AV_PIX_FMT_RGBA] = { 1, 1 },
112  [AV_PIX_FMT_ABGR] = { 1, 1 },
113  [AV_PIX_FMT_BGRA] = { 1, 1 },
114  [AV_PIX_FMT_0RGB] = { 1, 1 },
115  [AV_PIX_FMT_RGB0] = { 1, 1 },
116  [AV_PIX_FMT_0BGR] = { 1, 1 },
117  [AV_PIX_FMT_BGR0] = { 1, 1 },
118  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
119  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
120  [AV_PIX_FMT_YUV440P] = { 1, 1 },
121  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
122  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
123  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
124  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
125  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
126  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
127  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
128  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
129  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
130  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
131  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
132  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
133  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
134  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
135  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
136  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
137  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
138  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
139  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
140  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
141  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
142  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
143  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
144  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
145  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
146  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
147  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
148  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
149  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
150  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
151  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
152  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
153  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
154  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
155  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
156  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
157  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
158  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
159  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
160  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
161  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
162  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
163  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
164  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
165  [AV_PIX_FMT_YA8] = { 1, 0 },
166  [AV_PIX_FMT_YA16BE] = { 1, 0 },
167  [AV_PIX_FMT_YA16LE] = { 1, 0 },
168  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
169  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
170  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
171  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
172  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
173  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
174  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
175  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
176  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
177  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
178  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
179  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
180  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
181  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
182  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
183  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
189  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
190  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
191  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
192  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
193  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
194  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
195  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
196  [AV_PIX_FMT_GBRP] = { 1, 1 },
197  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
198  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
199  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
200  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
201  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
202  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
203  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
204  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
205  [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
206  [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
207  [AV_PIX_FMT_GBRAP] = { 1, 1 },
208  [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
209  [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
210  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
211  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
212  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
213  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
214  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
215  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
216  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
217  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
218  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
219  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
220  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
221  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
222  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
223  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
224 };
225 
227 {
228  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
229  format_entries[pix_fmt].is_supported_in : 0;
230 }
231 
233 {
234  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
235  format_entries[pix_fmt].is_supported_out : 0;
236 }
237 
239 {
240  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
241  format_entries[pix_fmt].is_supported_endianness : 0;
242 }
243 
244 static double getSplineCoeff(double a, double b, double c, double d,
245  double dist)
246 {
247  if (dist <= 1.0)
248  return ((d * dist + c) * dist + b) * dist + a;
249  else
250  return getSplineCoeff(0.0,
251  b + 2.0 * c + 3.0 * d,
252  c + 3.0 * d,
253  -b - 3.0 * c - 6.0 * d,
254  dist - 1.0);
255 }
256 
257 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
258 {
259  if (pos == -1 || pos <= -513) {
260  pos = (128 << chr_subsample) - 128;
261  }
262  pos += 128; // relative to ideal left edge
263  return pos >> chr_subsample;
264 }
265 
266 typedef struct {
267  int flag; ///< flag associated to the algorithm
268  const char *description; ///< human-readable description
269  int size_factor; ///< size factor used when initing the filters
271 
273  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
274  { SWS_BICUBIC, "bicubic", 4 },
275  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
276  { SWS_BILINEAR, "bilinear", 2 },
277  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
278  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
279  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
280  { SWS_POINT, "nearest neighbor / point", -1 },
281  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
282  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
283  { SWS_X, "experimental", 8 },
284 };
285 
286 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
287  int *outFilterSize, int xInc, int srcW,
288  int dstW, int filterAlign, int one,
289  int flags, int cpu_flags,
290  SwsVector *srcFilter, SwsVector *dstFilter,
291  double param[2], int srcPos, int dstPos)
292 {
293  int i;
294  int filterSize;
295  int filter2Size;
296  int minFilterSize;
297  int64_t *filter = NULL;
298  int64_t *filter2 = NULL;
299  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
300  int ret = -1;
301 
302  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
303 
304  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
305  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
306 
307  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
308  int i;
309  filterSize = 1;
311  dstW, sizeof(*filter) * filterSize, fail);
312 
313  for (i = 0; i < dstW; i++) {
314  filter[i * filterSize] = fone;
315  (*filterPos)[i] = i;
316  }
317  } else if (flags & SWS_POINT) { // lame looking point sampling mode
318  int i;
319  int64_t xDstInSrc;
320  filterSize = 1;
322  dstW, sizeof(*filter) * filterSize, fail);
323 
324  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
325  for (i = 0; i < dstW; i++) {
326  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
327 
328  (*filterPos)[i] = xx;
329  filter[i] = fone;
330  xDstInSrc += xInc;
331  }
332  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
333  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
334  int i;
335  int64_t xDstInSrc;
336  filterSize = 2;
338  dstW, sizeof(*filter) * filterSize, fail);
339 
340  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
341  for (i = 0; i < dstW; i++) {
342  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
343  int j;
344 
345  (*filterPos)[i] = xx;
346  // bilinear upscale / linear interpolate / area averaging
347  for (j = 0; j < filterSize; j++) {
348  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
349  if (coeff < 0)
350  coeff = 0;
351  filter[i * filterSize + j] = coeff;
352  xx++;
353  }
354  xDstInSrc += xInc;
355  }
356  } else {
357  int64_t xDstInSrc;
358  int sizeFactor = -1;
359 
360  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
361  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
362  sizeFactor = scale_algorithms[i].size_factor;
363  break;
364  }
365  }
366  if (flags & SWS_LANCZOS)
367  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
368  av_assert0(sizeFactor > 0);
369 
370  if (xInc <= 1 << 16)
371  filterSize = 1 + sizeFactor; // upscale
372  else
373  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
374 
375  filterSize = FFMIN(filterSize, srcW - 2);
376  filterSize = FFMAX(filterSize, 1);
377 
379  dstW, sizeof(*filter) * filterSize, fail);
380 
381  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
382  for (i = 0; i < dstW; i++) {
383  int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
384  int j;
385  (*filterPos)[i] = xx;
386  for (j = 0; j < filterSize; j++) {
387  int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
388  double floatd;
389  int64_t coeff;
390 
391  if (xInc > 1 << 16)
392  d = d * dstW / srcW;
393  floatd = d * (1.0 / (1 << 30));
394 
395  if (flags & SWS_BICUBIC) {
396  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
397  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
398 
399  if (d >= 1LL << 31) {
400  coeff = 0.0;
401  } else {
402  int64_t dd = (d * d) >> 30;
403  int64_t ddd = (dd * d) >> 30;
404 
405  if (d < 1LL << 30)
406  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
407  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
408  (6 * (1 << 24) - 2 * B) * (1 << 30);
409  else
410  coeff = (-B - 6 * C) * ddd +
411  (6 * B + 30 * C) * dd +
412  (-12 * B - 48 * C) * d +
413  (8 * B + 24 * C) * (1 << 30);
414  }
415  coeff /= (1LL<<54)/fone;
416  }
417 #if 0
418  else if (flags & SWS_X) {
419  double p = param ? param * 0.01 : 0.3;
420  coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
421  coeff *= pow(2.0, -p * d * d);
422  }
423 #endif
424  else if (flags & SWS_X) {
425  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
426  double c;
427 
428  if (floatd < 1.0)
429  c = cos(floatd * M_PI);
430  else
431  c = -1.0;
432  if (c < 0.0)
433  c = -pow(-c, A);
434  else
435  c = pow(c, A);
436  coeff = (c * 0.5 + 0.5) * fone;
437  } else if (flags & SWS_AREA) {
438  int64_t d2 = d - (1 << 29);
439  if (d2 * xInc < -(1LL << (29 + 16)))
440  coeff = 1.0 * (1LL << (30 + 16));
441  else if (d2 * xInc < (1LL << (29 + 16)))
442  coeff = -d2 * xInc + (1LL << (29 + 16));
443  else
444  coeff = 0.0;
445  coeff *= fone >> (30 + 16);
446  } else if (flags & SWS_GAUSS) {
447  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
448  coeff = (pow(2.0, -p * floatd * floatd)) * fone;
449  } else if (flags & SWS_SINC) {
450  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
451  } else if (flags & SWS_LANCZOS) {
452  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
453  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
454  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
455  if (floatd > p)
456  coeff = 0;
457  } else if (flags & SWS_BILINEAR) {
458  coeff = (1 << 30) - d;
459  if (coeff < 0)
460  coeff = 0;
461  coeff *= fone >> 30;
462  } else if (flags & SWS_SPLINE) {
463  double p = -2.196152422706632;
464  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
465  } else {
466  av_assert0(0);
467  }
468 
469  filter[i * filterSize + j] = coeff;
470  xx++;
471  }
472  xDstInSrc += 2 * xInc;
473  }
474  }
475 
476  /* apply src & dst Filter to filter -> filter2
477  * av_free(filter);
478  */
479  av_assert0(filterSize > 0);
480  filter2Size = filterSize;
481  if (srcFilter)
482  filter2Size += srcFilter->length - 1;
483  if (dstFilter)
484  filter2Size += dstFilter->length - 1;
485  av_assert0(filter2Size > 0);
486  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
487 
488  for (i = 0; i < dstW; i++) {
489  int j, k;
490 
491  if (srcFilter) {
492  for (k = 0; k < srcFilter->length; k++) {
493  for (j = 0; j < filterSize; j++)
494  filter2[i * filter2Size + k + j] +=
495  srcFilter->coeff[k] * filter[i * filterSize + j];
496  }
497  } else {
498  for (j = 0; j < filterSize; j++)
499  filter2[i * filter2Size + j] = filter[i * filterSize + j];
500  }
501  // FIXME dstFilter
502 
503  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
504  }
505  av_freep(&filter);
506 
507  /* try to reduce the filter-size (step1 find size and shift left) */
508  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
509  minFilterSize = 0;
510  for (i = dstW - 1; i >= 0; i--) {
511  int min = filter2Size;
512  int j;
513  int64_t cutOff = 0.0;
514 
515  /* get rid of near zero elements on the left by shifting left */
516  for (j = 0; j < filter2Size; j++) {
517  int k;
518  cutOff += FFABS(filter2[i * filter2Size]);
519 
520  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
521  break;
522 
523  /* preserve monotonicity because the core can't handle the
524  * filter otherwise */
525  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
526  break;
527 
528  // move filter coefficients left
529  for (k = 1; k < filter2Size; k++)
530  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
531  filter2[i * filter2Size + k - 1] = 0;
532  (*filterPos)[i]++;
533  }
534 
535  cutOff = 0;
536  /* count near zeros on the right */
537  for (j = filter2Size - 1; j > 0; j--) {
538  cutOff += FFABS(filter2[i * filter2Size + j]);
539 
540  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
541  break;
542  min--;
543  }
544 
545  if (min > minFilterSize)
546  minFilterSize = min;
547  }
548 
549  if (PPC_ALTIVEC(cpu_flags)) {
550  // we can handle the special case 4, so we don't want to go the full 8
551  if (minFilterSize < 5)
552  filterAlign = 4;
553 
554  /* We really don't want to waste our time doing useless computation, so
555  * fall back on the scalar C code for very small filters.
556  * Vectorizing is worth it only if you have a decent-sized vector. */
557  if (minFilterSize < 3)
558  filterAlign = 1;
559  }
560 
561  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
562  // special case for unscaled vertical filtering
563  if (minFilterSize == 1 && filterAlign == 2)
564  filterAlign = 1;
565  }
566 
567  av_assert0(minFilterSize > 0);
568  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
569  av_assert0(filterSize > 0);
570  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
571  if (!filter)
572  goto fail;
573  if (filterSize >= MAX_FILTER_SIZE * 16 /
574  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
575  ret = RETCODE_USE_CASCADE;
576  goto fail;
577  }
578  *outFilterSize = filterSize;
579 
580  if (flags & SWS_PRINT_INFO)
582  "SwScaler: reducing / aligning filtersize %d -> %d\n",
583  filter2Size, filterSize);
584  /* try to reduce the filter-size (step2 reduce it) */
585  for (i = 0; i < dstW; i++) {
586  int j;
587 
588  for (j = 0; j < filterSize; j++) {
589  if (j >= filter2Size)
590  filter[i * filterSize + j] = 0;
591  else
592  filter[i * filterSize + j] = filter2[i * filter2Size + j];
593  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
594  filter[i * filterSize + j] = 0;
595  }
596  }
597 
598  // FIXME try to align filterPos if possible
599 
600  // fix borders
601  for (i = 0; i < dstW; i++) {
602  int j;
603  if ((*filterPos)[i] < 0) {
604  // move filter coefficients left to compensate for filterPos
605  for (j = 1; j < filterSize; j++) {
606  int left = FFMAX(j + (*filterPos)[i], 0);
607  filter[i * filterSize + left] += filter[i * filterSize + j];
608  filter[i * filterSize + j] = 0;
609  }
610  (*filterPos)[i]= 0;
611  }
612 
613  if ((*filterPos)[i] + filterSize > srcW) {
614  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
615  int64_t acc = 0;
616 
617  for (j = filterSize - 1; j >= 0; j--) {
618  if ((*filterPos)[i] + j >= srcW) {
619  acc += filter[i * filterSize + j];
620  filter[i * filterSize + j] = 0;
621  }
622  }
623  for (j = filterSize - 1; j >= 0; j--) {
624  if (j < shift) {
625  filter[i * filterSize + j] = 0;
626  } else {
627  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
628  }
629  }
630 
631  (*filterPos)[i]-= shift;
632  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
633  }
634  av_assert0((*filterPos)[i] >= 0);
635  av_assert0((*filterPos)[i] < srcW);
636  if ((*filterPos)[i] + filterSize > srcW) {
637  for (j = 0; j < filterSize; j++) {
638  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
639  }
640  }
641  }
642 
643  // Note the +1 is for the MMX scaler which reads over the end
644  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
645  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
646  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
647 
648  /* normalize & store in outFilter */
649  for (i = 0; i < dstW; i++) {
650  int j;
651  int64_t error = 0;
652  int64_t sum = 0;
653 
654  for (j = 0; j < filterSize; j++) {
655  sum += filter[i * filterSize + j];
656  }
657  sum = (sum + one / 2) / one;
658  if (!sum) {
659  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
660  sum = 1;
661  }
662  for (j = 0; j < *outFilterSize; j++) {
663  int64_t v = filter[i * filterSize + j] + error;
664  int intV = ROUNDED_DIV(v, sum);
665  (*outFilter)[i * (*outFilterSize) + j] = intV;
666  error = v - intV * sum;
667  }
668  }
669 
670  (*filterPos)[dstW + 0] =
671  (*filterPos)[dstW + 1] =
672  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
673  * read over the end */
674  for (i = 0; i < *outFilterSize; i++) {
675  int k = (dstW - 1) * (*outFilterSize) + i;
676  (*outFilter)[k + 1 * (*outFilterSize)] =
677  (*outFilter)[k + 2 * (*outFilterSize)] =
678  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
679  }
680 
681  ret = 0;
682 
683 fail:
684  if(ret < 0)
685  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
686  av_free(filter);
687  av_free(filter2);
688  return ret;
689 }
690 
691 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
692 {
693  int64_t W, V, Z, Cy, Cu, Cv;
694  int64_t vr = table[0];
695  int64_t ub = table[1];
696  int64_t ug = -table[2];
697  int64_t vg = -table[3];
698  int64_t ONE = 65536;
699  int64_t cy = ONE;
701  int i;
702  static const int8_t map[] = {
703  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
704  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
705  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
706  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
707  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
708  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
709  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
710  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
711  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
712  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
713  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
714  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
717  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
718  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
721  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
722  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
725  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
726  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
727  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
728  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
729  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
730  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
731  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
732  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
733  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
734  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
735  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
736  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
737  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
738  };
739 
740  dstRange = 0; //FIXME range = 1 is handled elsewhere
741 
742  if (!dstRange) {
743  cy = cy * 255 / 219;
744  } else {
745  vr = vr * 224 / 255;
746  ub = ub * 224 / 255;
747  ug = ug * 224 / 255;
748  vg = vg * 224 / 255;
749  }
750  W = ROUNDED_DIV(ONE*ONE*ug, ub);
751  V = ROUNDED_DIV(ONE*ONE*vg, vr);
752  Z = ONE*ONE-W-V;
753 
754  Cy = ROUNDED_DIV(cy*Z, ONE);
755  Cu = ROUNDED_DIV(ub*Z, ONE);
756  Cv = ROUNDED_DIV(vr*Z, ONE);
757 
758  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
759  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
760  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
761 
762  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
763  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
764  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
765 
766  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
767  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
768  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
769 
770  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
771  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
772  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
773  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
774  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
775  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
776  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
777  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
778  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
779  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
780  }
781  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
782  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
783 }
784 
785 static void fill_xyztables(struct SwsContext *c)
786 {
787  int i;
788  double xyzgamma = XYZ_GAMMA;
789  double rgbgamma = 1.0 / RGB_GAMMA;
790  double xyzgammainv = 1.0 / XYZ_GAMMA;
791  double rgbgammainv = RGB_GAMMA;
792  static const int16_t xyz2rgb_matrix[3][4] = {
793  {13270, -6295, -2041},
794  {-3969, 7682, 170},
795  { 228, -835, 4329} };
796  static const int16_t rgb2xyz_matrix[3][4] = {
797  {1689, 1464, 739},
798  { 871, 2929, 296},
799  { 79, 488, 3891} };
800  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
801 
802  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
803  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
804  c->xyzgamma = xyzgamma_tab;
805  c->rgbgamma = rgbgamma_tab;
806  c->xyzgammainv = xyzgammainv_tab;
807  c->rgbgammainv = rgbgammainv_tab;
808 
809  if (rgbgamma_tab[4095])
810  return;
811 
812  /* set gamma vectors */
813  for (i = 0; i < 4096; i++) {
814  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
815  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
816  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
817  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
818  }
819 }
820 
821 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
822  int srcRange, const int table[4], int dstRange,
823  int brightness, int contrast, int saturation)
824 {
825  const AVPixFmtDescriptor *desc_dst;
826  const AVPixFmtDescriptor *desc_src;
827  int need_reinit = 0;
828  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
829  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
830 
831  handle_formats(c);
832  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
833  desc_src = av_pix_fmt_desc_get(c->srcFormat);
834 
835  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
836  dstRange = 0;
837  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
838  srcRange = 0;
839 
840  c->brightness = brightness;
841  c->contrast = contrast;
842  c->saturation = saturation;
843  if (c->srcRange != srcRange || c->dstRange != dstRange)
844  need_reinit = 1;
845  c->srcRange = srcRange;
846  c->dstRange = dstRange;
847 
848  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
849  //and what we have in ticket 2939 looks better with this check
850  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
852 
853  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
854  return -1;
855 
856  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
857  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
858 
859  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
860  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
861  contrast, saturation);
862  // FIXME factorize
863 
864  if (ARCH_PPC)
865  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
866  contrast, saturation);
867  }
868 
869  fill_rgb2yuv_table(c, table, dstRange);
870 
871  return 0;
872 }
873 
874 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
875  int *srcRange, int **table, int *dstRange,
876  int *brightness, int *contrast, int *saturation)
877 {
878  if (!c )
879  return -1;
880 
881  *inv_table = c->srcColorspaceTable;
882  *table = c->dstColorspaceTable;
883  *srcRange = c->srcRange;
884  *dstRange = c->dstRange;
885  *brightness = c->brightness;
886  *contrast = c->contrast;
887  *saturation = c->saturation;
888 
889  return 0;
890 }
891 
892 static int handle_jpeg(enum AVPixelFormat *format)
893 {
894  switch (*format) {
895  case AV_PIX_FMT_YUVJ420P:
896  *format = AV_PIX_FMT_YUV420P;
897  return 1;
898  case AV_PIX_FMT_YUVJ411P:
899  *format = AV_PIX_FMT_YUV411P;
900  return 1;
901  case AV_PIX_FMT_YUVJ422P:
902  *format = AV_PIX_FMT_YUV422P;
903  return 1;
904  case AV_PIX_FMT_YUVJ444P:
905  *format = AV_PIX_FMT_YUV444P;
906  return 1;
907  case AV_PIX_FMT_YUVJ440P:
908  *format = AV_PIX_FMT_YUV440P;
909  return 1;
910  case AV_PIX_FMT_GRAY8:
911  case AV_PIX_FMT_GRAY16LE:
912  case AV_PIX_FMT_GRAY16BE:
913  return 1;
914  default:
915  return 0;
916  }
917 }
918 
919 static int handle_0alpha(enum AVPixelFormat *format)
920 {
921  switch (*format) {
922  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
923  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
924  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
925  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
926  default: return 0;
927  }
928 }
929 
930 static int handle_xyz(enum AVPixelFormat *format)
931 {
932  switch (*format) {
933  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
934  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
935  default: return 0;
936  }
937 }
938 
940 {
941  c->src0Alpha |= handle_0alpha(&c->srcFormat);
942  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
943  c->srcXYZ |= handle_xyz(&c->srcFormat);
944  c->dstXYZ |= handle_xyz(&c->dstFormat);
945  if (c->srcXYZ || c->dstXYZ)
946  fill_xyztables(c);
947 }
948 
950 {
951  SwsContext *c = av_mallocz(sizeof(SwsContext));
952 
953  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
954 
955  if (c) {
958  }
959 
960  return c;
961 }
962 
964  SwsFilter *dstFilter)
965 {
966  int i, j;
967  int usesVFilter, usesHFilter;
968  int unscaled;
969  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
970  int srcW = c->srcW;
971  int srcH = c->srcH;
972  int dstW = c->dstW;
973  int dstH = c->dstH;
974  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
975  int flags, cpu_flags;
976  enum AVPixelFormat srcFormat = c->srcFormat;
977  enum AVPixelFormat dstFormat = c->dstFormat;
978  const AVPixFmtDescriptor *desc_src;
979  const AVPixFmtDescriptor *desc_dst;
980  int ret = 0;
981 
982  cpu_flags = av_get_cpu_flags();
983  flags = c->flags;
984  emms_c();
985  if (!rgb15to16)
987 
988  unscaled = (srcW == dstW && srcH == dstH);
989 
990  c->srcRange |= handle_jpeg(&c->srcFormat);
991  c->dstRange |= handle_jpeg(&c->dstFormat);
992 
993  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
994  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
995 
996  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
997  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
998  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
999  c->dstRange, 0, 1 << 16, 1 << 16);
1000 
1001  handle_formats(c);
1002  srcFormat = c->srcFormat;
1003  dstFormat = c->dstFormat;
1004  desc_src = av_pix_fmt_desc_get(srcFormat);
1005  desc_dst = av_pix_fmt_desc_get(dstFormat);
1006 
1007  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1008  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1009  if (!sws_isSupportedInput(srcFormat)) {
1010  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1011  av_get_pix_fmt_name(srcFormat));
1012  return AVERROR(EINVAL);
1013  }
1014  if (!sws_isSupportedOutput(dstFormat)) {
1015  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1016  av_get_pix_fmt_name(dstFormat));
1017  return AVERROR(EINVAL);
1018  }
1019  }
1020 
1021  i = flags & (SWS_POINT |
1022  SWS_AREA |
1023  SWS_BILINEAR |
1025  SWS_BICUBIC |
1026  SWS_X |
1027  SWS_GAUSS |
1028  SWS_LANCZOS |
1029  SWS_SINC |
1030  SWS_SPLINE |
1031  SWS_BICUBLIN);
1032 
1033  /* provide a default scaler if not set by caller */
1034  if (!i) {
1035  if (dstW < srcW && dstH < srcH)
1036  flags |= SWS_BICUBIC;
1037  else if (dstW > srcW && dstH > srcH)
1038  flags |= SWS_BICUBIC;
1039  else
1040  flags |= SWS_BICUBIC;
1041  c->flags = flags;
1042  } else if (i & (i - 1)) {
1043  av_log(c, AV_LOG_ERROR,
1044  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1045  return AVERROR(EINVAL);
1046  }
1047  /* sanity check */
1048  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1049  /* FIXME check if these are enough and try to lower them after
1050  * fixing the relevant parts of the code */
1051  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1052  srcW, srcH, dstW, dstH);
1053  return AVERROR(EINVAL);
1054  }
1055 
1056  if (!dstFilter)
1057  dstFilter = &dummyFilter;
1058  if (!srcFilter)
1059  srcFilter = &dummyFilter;
1060 
1061  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1062  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1063  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1064  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1065  c->vRounder = 4 * 0x0001000100010001ULL;
1066 
1067  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1068  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1069  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1070  (dstFilter->chrV && dstFilter->chrV->length > 1);
1071  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1072  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1073  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1074  (dstFilter->chrH && dstFilter->chrH->length > 1);
1075 
1078 
1079  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1080  if (dstW&1) {
1081  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1082  flags |= SWS_FULL_CHR_H_INT;
1083  c->flags = flags;
1084  }
1085 
1086  if ( c->chrSrcHSubSample == 0
1087  && c->chrSrcVSubSample == 0
1088  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1089  && !(c->flags & SWS_FAST_BILINEAR)
1090  ) {
1091  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1092  flags |= SWS_FULL_CHR_H_INT;
1093  c->flags = flags;
1094  }
1095  }
1096 
1097  if (c->dither == SWS_DITHER_AUTO) {
1098  if (flags & SWS_ERROR_DIFFUSION)
1099  c->dither = SWS_DITHER_ED;
1100  }
1101 
1102  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1103  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1104  dstFormat == AV_PIX_FMT_BGR8 ||
1105  dstFormat == AV_PIX_FMT_RGB8) {
1106  if (c->dither == SWS_DITHER_AUTO)
1108  if (!(flags & SWS_FULL_CHR_H_INT)) {
1110  av_log(c, AV_LOG_DEBUG,
1111  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1112  av_get_pix_fmt_name(dstFormat));
1113  flags |= SWS_FULL_CHR_H_INT;
1114  c->flags = flags;
1115  }
1116  }
1117  if (flags & SWS_FULL_CHR_H_INT) {
1118  if (c->dither == SWS_DITHER_BAYER) {
1119  av_log(c, AV_LOG_DEBUG,
1120  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1121  av_get_pix_fmt_name(dstFormat));
1122  c->dither = SWS_DITHER_ED;
1123  }
1124  }
1125  }
1126  if (isPlanarRGB(dstFormat)) {
1127  if (!(flags & SWS_FULL_CHR_H_INT)) {
1128  av_log(c, AV_LOG_DEBUG,
1129  "%s output is not supported with half chroma resolution, switching to full\n",
1130  av_get_pix_fmt_name(dstFormat));
1131  flags |= SWS_FULL_CHR_H_INT;
1132  c->flags = flags;
1133  }
1134  }
1135 
1136  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1137  * chroma interpolation */
1138  if (flags & SWS_FULL_CHR_H_INT &&
1139  isAnyRGB(dstFormat) &&
1140  !isPlanarRGB(dstFormat) &&
1141  dstFormat != AV_PIX_FMT_RGBA &&
1142  dstFormat != AV_PIX_FMT_ARGB &&
1143  dstFormat != AV_PIX_FMT_BGRA &&
1144  dstFormat != AV_PIX_FMT_ABGR &&
1145  dstFormat != AV_PIX_FMT_RGB24 &&
1146  dstFormat != AV_PIX_FMT_BGR24 &&
1147  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1148  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1149  dstFormat != AV_PIX_FMT_BGR8 &&
1150  dstFormat != AV_PIX_FMT_RGB8
1151  ) {
1153  "full chroma interpolation for destination format '%s' not yet implemented\n",
1154  av_get_pix_fmt_name(dstFormat));
1155  flags &= ~SWS_FULL_CHR_H_INT;
1156  c->flags = flags;
1157  }
1158  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1159  c->chrDstHSubSample = 1;
1160 
1161  // drop some chroma lines if the user wants it
1162  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1164  c->chrSrcVSubSample += c->vChrDrop;
1165 
1166  /* drop every other pixel for chroma calculation unless user
1167  * wants full chroma */
1168  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1169  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1170  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1171  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1172  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1173  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1174  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1175  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1176  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1177  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1178  (flags & SWS_FAST_BILINEAR)))
1179  c->chrSrcHSubSample = 1;
1180 
1181  // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
1182  c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1183  c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1184  c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1185  c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1186 
1187  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1188 
1189  c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
1190  if (c->srcBpc < 8)
1191  c->srcBpc = 8;
1192  c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
1193  if (c->dstBpc < 8)
1194  c->dstBpc = 8;
1195  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1196  c->srcBpc = 16;
1197  if (c->dstBpc == 16)
1198  dst_stride <<= 1;
1199 
1200  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1201  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1202  c->chrDstW >= c->chrSrcW &&
1203  (srcW & 15) == 0;
1204  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1205 
1206  && (flags & SWS_FAST_BILINEAR)) {
1207  if (flags & SWS_PRINT_INFO)
1208  av_log(c, AV_LOG_INFO,
1209  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1210  }
1211  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1212  c->canMMXEXTBeUsed = 0;
1213  } else
1214  c->canMMXEXTBeUsed = 0;
1215 
1216  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1217  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1218 
1219  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1220  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1221  * correct scaling.
1222  * n-2 is the last chrominance sample available.
1223  * This is not perfect, but no one should notice the difference, the more
1224  * correct variant would be like the vertical one, but that would require
1225  * some special code for the first and last pixel */
1226  if (flags & SWS_FAST_BILINEAR) {
1227  if (c->canMMXEXTBeUsed) {
1228  c->lumXInc += 20;
1229  c->chrXInc += 20;
1230  }
1231  // we don't use the x86 asm scaler if MMX is available
1232  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1233  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1234  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1235  }
1236  }
1237 
1238  if (isBayer(srcFormat)) {
1239  if (!unscaled ||
1240  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1241  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1242 
1244  srcW, srcH, tmpFormat, 64);
1245  if (ret < 0)
1246  return ret;
1247 
1248  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1249  srcW, srcH, tmpFormat,
1250  flags, srcFilter, NULL, c->param);
1251  if (!c->cascaded_context[0])
1252  return -1;
1253 
1254  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1255  dstW, dstH, dstFormat,
1256  flags, NULL, dstFilter, c->param);
1257  if (!c->cascaded_context[1])
1258  return -1;
1259  return 0;
1260  }
1261  }
1262 
1263 #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1264 
1265  /* precalculate horizontal scaler filter coefficients */
1266  {
1267 #if HAVE_MMXEXT_INLINE
1268 // can't downscale !!!
1269  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1271  NULL, NULL, 8);
1273  NULL, NULL, NULL, 4);
1274 
1275 #if USE_MMAP
1277  PROT_READ | PROT_WRITE,
1278  MAP_PRIVATE | MAP_ANONYMOUS,
1279  -1, 0);
1281  PROT_READ | PROT_WRITE,
1282  MAP_PRIVATE | MAP_ANONYMOUS,
1283  -1, 0);
1284 #elif HAVE_VIRTUALALLOC
1285  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1287  MEM_COMMIT,
1288  PAGE_EXECUTE_READWRITE);
1289  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1291  MEM_COMMIT,
1292  PAGE_EXECUTE_READWRITE);
1293 #else
1296 #endif
1297 
1298 #ifdef MAP_ANONYMOUS
1299  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1300 #else
1302 #endif
1303  {
1304  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1305  return AVERROR(ENOMEM);
1306  }
1307 
1308  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1309  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1310  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1311  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1312 
1314  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1316  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1317 
1318 #if USE_MMAP
1319  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1320  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1321  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1322  goto fail;
1323  }
1324 #endif
1325  } else
1326 #endif /* HAVE_MMXEXT_INLINE */
1327  {
1328  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1329  PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1330 
1331  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1332  &c->hLumFilterSize, c->lumXInc,
1333  srcW, dstW, filterAlign, 1 << 14,
1334  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1335  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1336  c->param,
1337  get_local_pos(c, 0, 0, 0),
1338  get_local_pos(c, 0, 0, 0))) < 0)
1339  goto fail;
1340  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1341  &c->hChrFilterSize, c->chrXInc,
1342  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1343  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1344  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1345  c->param,
1347  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1348  goto fail;
1349  }
1350  } // initialize horizontal stuff
1351 
1352  /* precalculate vertical scaler filter coefficients */
1353  {
1354  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1355  PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1356 
1357  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1358  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1359  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1360  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1361  c->param,
1362  get_local_pos(c, 0, 0, 1),
1363  get_local_pos(c, 0, 0, 1))) < 0)
1364  goto fail;
1365  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1366  c->chrYInc, c->chrSrcH, c->chrDstH,
1367  filterAlign, (1 << 12),
1368  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1369  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1370  c->param,
1372  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1373 
1374  goto fail;
1375 
1376 #if HAVE_ALTIVEC
1377  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1378  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1379 
1380  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1381  int j;
1382  short *p = (short *)&c->vYCoeffsBank[i];
1383  for (j = 0; j < 8; j++)
1384  p[j] = c->vLumFilter[i];
1385  }
1386 
1387  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1388  int j;
1389  short *p = (short *)&c->vCCoeffsBank[i];
1390  for (j = 0; j < 8; j++)
1391  p[j] = c->vChrFilter[i];
1392  }
1393 #endif
1394  }
1395 
1396  // calculate buffer sizes so that they won't run out while handling these damn slices
1397  c->vLumBufSize = c->vLumFilterSize;
1398  c->vChrBufSize = c->vChrFilterSize;
1399  for (i = 0; i < dstH; i++) {
1400  int chrI = (int64_t)i * c->chrDstH / dstH;
1401  int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
1402  ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
1403  << c->chrSrcVSubSample));
1404 
1405  nextSlice >>= c->chrSrcVSubSample;
1406  nextSlice <<= c->chrSrcVSubSample;
1407  if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
1408  c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
1409  if (c->vChrFilterPos[chrI] + c->vChrBufSize <
1410  (nextSlice >> c->chrSrcVSubSample))
1411  c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
1412  c->vChrFilterPos[chrI];
1413  }
1414 
1415  for (i = 0; i < 4; i++)
1416  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1417 
1418  /* Allocate pixbufs (we use dynamic allocation because otherwise we would
1419  * need to allocate several megabytes to handle all possible cases) */
1420  FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1421  FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1422  FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1423  if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1424  FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1425  /* Note we need at least one pixel more at the end because of the MMX code
1426  * (just in case someone wants to replace the 4000/8000). */
1427  /* align at 16 bytes for AltiVec */
1428  for (i = 0; i < c->vLumBufSize; i++) {
1429  FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
1430  dst_stride + 16, fail);
1431  c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
1432  }
1433  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1434  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1435  c->uv_offx2 = dst_stride + 16;
1436  for (i = 0; i < c->vChrBufSize; i++) {
1437  FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
1438  dst_stride * 2 + 32, fail);
1439  c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
1440  c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
1441  = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
1442  }
1443  if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1444  for (i = 0; i < c->vLumBufSize; i++) {
1445  FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
1446  dst_stride + 16, fail);
1447  c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
1448  }
1449 
1450  // try to avoid drawing green stuff between the right end and the stride end
1451  for (i = 0; i < c->vChrBufSize; i++)
1452  if(desc_dst->comp[0].depth_minus1 == 15){
1453  av_assert0(c->dstBpc > 14);
1454  for(j=0; j<dst_stride/2+1; j++)
1455  ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
1456  } else
1457  for(j=0; j<dst_stride+1; j++)
1458  ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
1459 
1460  av_assert0(c->chrDstH <= dstH);
1461 
1462  if (flags & SWS_PRINT_INFO) {
1463  const char *scaler = NULL, *cpucaps;
1464 
1465  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1466  if (flags & scale_algorithms[i].flag) {
1467  scaler = scale_algorithms[i].description;
1468  break;
1469  }
1470  }
1471  if (!scaler)
1472  scaler = "ehh flags invalid?!";
1473  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1474  scaler,
1475  av_get_pix_fmt_name(srcFormat),
1476 #ifdef DITHER1XBPP
1477  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1478  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1479  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1480  "dithered " : "",
1481 #else
1482  "",
1483 #endif
1484  av_get_pix_fmt_name(dstFormat));
1485 
1486  if (INLINE_MMXEXT(cpu_flags))
1487  cpucaps = "MMXEXT";
1488  else if (INLINE_AMD3DNOW(cpu_flags))
1489  cpucaps = "3DNOW";
1490  else if (INLINE_MMX(cpu_flags))
1491  cpucaps = "MMX";
1492  else if (PPC_ALTIVEC(cpu_flags))
1493  cpucaps = "AltiVec";
1494  else
1495  cpucaps = "C";
1496 
1497  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1498 
1499  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1500  av_log(c, AV_LOG_DEBUG,
1501  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1502  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1503  av_log(c, AV_LOG_DEBUG,
1504  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1505  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1506  c->chrXInc, c->chrYInc);
1507  }
1508 
1509  /* unscaled special cases */
1510  if (unscaled && !usesHFilter && !usesVFilter &&
1511  (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1513 
1514  if (c->swscale) {
1515  if (flags & SWS_PRINT_INFO)
1516  av_log(c, AV_LOG_INFO,
1517  "using unscaled %s -> %s special converter\n",
1518  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1519  return 0;
1520  }
1521  }
1522 
1523  c->swscale = ff_getSwsFunc(c);
1524  return 0;
1525 fail: // FIXME replace things by appropriate error codes
1526  if (ret == RETCODE_USE_CASCADE) {
1527  int tmpW = sqrt(srcW * (int64_t)dstW);
1528  int tmpH = sqrt(srcH * (int64_t)dstH);
1529  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1530 
1531  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1532  return AVERROR(EINVAL);
1533 
1535  tmpW, tmpH, tmpFormat, 64);
1536  if (ret < 0)
1537  return ret;
1538 
1539  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1540  tmpW, tmpH, tmpFormat,
1541  flags, srcFilter, NULL, c->param);
1542  if (!c->cascaded_context[0])
1543  return -1;
1544 
1545  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1546  dstW, dstH, dstFormat,
1547  flags, NULL, dstFilter, c->param);
1548  if (!c->cascaded_context[1])
1549  return -1;
1550  return 0;
1551  }
1552  return -1;
1553 }
1554 
1555 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1556  int dstW, int dstH, enum AVPixelFormat dstFormat,
1557  int flags, SwsFilter *srcFilter,
1558  SwsFilter *dstFilter, const double *param)
1559 {
1560  SwsContext *c;
1561 
1562  if (!(c = sws_alloc_context()))
1563  return NULL;
1564 
1565  c->flags = flags;
1566  c->srcW = srcW;
1567  c->srcH = srcH;
1568  c->dstW = dstW;
1569  c->dstH = dstH;
1570  c->srcFormat = srcFormat;
1571  c->dstFormat = dstFormat;
1572 
1573  if (param) {
1574  c->param[0] = param[0];
1575  c->param[1] = param[1];
1576  }
1577 
1578  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1579  sws_freeContext(c);
1580  return NULL;
1581  }
1582 
1583  return c;
1584 }
1585 
1586 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1587  float lumaSharpen, float chromaSharpen,
1588  float chromaHShift, float chromaVShift,
1589  int verbose)
1590 {
1591  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1592  if (!filter)
1593  return NULL;
1594 
1595  if (lumaGBlur != 0.0) {
1596  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1597  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1598  } else {
1599  filter->lumH = sws_getIdentityVec();
1600  filter->lumV = sws_getIdentityVec();
1601  }
1602 
1603  if (chromaGBlur != 0.0) {
1604  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1605  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1606  } else {
1607  filter->chrH = sws_getIdentityVec();
1608  filter->chrV = sws_getIdentityVec();
1609  }
1610 
1611  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV) {
1612  sws_freeVec(filter->lumH);
1613  sws_freeVec(filter->lumV);
1614  sws_freeVec(filter->chrH);
1615  sws_freeVec(filter->chrV);
1616  av_freep(&filter);
1617  return NULL;
1618  }
1619 
1620  if (chromaSharpen != 0.0) {
1621  SwsVector *id = sws_getIdentityVec();
1622  sws_scaleVec(filter->chrH, -chromaSharpen);
1623  sws_scaleVec(filter->chrV, -chromaSharpen);
1624  sws_addVec(filter->chrH, id);
1625  sws_addVec(filter->chrV, id);
1626  sws_freeVec(id);
1627  }
1628 
1629  if (lumaSharpen != 0.0) {
1630  SwsVector *id = sws_getIdentityVec();
1631  sws_scaleVec(filter->lumH, -lumaSharpen);
1632  sws_scaleVec(filter->lumV, -lumaSharpen);
1633  sws_addVec(filter->lumH, id);
1634  sws_addVec(filter->lumV, id);
1635  sws_freeVec(id);
1636  }
1637 
1638  if (chromaHShift != 0.0)
1639  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1640 
1641  if (chromaVShift != 0.0)
1642  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1643 
1644  sws_normalizeVec(filter->chrH, 1.0);
1645  sws_normalizeVec(filter->chrV, 1.0);
1646  sws_normalizeVec(filter->lumH, 1.0);
1647  sws_normalizeVec(filter->lumV, 1.0);
1648 
1649  if (verbose)
1650  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1651  if (verbose)
1652  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1653 
1654  return filter;
1655 }
1656 
1658 {
1659  SwsVector *vec;
1660 
1661  if(length <= 0 || length > INT_MAX/ sizeof(double))
1662  return NULL;
1663 
1664  vec = av_malloc(sizeof(SwsVector));
1665  if (!vec)
1666  return NULL;
1667  vec->length = length;
1668  vec->coeff = av_malloc(sizeof(double) * length);
1669  if (!vec->coeff)
1670  av_freep(&vec);
1671  return vec;
1672 }
1673 
1674 SwsVector *sws_getGaussianVec(double variance, double quality)
1675 {
1676  const int length = (int)(variance * quality + 0.5) | 1;
1677  int i;
1678  double middle = (length - 1) * 0.5;
1679  SwsVector *vec;
1680 
1681  if(variance < 0 || quality < 0)
1682  return NULL;
1683 
1684  vec = sws_allocVec(length);
1685 
1686  if (!vec)
1687  return NULL;
1688 
1689  for (i = 0; i < length; i++) {
1690  double dist = i - middle;
1691  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
1692  sqrt(2 * variance * M_PI);
1693  }
1694 
1695  sws_normalizeVec(vec, 1.0);
1696 
1697  return vec;
1698 }
1699 
1701 {
1702  int i;
1703  SwsVector *vec = sws_allocVec(length);
1704 
1705  if (!vec)
1706  return NULL;
1707 
1708  for (i = 0; i < length; i++)
1709  vec->coeff[i] = c;
1710 
1711  return vec;
1712 }
1713 
1715 {
1716  return sws_getConstVec(1.0, 1);
1717 }
1718 
1719 static double sws_dcVec(SwsVector *a)
1720 {
1721  int i;
1722  double sum = 0;
1723 
1724  for (i = 0; i < a->length; i++)
1725  sum += a->coeff[i];
1726 
1727  return sum;
1728 }
1729 
1730 void sws_scaleVec(SwsVector *a, double scalar)
1731 {
1732  int i;
1733 
1734  for (i = 0; i < a->length; i++)
1735  a->coeff[i] *= scalar;
1736 }
1737 
1739 {
1740  sws_scaleVec(a, height / sws_dcVec(a));
1741 }
1742 
1744 {
1745  int length = a->length + b->length - 1;
1746  int i, j;
1747  SwsVector *vec = sws_getConstVec(0.0, length);
1748 
1749  if (!vec)
1750  return NULL;
1751 
1752  for (i = 0; i < a->length; i++) {
1753  for (j = 0; j < b->length; j++) {
1754  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
1755  }
1756  }
1757 
1758  return vec;
1759 }
1760 
1762 {
1763  int length = FFMAX(a->length, b->length);
1764  int i;
1765  SwsVector *vec = sws_getConstVec(0.0, length);
1766 
1767  if (!vec)
1768  return NULL;
1769 
1770  for (i = 0; i < a->length; i++)
1771  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1772  for (i = 0; i < b->length; i++)
1773  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
1774 
1775  return vec;
1776 }
1777 
1779 {
1780  int length = FFMAX(a->length, b->length);
1781  int i;
1782  SwsVector *vec = sws_getConstVec(0.0, length);
1783 
1784  if (!vec)
1785  return NULL;
1786 
1787  for (i = 0; i < a->length; i++)
1788  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1789  for (i = 0; i < b->length; i++)
1790  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
1791 
1792  return vec;
1793 }
1794 
1795 /* shift left / or right if "shift" is negative */
1797 {
1798  int length = a->length + FFABS(shift) * 2;
1799  int i;
1800  SwsVector *vec = sws_getConstVec(0.0, length);
1801 
1802  if (!vec)
1803  return NULL;
1804 
1805  for (i = 0; i < a->length; i++) {
1806  vec->coeff[i + (length - 1) / 2 -
1807  (a->length - 1) / 2 - shift] = a->coeff[i];
1808  }
1809 
1810  return vec;
1811 }
1812 
1814 {
1815  SwsVector *shifted = sws_getShiftedVec(a, shift);
1816  av_free(a->coeff);
1817  a->coeff = shifted->coeff;
1818  a->length = shifted->length;
1819  av_free(shifted);
1820 }
1821 
1823 {
1824  SwsVector *sum = sws_sumVec(a, b);
1825  av_free(a->coeff);
1826  a->coeff = sum->coeff;
1827  a->length = sum->length;
1828  av_free(sum);
1829 }
1830 
1832 {
1833  SwsVector *diff = sws_diffVec(a, b);
1834  av_free(a->coeff);
1835  a->coeff = diff->coeff;
1836  a->length = diff->length;
1837  av_free(diff);
1838 }
1839 
1841 {
1842  SwsVector *conv = sws_getConvVec(a, b);
1843  av_free(a->coeff);
1844  a->coeff = conv->coeff;
1845  a->length = conv->length;
1846  av_free(conv);
1847 }
1848 
1850 {
1851  SwsVector *vec = sws_allocVec(a->length);
1852 
1853  if (!vec)
1854  return NULL;
1855 
1856  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
1857 
1858  return vec;
1859 }
1860 
1861 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1862 {
1863  int i;
1864  double max = 0;
1865  double min = 0;
1866  double range;
1867 
1868  for (i = 0; i < a->length; i++)
1869  if (a->coeff[i] > max)
1870  max = a->coeff[i];
1871 
1872  for (i = 0; i < a->length; i++)
1873  if (a->coeff[i] < min)
1874  min = a->coeff[i];
1875 
1876  range = max - min;
1877 
1878  for (i = 0; i < a->length; i++) {
1879  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
1880  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1881  for (; x > 0; x--)
1882  av_log(log_ctx, log_level, " ");
1883  av_log(log_ctx, log_level, "|\n");
1884  }
1885 }
1886 
1888 {
1889  if (!a)
1890  return;
1891  av_freep(&a->coeff);
1892  a->length = 0;
1893  av_free(a);
1894 }
1895 
1897 {
1898  if (!filter)
1899  return;
1900 
1901  sws_freeVec(filter->lumH);
1902  sws_freeVec(filter->lumV);
1903  sws_freeVec(filter->chrH);
1904  sws_freeVec(filter->chrV);
1905  av_free(filter);
1906 }
1907 
1909 {
1910  int i;
1911  if (!c)
1912  return;
1913 
1914  if (c->lumPixBuf) {
1915  for (i = 0; i < c->vLumBufSize; i++)
1916  av_freep(&c->lumPixBuf[i]);
1917  av_freep(&c->lumPixBuf);
1918  }
1919 
1920  if (c->chrUPixBuf) {
1921  for (i = 0; i < c->vChrBufSize; i++)
1922  av_freep(&c->chrUPixBuf[i]);
1923  av_freep(&c->chrUPixBuf);
1924  av_freep(&c->chrVPixBuf);
1925  }
1926 
1927  if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1928  for (i = 0; i < c->vLumBufSize; i++)
1929  av_freep(&c->alpPixBuf[i]);
1930  av_freep(&c->alpPixBuf);
1931  }
1932 
1933  for (i = 0; i < 4; i++)
1934  av_freep(&c->dither_error[i]);
1935 
1936  av_freep(&c->vLumFilter);
1937  av_freep(&c->vChrFilter);
1938  av_freep(&c->hLumFilter);
1939  av_freep(&c->hChrFilter);
1940 #if HAVE_ALTIVEC
1941  av_freep(&c->vYCoeffsBank);
1942  av_freep(&c->vCCoeffsBank);
1943 #endif
1944 
1945  av_freep(&c->vLumFilterPos);
1946  av_freep(&c->vChrFilterPos);
1947  av_freep(&c->hLumFilterPos);
1948  av_freep(&c->hChrFilterPos);
1949 
1950 #if HAVE_MMX_INLINE
1951 #if USE_MMAP
1952  if (c->lumMmxextFilterCode)
1954  if (c->chrMmxextFilterCode)
1956 #elif HAVE_VIRTUALALLOC
1957  if (c->lumMmxextFilterCode)
1958  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
1959  if (c->chrMmxextFilterCode)
1960  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
1961 #else
1964 #endif
1967 #endif /* HAVE_MMX_INLINE */
1968 
1969  av_freep(&c->yuvTable);
1971 
1974  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
1975  av_freep(&c->cascaded_tmp[0]);
1976 
1977  av_free(c);
1978 }
1979 
1980 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
1981  int srcH, enum AVPixelFormat srcFormat,
1982  int dstW, int dstH,
1983  enum AVPixelFormat dstFormat, int flags,
1984  SwsFilter *srcFilter,
1985  SwsFilter *dstFilter,
1986  const double *param)
1987 {
1988  static const double default_param[2] = { SWS_PARAM_DEFAULT,
1990  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
1991  src_v_chr_pos = -513, dst_v_chr_pos = -513;
1992 
1993  if (!param)
1994  param = default_param;
1995 
1996  if (context &&
1997  (context->srcW != srcW ||
1998  context->srcH != srcH ||
1999  context->srcFormat != srcFormat ||
2000  context->dstW != dstW ||
2001  context->dstH != dstH ||
2002  context->dstFormat != dstFormat ||
2003  context->flags != flags ||
2004  context->param[0] != param[0] ||
2005  context->param[1] != param[1])) {
2006 
2007  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2008  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2009  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2010  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2011  sws_freeContext(context);
2012  context = NULL;
2013  }
2014 
2015  if (!context) {
2016  if (!(context = sws_alloc_context()))
2017  return NULL;
2018  context->srcW = srcW;
2019  context->srcH = srcH;
2020  context->srcFormat = srcFormat;
2021  context->dstW = dstW;
2022  context->dstH = dstH;
2023  context->dstFormat = dstFormat;
2024  context->flags = flags;
2025  context->param[0] = param[0];
2026  context->param[1] = param[1];
2027 
2028  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2029  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2030  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2031  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2032 
2033  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2034  sws_freeContext(context);
2035  return NULL;
2036  }
2037  }
2038  return context;
2039 }