[FFmpeg-cvslog] r19376 - in trunk/libavcodec: aaccoder.c aacenc.c aacenc.h aacpsy.c psymodel.c psymodel.h

alexc subversion
Wed Jul 8 22:36:45 CEST 2009


Author: alexc
Date: Wed Jul  8 22:36:45 2009
New Revision: 19376

Log:
Cosmetics: Pretty print the AAC encoder.

Modified:
   trunk/libavcodec/aaccoder.c
   trunk/libavcodec/aacenc.c
   trunk/libavcodec/aacenc.h
   trunk/libavcodec/aacpsy.c
   trunk/libavcodec/psymodel.c
   trunk/libavcodec/psymodel.h

Modified: trunk/libavcodec/aaccoder.c
==============================================================================
--- trunk/libavcodec/aaccoder.c	Wed Jul  8 22:01:31 2009	(r19375)
+++ trunk/libavcodec/aaccoder.c	Wed Jul  8 22:36:45 2009	(r19376)
@@ -119,18 +119,18 @@ static float quantize_band_cost(struct A
     int offs[4];
 #endif /* USE_REALLY_FULL_SEARCH */
 
-    if(!cb){
-        for(i = 0; i < size; i++)
+    if (!cb) {
+        for (i = 0; i < size; i++)
             cost += in[i]*in[i]*lambda;
         return cost;
     }
 #ifndef USE_REALLY_FULL_SEARCH
     offs[0] = 1;
-    for(i = 1; i < dim; i++)
+    for (i = 1; i < dim; i++)
         offs[i] = offs[i-1]*range;
     quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
 #endif /* USE_REALLY_FULL_SEARCH */
-    for(i = 0; i < size; i += dim){
+    for (i = 0; i < size; i += dim) {
         float mincost;
         int minidx = 0;
         int minbits = 0;
@@ -138,69 +138,69 @@ static float quantize_band_cost(struct A
 #ifndef USE_REALLY_FULL_SEARCH
         int (*quants)[2] = &s->qcoefs[i];
         mincost = 0.0f;
-        for(j = 0; j < dim; j++){
+        for (j = 0; j < dim; j++) {
             mincost += in[i+j]*in[i+j]*lambda;
         }
         minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
         minbits = ff_aac_spectral_bits[cb-1][minidx];
         mincost += minbits;
-        for(j = 0; j < (1<<dim); j++){
+        for (j = 0; j < (1<<dim); j++) {
             float rd = 0.0f;
             int curbits;
             int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
             int same = 0;
-            for(k = 0; k < dim; k++){
-                if((j & (1 << k)) && quants[k][0] == quants[k][1]){
+            for (k = 0; k < dim; k++) {
+                if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
                     same = 1;
                     break;
                 }
             }
-            if(same)
+            if (same)
                 continue;
-            for(k = 0; k < dim; k++)
+            for (k = 0; k < dim; k++)
                 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
             curbits = ff_aac_spectral_bits[cb-1][curidx];
             vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
 #else
         mincost = INFINITY;
         vec = ff_aac_codebook_vectors[cb-1];
-        for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
+        for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
             float rd = 0.0f;
             int curbits = ff_aac_spectral_bits[cb-1][j];
 #endif /* USE_REALLY_FULL_SEARCH */
-            if(IS_CODEBOOK_UNSIGNED(cb)){
-                for(k = 0; k < dim; k++){
+            if (IS_CODEBOOK_UNSIGNED(cb)) {
+                for (k = 0; k < dim; k++) {
                     float t = fabsf(in[i+k]);
                     float di;
                     //do not code with escape sequence small values
-                    if(vec[k] == 64.0f && t < 39.0f*IQ){
+                    if (vec[k] == 64.0f && t < 39.0f*IQ) {
                         rd = INFINITY;
                         break;
                     }
-                    if(vec[k] == 64.0f){//FIXME: slow
+                    if (vec[k] == 64.0f) {//FIXME: slow
                         if (t >= CLIPPED_ESCAPE) {
                             di = t - CLIPPED_ESCAPE;
                             curbits += 21;
-                        }else{
+                        } else {
                             int c = av_clip(quant(t, Q), 0, 8191);
                             di = t - c*cbrt(c)*IQ;
                             curbits += av_log2(c)*2 - 4 + 1;
                         }
-                    }else{
+                    } else {
                         di = t - vec[k]*IQ;
                     }
-                    if(vec[k] != 0.0f)
+                    if (vec[k] != 0.0f)
                         curbits++;
                     rd += di*di*lambda;
                 }
-            }else{
-                for(k = 0; k < dim; k++){
+            } else {
+                for (k = 0; k < dim; k++) {
                     float di = in[i+k] - vec[k]*IQ;
                     rd += di*di*lambda;
                 }
             }
             rd += curbits;
-            if(rd < mincost){
+            if (rd < mincost) {
                 mincost = rd;
                 minidx = j;
                 minbits = curbits;
@@ -208,11 +208,11 @@ static float quantize_band_cost(struct A
         }
         cost += mincost;
         resbits += minbits;
-        if(cost >= uplim)
+        if (cost >= uplim)
             return uplim;
     }
 
-    if(bits)
+    if (bits)
         *bits = resbits;
     return cost;
 }
@@ -234,17 +234,17 @@ static void quantize_and_encode_band(str
 #endif /* USE_REALLY_FULL_SEARCH */
 
 //START_TIMER
-    if(!cb)
+    if (!cb)
         return;
 
 #ifndef USE_REALLY_FULL_SEARCH
     offs[0] = 1;
-    for(i = 1; i < dim; i++)
+    for (i = 1; i < dim; i++)
         offs[i] = offs[i-1]*range;
     abs_pow34_v(scaled, in, size);
     quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
 #endif /* USE_REALLY_FULL_SEARCH */
-    for(i = 0; i < size; i += dim){
+    for (i = 0; i < size; i += dim) {
         float mincost;
         int minidx = 0;
         int minbits = 0;
@@ -252,83 +252,83 @@ static void quantize_and_encode_band(str
 #ifndef USE_REALLY_FULL_SEARCH
         int (*quants)[2] = &s->qcoefs[i];
         mincost = 0.0f;
-        for(j = 0; j < dim; j++){
+        for (j = 0; j < dim; j++) {
             mincost += in[i+j]*in[i+j]*lambda;
         }
         minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
         minbits = ff_aac_spectral_bits[cb-1][minidx];
         mincost += minbits;
-        for(j = 0; j < (1<<dim); j++){
+        for (j = 0; j < (1<<dim); j++) {
             float rd = 0.0f;
             int curbits;
             int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
             int same = 0;
-            for(k = 0; k < dim; k++){
-                if((j & (1 << k)) && quants[k][0] == quants[k][1]){
+            for (k = 0; k < dim; k++) {
+                if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
                     same = 1;
                     break;
                 }
             }
-            if(same)
+            if (same)
                 continue;
-            for(k = 0; k < dim; k++)
+            for (k = 0; k < dim; k++)
                 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
             curbits = ff_aac_spectral_bits[cb-1][curidx];
             vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
 #else
         vec = ff_aac_codebook_vectors[cb-1];
         mincost = INFINITY;
-        for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
+        for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
             float rd = 0.0f;
             int curbits = ff_aac_spectral_bits[cb-1][j];
             int curidx = j;
 #endif /* USE_REALLY_FULL_SEARCH */
-            if(IS_CODEBOOK_UNSIGNED(cb)){
-                for(k = 0; k < dim; k++){
+            if (IS_CODEBOOK_UNSIGNED(cb)) {
+                for (k = 0; k < dim; k++) {
                     float t = fabsf(in[i+k]);
                     float di;
                     //do not code with escape sequence small values
-                    if(vec[k] == 64.0f && t < 39.0f*IQ){
+                    if (vec[k] == 64.0f && t < 39.0f*IQ) {
                         rd = INFINITY;
                         break;
                     }
-                    if(vec[k] == 64.0f){//FIXME: slow
+                    if (vec[k] == 64.0f) {//FIXME: slow
                         if (t >= CLIPPED_ESCAPE) {
                             di = t - CLIPPED_ESCAPE;
                             curbits += 21;
-                        }else{
+                        } else {
                             int c = av_clip(quant(t, Q), 0, 8191);
                             di = t - c*cbrt(c)*IQ;
                             curbits += av_log2(c)*2 - 4 + 1;
                         }
-                    }else{
+                    } else {
                         di = t - vec[k]*IQ;
                     }
-                    if(vec[k] != 0.0f)
+                    if (vec[k] != 0.0f)
                         curbits++;
                     rd += di*di*lambda;
                 }
-            }else{
-                for(k = 0; k < dim; k++){
+            } else {
+                for (k = 0; k < dim; k++) {
                     float di = in[i+k] - vec[k]*IQ;
                     rd += di*di*lambda;
                 }
             }
             rd += curbits;
-            if(rd < mincost){
+            if (rd < mincost) {
                 mincost = rd;
                 minidx = curidx;
                 minbits = curbits;
             }
         }
         put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
-        if(IS_CODEBOOK_UNSIGNED(cb))
-            for(j = 0; j < dim; j++)
-                if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
+        if (IS_CODEBOOK_UNSIGNED(cb))
+            for (j = 0; j < dim; j++)
+                if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
                     put_bits(pb, 1, in[i+j] < 0.0f);
-        if(cb == ESC_BT){
-            for(j = 0; j < 2; j++){
-                if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){
+        if (cb == ESC_BT) {
+            for (j = 0; j < 2; j++) {
+                if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
                     int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
                     int len = av_log2(coef);
 
@@ -370,29 +370,29 @@ static void encode_window_bands_info(AAC
 
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
     start = win*128;
-    for(cb = 0; cb < 12; cb++){
+    for (cb = 0; cb < 12; cb++) {
         path[0][cb].cost = 0.0f;
         path[0][cb].prev_idx = -1;
         path[0][cb].run = 0;
     }
-    for(swb = 0; swb < max_sfb; swb++){
+    for (swb = 0; swb < max_sfb; swb++) {
         start2 = start;
         size = sce->ics.swb_sizes[swb];
-        if(sce->zeroes[win*16 + swb]){
-            for(cb = 0; cb < 12; cb++){
+        if (sce->zeroes[win*16 + swb]) {
+            for (cb = 0; cb < 12; cb++) {
                 path[swb+1][cb].prev_idx = cb;
                 path[swb+1][cb].cost = path[swb][cb].cost;
                 path[swb+1][cb].run = path[swb][cb].run + 1;
             }
-        }else{
+        } else {
             float minrd = next_minrd;
             int mincb = next_mincb;
             next_minrd = INFINITY;
             next_mincb = 0;
-            for(cb = 0; cb < 12; cb++){
+            for (cb = 0; cb < 12; cb++) {
                 float cost_stay_here, cost_get_here;
                 float rd = 0.0f;
-                for(w = 0; w < group_len; w++){
+                for (w = 0; w < group_len; w++) {
                     FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
                                              s->scoefs + start + w*128, size,
@@ -401,7 +401,7 @@ static void encode_window_bands_info(AAC
                 }
                 cost_stay_here = path[swb][cb].cost + rd;
                 cost_get_here  = minrd              + rd + run_bits + 4;
-                if(   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
+                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
                     cost_stay_here += run_bits;
                 if (cost_get_here < cost_stay_here) {
@@ -425,12 +425,12 @@ static void encode_window_bands_info(AAC
     //convert resulting path from backward-linked list
     stack_len = 0;
     idx = 0;
-    for(cb = 1; cb < 12; cb++){
-        if(path[max_sfb][cb].cost < path[max_sfb][idx].cost)
+    for (cb = 1; cb < 12; cb++) {
+        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
             idx = cb;
     }
     ppos = max_sfb;
-    while(ppos > 0){
+    while(ppos > 0) {
         cb = idx;
         stackrun[stack_len] = path[ppos][cb].run;
         stackcb [stack_len] = cb;
@@ -440,16 +440,16 @@ static void encode_window_bands_info(AAC
     }
     //perform actual band info encoding
     start = 0;
-    for(i = stack_len - 1; i >= 0; i--){
+    for (i = stack_len - 1; i >= 0; i--) {
         put_bits(&s->pb, 4, stackcb[i]);
         count = stackrun[i];
         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
         //XXX: memset when band_type is also uint8_t
-        for(j = 0; j < count; j++){
+        for (j = 0; j < count; j++) {
             sce->band_type[win*16 + start] =  stackcb[i];
             start++;
         }
-        while(count >= run_esc){
+        while(count >= run_esc) {
             put_bits(&s->pb, run_bits, run_esc);
             count -= run_esc;
         }
@@ -482,13 +482,13 @@ static void search_for_quantizers_anmr(A
     int minq;
     float mincost;
 
-    for(i = 0; i < 256; i++){
+    for (i = 0; i < 256; i++) {
         paths[i].cost = 0.0f;
         paths[i].prev = -1;
         paths[i].min_val = i;
         paths[i].max_val = i;
     }
-    for(i = 256; i < 256*121; i++){
+    for (i = 256; i < 256*121; i++) {
         paths[i].cost = INFINITY;
         paths[i].prev = -2;
         paths[i].min_val = INT_MAX;
@@ -496,9 +496,9 @@ static void search_for_quantizers_anmr(A
     }
     idx = 256;
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         start = w*128;
-        for(g = 0; g < sce->ics.num_swb; g++){
+        for (g = 0; g < sce->ics.num_swb; g++) {
             const float *coefs = sce->coeffs + start;
             float qmin, qmax;
             int nz = 0;
@@ -506,53 +506,53 @@ static void search_for_quantizers_anmr(A
             bandaddr[idx >> 8] = w*16+g;
             qmin = INT_MAX;
             qmax = 0.0f;
-            for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
-                if(band->energy <= band->threshold || band->threshold == 0.0f){
+                if (band->energy <= band->threshold || band->threshold == 0.0f) {
                     sce->zeroes[(w+w2)*16+g] = 1;
                     continue;
                 }
                 sce->zeroes[(w+w2)*16+g] = 0;
                 nz = 1;
-                for(i = 0; i < sce->ics.swb_sizes[g]; i++){
+                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
                     float t = fabsf(coefs[w2*128+i]);
-                    if(t > 0.0f) qmin = fminf(qmin, t);
+                    if (t > 0.0f) qmin = fminf(qmin, t);
                     qmax = fmaxf(qmax, t);
                 }
             }
-            if(nz){
+            if (nz) {
                 int minscale, maxscale;
                 float minrd = INFINITY;
                 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
                 minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
                 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
                 maxscale = av_clip_uint8(log2(qmax)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
-                for(q = minscale; q < maxscale; q++){
+                for (q = minscale; q < maxscale; q++) {
                     float dists[12], dist;
                     memset(dists, 0, sizeof(dists));
-                    for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                         FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
                         int cb;
-                        for(cb = 0; cb <= ESC_BT; cb++){
+                        for (cb = 0; cb <= ESC_BT; cb++) {
                             dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
                                                             q, cb, lambda / band->threshold, INFINITY, NULL);
                         }
                     }
                     dist = dists[0];
-                    for(i = 1; i <= ESC_BT; i++)
+                    for (i = 1; i <= ESC_BT; i++)
                         dist = fminf(dist, dists[i]);
                     minrd = fminf(minrd, dist);
 
-                    for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
+                    for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
                         float cost;
                         int minv, maxv;
-                        if(isinf(paths[idx - 256 + i].cost))
+                        if (isinf(paths[idx - 256 + i].cost))
                             continue;
                         cost = paths[idx - 256 + i].cost + dist
                                + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
                         minv = FFMIN(paths[idx - 256 + i].min_val, q);
                         maxv = FFMAX(paths[idx - 256 + i].max_val, q);
-                        if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
+                        if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
                             paths[idx + q].cost = cost;
                             paths[idx + q].prev = idx - 256 + i;
                             paths[idx + q].min_val = minv;
@@ -560,24 +560,24 @@ static void search_for_quantizers_anmr(A
                         }
                     }
                 }
-            }else{
-                for(q = 0; q < 256; q++){
-                    if(!isinf(paths[idx - 256 + q].cost)){
+            } else {
+                for (q = 0; q < 256; q++) {
+                    if (!isinf(paths[idx - 256 + q].cost)) {
                         paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
                         paths[idx + q].prev = idx - 256 + q;
                         paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
                         paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
                         continue;
                     }
-                    for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
+                    for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
                         float cost;
                         int minv, maxv;
-                        if(isinf(paths[idx - 256 + i].cost))
+                        if (isinf(paths[idx - 256 + i].cost))
                             continue;
                         cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
                         minv = FFMIN(paths[idx - 256 + i].min_val, q);
                         maxv = FFMAX(paths[idx - 256 + i].max_val, q);
-                        if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
+                        if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
                             paths[idx + q].cost = cost;
                             paths[idx + q].prev = idx - 256 + i;
                             paths[idx + q].min_val = minv;
@@ -594,20 +594,20 @@ static void search_for_quantizers_anmr(A
     idx -= 256;
     mincost = paths[idx].cost;
     minq = idx;
-    for(i = 1; i < 256; i++){
-        if(paths[idx + i].cost < mincost){
+    for (i = 1; i < 256; i++) {
+        if (paths[idx + i].cost < mincost) {
             mincost = paths[idx + i].cost;
             minq = idx + i;
         }
     }
-    while(minq >= 256){
+    while(minq >= 256) {
         sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
         minq = paths[minq].prev;
     }
     //set the same quantizers inside window groups
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
-        for(g = 0;  g < sce->ics.num_swb; g++)
-            for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+        for (g = 0;  g < sce->ics.num_swb; g++)
+            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
 }
 
@@ -628,14 +628,14 @@ static void search_for_quantizers_twoloo
     //XXX: some heuristic to determine initial quantizers will reduce search time
     memset(dists, 0, sizeof(dists));
     //determine zero bands and upper limits
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
-        for(g = 0;  g < sce->ics.num_swb; g++){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+        for (g = 0;  g < sce->ics.num_swb; g++) {
             int nz = 0;
             float uplim = 0.0f;
-            for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
                 uplim += band->threshold;
-                if(band->energy <= band->threshold || band->threshold == 0.0f){
+                if (band->energy <= band->threshold || band->threshold == 0.0f) {
                     sce->zeroes[(w+w2)*16+g] = 1;
                     continue;
                 }
@@ -643,14 +643,14 @@ static void search_for_quantizers_twoloo
             }
             uplims[w*16+g] = uplim *512;
             sce->zeroes[w*16+g] = !nz;
-            if(nz)
+            if (nz)
                 minthr = fminf(minthr, uplim);
             allz = FFMAX(allz, nz);
         }
     }
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
-        for(g = 0;  g < sce->ics.num_swb; g++){
-            if(sce->zeroes[w*16+g]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+        for (g = 0;  g < sce->ics.num_swb; g++) {
+            if (sce->zeroes[w*16+g]) {
                 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
                 continue;
             }
@@ -658,7 +658,7 @@ static void search_for_quantizers_twoloo
         }
     }
 
-    if(!allz)
+    if (!allz)
         return;
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
     //perform two-loop search
@@ -672,9 +672,9 @@ static void search_for_quantizers_twoloo
             int prev = -1;
             tbits = 0;
             fflag = 0;
-            for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
                 start = w*128;
-                for(g = 0;  g < sce->ics.num_swb; g++){
+                for (g = 0;  g < sce->ics.num_swb; g++) {
                     const float *coefs = sce->coeffs + start;
                     const float *scaled = s->scoefs + start;
                     int bits = 0;
@@ -682,13 +682,13 @@ static void search_for_quantizers_twoloo
                     float mindist = INFINITY;
                     int minbits = 0;
 
-                    if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
+                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
                         continue;
                     minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
-                    for(cb = 0; cb <= ESC_BT; cb++){
+                    for (cb = 0; cb <= ESC_BT; cb++) {
                         float dist = 0.0f;
                         int bb = 0;
-                        for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                             int b;
                             dist += quantize_band_cost(s, coefs + w2*128,
                                                        scaled + w2*128,
@@ -700,14 +700,14 @@ static void search_for_quantizers_twoloo
                                                        &b);
                             bb += b;
                         }
-                        if(dist < mindist){
+                        if (dist < mindist) {
                             mindist = dist;
                             minbits = bb;
                         }
                     }
                     dists[w*16+g] = mindist - minbits;
                     bits = minbits;
-                    if(prev != -1){
+                    if (prev != -1) {
                         bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
                     }
                     tbits += bits;
@@ -715,36 +715,36 @@ static void search_for_quantizers_twoloo
                     prev = sce->sf_idx[w*16+g];
                 }
             }
-            if(tbits > destbits){
-                for(i = 0; i < 128; i++){
-                    if(sce->sf_idx[i] < 218 - qstep){
+            if (tbits > destbits) {
+                for (i = 0; i < 128; i++) {
+                    if (sce->sf_idx[i] < 218 - qstep) {
                         sce->sf_idx[i] += qstep;
                     }
                 }
-            }else{
-                for(i = 0; i < 128; i++){
-                    if(sce->sf_idx[i] > 60 - qstep){
+            } else {
+                for (i = 0; i < 128; i++) {
+                    if (sce->sf_idx[i] > 60 - qstep) {
                         sce->sf_idx[i] -= qstep;
                     }
                 }
             }
             qstep >>= 1;
-            if(!qstep && tbits > destbits*1.02)
+            if (!qstep && tbits > destbits*1.02)
                 qstep = 1;
-            if(sce->sf_idx[0] >= 217)break;
+            if (sce->sf_idx[0] >= 217)break;
         }while(qstep);
 
         fflag = 0;
         minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
-        for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
             start = w*128;
-            for(g = 0; g < sce->ics.num_swb; g++){
+            for (g = 0; g < sce->ics.num_swb; g++) {
                 int prevsc = sce->sf_idx[w*16+g];
-                if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
+                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
                     sce->sf_idx[w*16+g]--;
                 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
                 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
-                if(sce->sf_idx[w*16+g] != prevsc)
+                if (sce->sf_idx[w*16+g] != prevsc)
                     fflag = 1;
             }
         }
@@ -761,29 +761,29 @@ static void search_for_quantizers_faac(A
     float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
     int last = 0, lastband = 0, curband = 0;
     float avg_energy = 0.0;
-    if(sce->ics.num_windows == 1){
+    if (sce->ics.num_windows == 1) {
         start = 0;
-        for(i = 0; i < 1024; i++){
-            if(i - start >= sce->ics.swb_sizes[curband]){
+        for (i = 0; i < 1024; i++) {
+            if (i - start >= sce->ics.swb_sizes[curband]) {
                 start += sce->ics.swb_sizes[curband];
                 curband++;
             }
-            if(sce->coeffs[i]){
+            if (sce->coeffs[i]) {
                 avg_energy += sce->coeffs[i] * sce->coeffs[i];
                 last = i;
                 lastband = curband;
             }
         }
-    }else{
-        for(w = 0; w < 8; w++){
+    } else {
+        for (w = 0; w < 8; w++) {
             const float *coeffs = sce->coeffs + w*128;
             start = 0;
-            for(i = 0; i < 128; i++){
-                if(i - start >= sce->ics.swb_sizes[curband]){
+            for (i = 0; i < 128; i++) {
+                if (i - start >= sce->ics.swb_sizes[curband]) {
                     start += sce->ics.swb_sizes[curband];
                     curband++;
                 }
-                if(coeffs[i]){
+                if (coeffs[i]) {
                     avg_energy += coeffs[i] * coeffs[i];
                     last = FFMAX(last, i);
                     lastband = FFMAX(lastband, curband);
@@ -793,41 +793,41 @@ static void search_for_quantizers_faac(A
     }
     last++;
     avg_energy /= last;
-    if(avg_energy == 0.0f){
-        for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
+    if (avg_energy == 0.0f) {
+        for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
             sce->sf_idx[i] = SCALE_ONE_POS;
         return;
     }
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         start = w*128;
-        for(g = 0; g < sce->ics.num_swb; g++){
+        for (g = 0; g < sce->ics.num_swb; g++) {
             float *coefs = sce->coeffs + start;
             const int size = sce->ics.swb_sizes[g];
             int start2 = start, end2 = start + size, peakpos = start;
             float maxval = -1, thr = 0.0f, t;
             maxq[w*16+g] = 0.0f;
-            if(g > lastband){
+            if (g > lastband) {
                 maxq[w*16+g] = 0.0f;
                 start += size;
-                for(w2 = 0; w2 < sce->ics.group_len[w]; w2++)
+                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
                     memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
                 continue;
             }
-            for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
-                for(i = 0; i < size; i++){
+            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+                for (i = 0; i < size; i++) {
                     float t = coefs[w2*128+i]*coefs[w2*128+i];
                     maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
                     thr += t;
-                    if(sce->ics.num_windows == 1 && maxval < t){
+                    if (sce->ics.num_windows == 1 && maxval < t) {
                         maxval = t;
                         peakpos = start+i;
                     }
                 }
             }
-            if(sce->ics.num_windows == 1){
+            if (sce->ics.num_windows == 1) {
                 start2 = FFMAX(peakpos - 2, start2);
                 end2   = FFMIN(peakpos + 3, end2);
-            }else{
+            } else {
                 start2 -= start;
                 end2   -= start;
             }
@@ -839,16 +839,16 @@ static void search_for_quantizers_faac(A
     }
     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         start = w*128;
-        for(g = 0;  g < sce->ics.num_swb; g++){
+        for (g = 0;  g < sce->ics.num_swb; g++) {
             const float *coefs = sce->coeffs + start;
             const float *scaled = s->scoefs + start;
             const int size = sce->ics.swb_sizes[g];
             int scf, prev_scf, step;
             int min_scf = 0, max_scf = 255;
             float curdiff;
-            if(maxq[w*16+g] < 21.544){
+            if (maxq[w*16+g] < 21.544) {
                 sce->zeroes[w*16+g] = 1;
                 start += size;
                 continue;
@@ -856,11 +856,11 @@ static void search_for_quantizers_faac(A
             sce->zeroes[w*16+g] = 0;
             scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
             step = 16;
-            for(;;){
+            for (;;) {
                 float dist = 0.0f;
                 int quant_max;
 
-                for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                     int b;
                     dist += quantize_band_cost(s, coefs + w2*128,
                                                scaled + w2*128,
@@ -874,24 +874,24 @@ static void search_for_quantizers_faac(A
                 }
                 dist *= 1.0f/512.0f;
                 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
-                if(quant_max >= 8191){ // too much, return to the previous quantizer
+                if (quant_max >= 8191) { // too much, return to the previous quantizer
                     sce->sf_idx[w*16+g] = prev_scf;
                     break;
                 }
                 prev_scf = scf;
                 curdiff = fabsf(dist - uplim[w*16+g]);
-                if(curdiff == 0.0f)
+                if (curdiff == 0.0f)
                     step = 0;
                 else
                     step = fabsf(log2(curdiff));
-                if(dist > uplim[w*16+g])
+                if (dist > uplim[w*16+g])
                     step = -step;
-                if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){
+                if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
                     sce->sf_idx[w*16+g] = scf;
                     break;
                 }
                 scf += step;
-                if(step > 0)
+                if (step > 0)
                     min_scf = scf;
                 else
                     max_scf = scf;
@@ -900,17 +900,17 @@ static void search_for_quantizers_faac(A
         }
     }
     minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
-    for(i = 1; i < 128; i++){
-        if(!sce->sf_idx[i])
+    for (i = 1; i < 128; i++) {
+        if (!sce->sf_idx[i])
             sce->sf_idx[i] = sce->sf_idx[i-1];
         else
             minq = FFMIN(minq, sce->sf_idx[i]);
     }
-    if(minq == INT_MAX) minq = 0;
+    if (minq == INT_MAX) minq = 0;
     minq = FFMIN(minq, SCALE_MAX_POS);
     maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
-    for(i = 126; i >= 0; i--){
-        if(!sce->sf_idx[i])
+    for (i = 126; i >= 0; i--) {
+        if (!sce->sf_idx[i])
             sce->sf_idx[i] = sce->sf_idx[i+1];
         sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
     }
@@ -923,15 +923,15 @@ static void search_for_quantizers_fast(A
     int minq = 255;
 
     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         start = w*128;
-        for(g = 0; g < sce->ics.num_swb; g++){
-            for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+        for (g = 0; g < sce->ics.num_swb; g++) {
+            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
-                if(band->energy <= band->threshold){
+                if (band->energy <= band->threshold) {
                     sce->sf_idx[(w+w2)*16+g] = 218;
                     sce->zeroes[(w+w2)*16+g] = 1;
-                }else{
+                } else {
                     sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
                     sce->zeroes[(w+w2)*16+g] = 0;
                 }
@@ -939,13 +939,13 @@ static void search_for_quantizers_fast(A
             }
         }
     }
-    for(i = 0; i < 128; i++){
+    for (i = 0; i < 128; i++) {
         sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
     }
     //set the same quantizers inside window groups
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
-        for(g = 0;  g < sce->ics.num_swb; g++)
-            for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+        for (g = 0;  g < sce->ics.num_swb; g++)
+            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
 }
 
@@ -956,18 +956,18 @@ static void search_for_ms(AACEncContext 
     float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
     SingleChannelElement *sce0 = &cpe->ch[0];
     SingleChannelElement *sce1 = &cpe->ch[1];
-    if(!cpe->common_window)
+    if (!cpe->common_window)
         return;
-    for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){
-        for(g = 0;  g < sce0->ics.num_swb; g++){
-            if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){
+    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
+        for (g = 0;  g < sce0->ics.num_swb; g++) {
+            if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
                 float dist1 = 0.0f, dist2 = 0.0f;
-                for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){
+                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
                     FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
                     FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
                     float minthr = fminf(band0->threshold, band1->threshold);
                     float maxthr = fmaxf(band0->threshold, band1->threshold);
-                    for(i = 0; i < sce0->ics.swb_sizes[g]; i++){
+                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
                         M[i] = (sce0->coeffs[start+w2*128+i]
                               + sce1->coeffs[start+w2*128+i])*0.5;
                         S[i] =  sce0->coeffs[start+w2*128+i]

Modified: trunk/libavcodec/aacenc.c
==============================================================================
--- trunk/libavcodec/aacenc.c	Wed Jul  8 22:01:31 2009	(r19375)
+++ trunk/libavcodec/aacenc.c	Wed Jul  8 22:36:45 2009	(r19376)
@@ -159,14 +159,14 @@ static av_cold int aac_encode_init(AVCod
 
     avctx->frame_size = 1024;
 
-    for(i = 0; i < 16; i++)
-        if(avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
+    for (i = 0; i < 16; i++)
+        if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
             break;
-    if(i == 16){
+    if (i == 16) {
         av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d\n", avctx->sample_rate);
         return -1;
     }
-    if(avctx->channels > 6){
+    if (avctx->channels > 6) {
         av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", avctx->channels);
         return -1;
     }
@@ -218,35 +218,35 @@ static void apply_window_and_mdct(AVCode
 
     if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
         memcpy(s->output, sce->saved, sizeof(float)*1024);
-        if(sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE){
+        if (sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE) {
             memset(s->output, 0, sizeof(s->output[0]) * 448);
-            for(i = 448; i < 576; i++)
+            for (i = 448; i < 576; i++)
                 s->output[i] = sce->saved[i] * pwindow[i - 448];
-            for(i = 576; i < 704; i++)
+            for (i = 576; i < 704; i++)
                 s->output[i] = sce->saved[i];
         }
-        if(sce->ics.window_sequence[0] != LONG_START_SEQUENCE){
+        if (sce->ics.window_sequence[0] != LONG_START_SEQUENCE) {
             j = channel;
-            for (i = 0; i < 1024; i++, j += avctx->channels){
+            for (i = 0; i < 1024; i++, j += avctx->channels) {
                 s->output[i+1024]         = audio[j] * lwindow[1024 - i - 1];
                 sce->saved[i] = audio[j] * lwindow[i];
             }
-        }else{
+        } else {
             j = channel;
-            for(i = 0; i < 448; i++, j += avctx->channels)
+            for (i = 0; i < 448; i++, j += avctx->channels)
                 s->output[i+1024]         = audio[j];
-            for(i = 448; i < 576; i++, j += avctx->channels)
+            for (i = 448; i < 576; i++, j += avctx->channels)
                 s->output[i+1024]         = audio[j] * swindow[576 - i - 1];
             memset(s->output+1024+576, 0, sizeof(s->output[0]) * 448);
             j = channel;
-            for(i = 0; i < 1024; i++, j += avctx->channels)
+            for (i = 0; i < 1024; i++, j += avctx->channels)
                 sce->saved[i] = audio[j];
         }
         ff_mdct_calc(&s->mdct1024, sce->coeffs, s->output);
-    }else{
+    } else {
         j = channel;
         for (k = 0; k < 1024; k += 128) {
-            for(i = 448 + k; i < 448 + k + 256; i++)
+            for (i = 448 + k; i < 448 + k + 256; i++)
                 s->output[i - 448 - k] = (i < 1024)
                                          ? sce->saved[i]
                                          : audio[channel + (i-1024)*avctx->channels];
@@ -255,7 +255,7 @@ static void apply_window_and_mdct(AVCode
             ff_mdct_calc(&s->mdct128, sce->coeffs + k, s->output);
         }
         j = channel;
-        for(i = 0; i < 1024; i++, j += avctx->channels)
+        for (i = 0; i < 1024; i++, j += avctx->channels)
             sce->saved[i] = audio[j];
     }
 }
@@ -271,12 +271,12 @@ static void put_ics_info(AACEncContext *
     put_bits(&s->pb, 1, 0);                // ics_reserved bit
     put_bits(&s->pb, 2, info->window_sequence[0]);
     put_bits(&s->pb, 1, info->use_kb_window[0]);
-    if(info->window_sequence[0] != EIGHT_SHORT_SEQUENCE){
+    if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
         put_bits(&s->pb, 6, info->max_sfb);
         put_bits(&s->pb, 1, 0);            // no prediction
-    }else{
+    } else {
         put_bits(&s->pb, 4, info->max_sfb);
-        for(w = 1; w < 8; w++){
+        for (w = 1; w < 8; w++) {
             put_bits(&s->pb, 1, !info->group_len[w]);
         }
     }
@@ -291,9 +291,9 @@ static void encode_ms_info(PutBitContext
     int i, w;
 
     put_bits(pb, 2, cpe->ms_mode);
-    if(cpe->ms_mode == 1){
-        for(w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w]){
-            for(i = 0; i < cpe->ch[0].ics.max_sfb; i++)
+    if (cpe->ms_mode == 1) {
+        for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w]) {
+            for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
                 put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
         }
     }
@@ -307,34 +307,34 @@ static void adjust_frame_information(AAC
     int i, w, w2, g, ch;
     int start, sum, maxsfb, cmaxsfb;
 
-    for(ch = 0; ch < chans; ch++){
+    for (ch = 0; ch < chans; ch++) {
         IndividualChannelStream *ics = &cpe->ch[ch].ics;
         start = 0;
         maxsfb = 0;
         cpe->ch[ch].pulse.num_pulse = 0;
-        for(w = 0; w < ics->num_windows*16; w += 16){
-            for(g = 0; g < ics->num_swb; g++){
+        for (w = 0; w < ics->num_windows*16; w += 16) {
+            for (g = 0; g < ics->num_swb; g++) {
                 sum = 0;
                 //apply M/S
-                if(!ch && cpe->ms_mask[w + g]){
-                    for(i = 0; i < ics->swb_sizes[g]; i++){
+                if (!ch && cpe->ms_mask[w + g]) {
+                    for (i = 0; i < ics->swb_sizes[g]; i++) {
                         cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0;
                         cpe->ch[1].coeffs[start+i] =  cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i];
                     }
                 }
                 start += ics->swb_sizes[g];
             }
-            for(cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--);
+            for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--);
             maxsfb = FFMAX(maxsfb, cmaxsfb);
         }
         ics->max_sfb = maxsfb;
 
         //adjust zero bands for window groups
-        for(w = 0; w < ics->num_windows; w += ics->group_len[w]){
-            for(g = 0; g < ics->max_sfb; g++){
+        for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
+            for (g = 0; g < ics->max_sfb; g++) {
                 i = 1;
-                for(w2 = w; w2 < w + ics->group_len[w]; w2++){
-                    if(!cpe->ch[ch].zeroes[w2*16 + g]){
+                for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
+                    if (!cpe->ch[ch].zeroes[w2*16 + g]) {
                         i = 0;
                         break;
                     }
@@ -344,16 +344,16 @@ static void adjust_frame_information(AAC
         }
     }
 
-    if(chans > 1 && cpe->common_window){
+    if (chans > 1 && cpe->common_window) {
         IndividualChannelStream *ics0 = &cpe->ch[0].ics;
         IndividualChannelStream *ics1 = &cpe->ch[1].ics;
         int msc = 0;
         ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
         ics1->max_sfb = ics0->max_sfb;
-        for(w = 0; w < ics0->num_windows*16; w += 16)
-            for(i = 0; i < ics0->max_sfb; i++)
-                if(cpe->ms_mask[w+i]) msc++;
-        if(msc == 0 || ics0->max_sfb == 0) cpe->ms_mode = 0;
+        for (w = 0; w < ics0->num_windows*16; w += 16)
+            for (i = 0; i < ics0->max_sfb; i++)
+                if (cpe->ms_mask[w+i]) msc++;
+        if (msc == 0 || ics0->max_sfb == 0) cpe->ms_mode = 0;
         else cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2;
     }
 }
@@ -365,7 +365,7 @@ static void encode_band_info(AACEncConte
 {
     int w;
 
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
     }
 }
@@ -378,11 +378,11 @@ static void encode_scale_factors(AVCodec
     int off = sce->sf_idx[0], diff;
     int i, w;
 
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
-        for(i = 0; i < sce->ics.max_sfb; i++){
-            if(!sce->zeroes[w*16 + i]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+        for (i = 0; i < sce->ics.max_sfb; i++) {
+            if (!sce->zeroes[w*16 + i]) {
                 diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO;
-                if(diff < 0 || diff > 120) av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
+                if (diff < 0 || diff > 120) av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
                 off = sce->sf_idx[w*16 + i];
                 put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
             }
@@ -398,11 +398,11 @@ static void encode_pulses(AACEncContext 
     int i;
 
     put_bits(&s->pb, 1, !!pulse->num_pulse);
-    if(!pulse->num_pulse) return;
+    if (!pulse->num_pulse) return;
 
     put_bits(&s->pb, 2, pulse->num_pulse - 1);
     put_bits(&s->pb, 6, pulse->start);
-    for(i = 0; i < pulse->num_pulse; i++){
+    for (i = 0; i < pulse->num_pulse; i++) {
         put_bits(&s->pb, 5, pulse->pos[i]);
         put_bits(&s->pb, 4, pulse->amp[i]);
     }
@@ -415,14 +415,14 @@ static void encode_spectral_coeffs(AACEn
 {
     int start, i, w, w2;
 
-    for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         start = 0;
-        for(i = 0; i < sce->ics.max_sfb; i++){
-            if(sce->zeroes[w*16 + i]){
+        for (i = 0; i < sce->ics.max_sfb; i++) {
+            if (sce->zeroes[w*16 + i]) {
                 start += sce->ics.swb_sizes[i];
                 continue;
             }
-            for(w2 = w; w2 < w + sce->ics.group_len[w]; w2++){
+            for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
                 s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
                                          sce->ics.swb_sizes[i],
                                          sce->sf_idx[w*16 + i],
@@ -440,7 +440,7 @@ static void encode_spectral_coeffs(AACEn
 static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, int common_window)
 {
     put_bits(&s->pb, 8, sce->sf_idx[0]);
-    if(!common_window) put_ics_info(s, &sce->ics);
+    if (!common_window) put_ics_info(s, &sce->ics);
     encode_band_info(s, sce);
     encode_scale_factors(avctx, s, sce);
     encode_pulses(s, &sce->pulse);
@@ -460,12 +460,12 @@ static void put_bitstream_info(AVCodecCo
     namelen = strlen(name) + 2;
     put_bits(&s->pb, 3, TYPE_FIL);
     put_bits(&s->pb, 4, FFMIN(namelen, 15));
-    if(namelen >= 15)
+    if (namelen >= 15)
         put_bits(&s->pb, 8, namelen - 16);
     put_bits(&s->pb, 4, 0); //extension type - filler
     padbits = 8 - (put_bits_count(&s->pb) & 7);
     align_put_bits(&s->pb);
-    for(i = 0; i < namelen - 2; i++)
+    for (i = 0; i < namelen - 2; i++)
         put_bits(&s->pb, 8, name[i]);
     put_bits(&s->pb, 12 - padbits, 0);
 }
@@ -480,15 +480,15 @@ static int aac_encode_frame(AVCodecConte
     const uint8_t *chan_map = aac_chan_configs[avctx->channels-1];
     int chan_el_counter[4];
 
-    if(s->last_frame)
+    if (s->last_frame)
         return 0;
-    if(data){
-        if(!s->psypp){
+    if (data) {
+        if (!s->psypp) {
             memcpy(s->samples + 1024 * avctx->channels, data, 1024 * avctx->channels * sizeof(s->samples[0]));
-        }else{
+        } else {
             start_ch = 0;
             samples2 = s->samples + 1024 * avctx->channels;
-            for(i = 0; i < chan_map[0]; i++){
+            for (i = 0; i < chan_map[0]; i++) {
                 tag = chan_map[i+1];
                 chans = tag == TYPE_CPE ? 2 : 1;
                 ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch, samples2 + start_ch, start_ch, chans);
@@ -496,26 +496,26 @@ static int aac_encode_frame(AVCodecConte
             }
         }
     }
-    if(!avctx->frame_number){
+    if (!avctx->frame_number) {
         memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0]));
         return 0;
     }
 
     init_put_bits(&s->pb, frame, buf_size*8);
-    if((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT)){
+    if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT)) {
         put_bitstream_info(avctx, s, LIBAVCODEC_IDENT);
     }
     start_ch = 0;
     memset(chan_el_counter, 0, sizeof(chan_el_counter));
-    for(i = 0; i < chan_map[0]; i++){
+    for (i = 0; i < chan_map[0]; i++) {
         FFPsyWindowInfo wi[2];
         tag = chan_map[i+1];
         chans = tag == TYPE_CPE ? 2 : 1;
         cpe = &s->cpe[i];
         samples2 = samples + start_ch;
         la = samples2 + 1024 * avctx->channels + start_ch;
-        if(!data) la = NULL;
-        for(j = 0; j < chans; j++){
+        if (!data) la = NULL;
+        for (j = 0; j < chans; j++) {
             IndividualChannelStream *ics = &cpe->ch[j].ics;
             int k;
             wi[j] = ff_psy_suggest_window(&s->psy, samples2, la, start_ch + j, ics->window_sequence[0]);
@@ -526,7 +526,7 @@ static int aac_encode_frame(AVCodecConte
             ics->num_windows        = wi[j].num_windows;
             ics->swb_sizes          = s->psy.bands    [ics->num_windows == 8];
             ics->num_swb            = s->psy.num_bands[ics->num_windows == 8];
-            for(k = 0; k < ics->num_windows; k++)
+            for (k = 0; k < ics->num_windows; k++)
                 ics->group_len[k] = wi[j].grouping[k];
 
             s->cur_channel = start_ch + j;
@@ -534,31 +534,31 @@ static int aac_encode_frame(AVCodecConte
             s->coder->search_for_quantizers(avctx, s, &cpe->ch[j], s->lambda);
         }
         cpe->common_window = 0;
-        if(chans > 1
+        if (chans > 1
             && wi[0].window_type[0] == wi[1].window_type[0]
-            && wi[0].window_shape   == wi[1].window_shape){
+            && wi[0].window_shape   == wi[1].window_shape) {
 
             cpe->common_window = 1;
-            for(j = 0; j < wi[0].num_windows; j++){
-                if(wi[0].grouping[j] != wi[1].grouping[j]){
+            for (j = 0; j < wi[0].num_windows; j++) {
+                if (wi[0].grouping[j] != wi[1].grouping[j]) {
                     cpe->common_window = 0;
                     break;
                 }
             }
         }
-        if(cpe->common_window && s->coder->search_for_ms)
+        if (cpe->common_window && s->coder->search_for_ms)
             s->coder->search_for_ms(s, cpe, s->lambda);
         adjust_frame_information(s, cpe, chans);
         put_bits(&s->pb, 3, tag);
         put_bits(&s->pb, 4, chan_el_counter[tag]++);
-        if(chans == 2){
+        if (chans == 2) {
             put_bits(&s->pb, 1, cpe->common_window);
-            if(cpe->common_window){
+            if (cpe->common_window) {
                 put_ics_info(s, &cpe->ch[0].ics);
                 encode_ms_info(&s->pb, cpe);
             }
         }
-        for(j = 0; j < chans; j++){
+        for (j = 0; j < chans; j++) {
             s->cur_channel = start_ch + j;
             ff_psy_set_band_info(&s->psy, s->cur_channel, cpe->ch[j].coeffs, &wi[j]);
             encode_individual_channel(avctx, s, &cpe->ch[j], cpe->common_window);
@@ -571,7 +571,7 @@ static int aac_encode_frame(AVCodecConte
     avctx->frame_bits = put_bits_count(&s->pb);
 
     // rate control stuff
-    if(!(avctx->flags & CODEC_FLAG_QSCALE)){
+    if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
         float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
         s->lambda *= ratio;
     }
@@ -580,7 +580,7 @@ static int aac_encode_frame(AVCodecConte
         av_log(avctx, AV_LOG_ERROR, "input buffer violation %d > %d.\n", avctx->frame_bits, 6144*avctx->channels);
     }
 
-    if(!data)
+    if (!data)
         s->last_frame = 1;
     memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0]));
     return put_bits_count(&s->pb)>>3;

Modified: trunk/libavcodec/aacenc.h
==============================================================================
--- trunk/libavcodec/aacenc.h	Wed Jul  8 22:01:31 2009	(r19375)
+++ trunk/libavcodec/aacenc.h	Wed Jul  8 22:36:45 2009	(r19376)
@@ -32,7 +32,7 @@
 
 struct AACEncContext;
 
-typedef struct AACCoefficientsEncoder{
+typedef struct AACCoefficientsEncoder {
     void (*search_for_quantizers)(AVCodecContext *avctx, struct AACEncContext *s,
                                   SingleChannelElement *sce, const float lambda);
     void (*encode_window_bands_info)(struct AACEncContext *s, SingleChannelElement *sce,
@@ -40,7 +40,7 @@ typedef struct AACCoefficientsEncoder{
     void (*quantize_and_encode_band)(struct AACEncContext *s, PutBitContext *pb, const float *in, int size,
                                      int scale_idx, int cb, const float lambda);
     void (*search_for_ms)(struct AACEncContext *s, ChannelElement *cpe, const float lambda);
-}AACCoefficientsEncoder;
+} AACCoefficientsEncoder;
 
 extern AACCoefficientsEncoder ff_aac_coders[];
 

Modified: trunk/libavcodec/aacpsy.c
==============================================================================
--- trunk/libavcodec/aacpsy.c	Wed Jul  8 22:01:31 2009	(r19375)
+++ trunk/libavcodec/aacpsy.c	Wed Jul  8 22:36:45 2009	(r19376)
@@ -112,7 +112,7 @@ static av_cold float ath(float f, float 
             + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
 }
 
-static av_cold int psy_3gpp_init(FFPsyContext *ctx){
+static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
     Psy3gppContext *pctx;
     float barks[1024];
     int i, j, g, start;
@@ -121,26 +121,26 @@ static av_cold int psy_3gpp_init(FFPsyCo
     ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext));
     pctx = (Psy3gppContext*) ctx->model_priv_data;
 
-    for(i = 0; i < 1024; i++)
+    for (i = 0; i < 1024; i++)
         barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0);
     minath = ath(3410, ATH_ADD);
-    for(j = 0; j < 2; j++){
+    for (j = 0; j < 2; j++) {
         Psy3gppCoeffs *coeffs = &pctx->psy_coef[j];
         i = 0;
         prev = 0.0;
-        for(g = 0; g < ctx->num_bands[j]; g++){
+        for (g = 0; g < ctx->num_bands[j]; g++) {
             i += ctx->bands[j][g];
             coeffs->barks[g] = (barks[i - 1] + prev) / 2.0;
             prev = barks[i - 1];
         }
-        for(g = 0; g < ctx->num_bands[j] - 1; g++){
+        for (g = 0; g < ctx->num_bands[j] - 1; g++) {
             coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
             coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
         }
         start = 0;
-        for(g = 0; g < ctx->num_bands[j]; g++){
+        for (g = 0; g < ctx->num_bands[j]; g++) {
             minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD);
-            for(i = 1; i < ctx->bands[j][g]; i++){
+            for (i = 1; i < ctx->bands[j][g]; i++) {
                 minscale = fminf(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD));
             }
             coeffs->ath[g] = minscale - minath;
@@ -189,21 +189,21 @@ static FFPsyWindowInfo psy_3gpp_window(F
     FFPsyWindowInfo wi;
 
     memset(&wi, 0, sizeof(wi));
-    if(la){
+    if (la) {
         float s[8], v;
         int switch_to_eight = 0;
         float sum = 0.0, sum2 = 0.0;
         int attack_n = 0;
-        for(i = 0; i < 8; i++){
-            for(j = 0; j < 128; j++){
+        for (i = 0; i < 8; i++) {
+            for (j = 0; j < 128; j++) {
                 v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
                 sum += v*v;
             }
             s[i] = sum;
             sum2 += sum;
         }
-        for(i = 0; i < 8; i++){
-            if(s[i] > pch->win_energy * attack_ratio){
+        for (i = 0; i < 8; i++) {
+            if (s[i] > pch->win_energy * attack_ratio) {
                 attack_n = i + 1;
                 switch_to_eight = 1;
                 break;
@@ -212,7 +212,7 @@ static FFPsyWindowInfo psy_3gpp_window(F
         pch->win_energy = pch->win_energy*7/8 + sum2/64;
 
         wi.window_type[1] = prev_type;
-        switch(prev_type){
+        switch (prev_type) {
         case ONLY_LONG_SEQUENCE:
             wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
             break;
@@ -229,21 +229,21 @@ static FFPsyWindowInfo psy_3gpp_window(F
             break;
         }
         pch->next_grouping = window_grouping[attack_n];
-    }else{
-        for(i = 0; i < 3; i++)
+    } else {
+        for (i = 0; i < 3; i++)
             wi.window_type[i] = prev_type;
         grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
     }
 
     wi.window_shape   = 1;
-    if(wi.window_type[0] != EIGHT_SHORT_SEQUENCE){
+    if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
         wi.num_windows = 1;
         wi.grouping[0] = 1;
-    }else{
+    } else {
         int lastgrp = 0;
         wi.num_windows = 8;
-        for(i = 0; i < 8; i++){
-            if(!((grouping >> i) & 1))
+        for (i = 0; i < 8; i++) {
+            if (!((grouping >> i) & 1))
                 lastgrp = i;
             wi.grouping[lastgrp]++;
         }
@@ -267,11 +267,11 @@ static void psy_3gpp_analyze(FFPsyContex
     Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
 
     //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
-    for(w = 0; w < wi->num_windows*16; w += 16){
-        for(g = 0; g < num_bands; g++){
+    for (w = 0; w < wi->num_windows*16; w += 16) {
+        for (g = 0; g < num_bands; g++) {
             Psy3gppBand *band = &pch->band[w+g];
             band->energy = 0.0f;
-            for(i = 0; i < band_sizes[g]; i++)
+            for (i = 0; i < band_sizes[g]; i++)
                 band->energy += coefs[start+i] * coefs[start+i];
             band->energy *= 1.0f / (512*512);
             band->thr = band->energy * 0.001258925f;
@@ -281,17 +281,17 @@ static void psy_3gpp_analyze(FFPsyContex
         }
     }
     //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
-    for(w = 0; w < wi->num_windows*16; w += 16){
+    for (w = 0; w < wi->num_windows*16; w += 16) {
         Psy3gppBand *band = &pch->band[w];
-        for(g = 1; g < num_bands; g++){
+        for (g = 1; g < num_bands; g++) {
             band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
         }
-        for(g = num_bands - 2; g >= 0; g--){
+        for (g = num_bands - 2; g >= 0; g--) {
             band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
         }
-        for(g = 0; g < num_bands; g++){
+        for (g = 0; g < num_bands; g++) {
             band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
-            if(wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE){
+            if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE) {
                 band[g].thr_quiet = fmaxf(PSY_3GPP_RPEMIN*band[g].thr_quiet,
                                           fminf(band[g].thr_quiet,
                                           PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));

Modified: trunk/libavcodec/psymodel.c
==============================================================================
--- trunk/libavcodec/psymodel.c	Wed Jul  8 22:01:31 2009	(r19375)
+++ trunk/libavcodec/psymodel.c	Wed Jul  8 22:36:45 2009	(r19376)
@@ -35,12 +35,12 @@ av_cold int ff_psy_init(FFPsyContext *ct
     ctx->num_bands = av_malloc (sizeof(ctx->num_bands[0]) * num_lens);
     memcpy(ctx->bands,     bands,     sizeof(ctx->bands[0])     *  num_lens);
     memcpy(ctx->num_bands, num_bands, sizeof(ctx->num_bands[0]) *  num_lens);
-    switch(ctx->avctx->codec_id){
+    switch (ctx->avctx->codec_id) {
     case CODEC_ID_AAC:
         ctx->model = &ff_aac_psy_model;
         break;
     }
-    if(ctx->model->init)
+    if (ctx->model->init)
         return ctx->model->init(ctx);
     return 0;
 }
@@ -60,7 +60,7 @@ void ff_psy_set_band_info(FFPsyContext *
 
 av_cold void ff_psy_end(FFPsyContext *ctx)
 {
-    if(ctx->model->end)
+    if (ctx->model->end)
         ctx->model->end(ctx);
     av_freep(&ctx->bands);
     av_freep(&ctx->num_bands);
@@ -84,16 +84,16 @@ av_cold struct FFPsyPreprocessContext* f
     ctx = av_mallocz(sizeof(FFPsyPreprocessContext));
     ctx->avctx = avctx;
 
-    if(avctx->flags & CODEC_FLAG_QSCALE)
+    if (avctx->flags & CODEC_FLAG_QSCALE)
         cutoff_coeff = 1.0f / av_clip(1 + avctx->global_quality / FF_QUALITY_SCALE, 1, 8);
     else
         cutoff_coeff = avctx->bit_rate / (4.0f * avctx->sample_rate * avctx->channels);
 
     ctx->fcoeffs = ff_iir_filter_init_coeffs(FF_FILTER_TYPE_BUTTERWORTH, FF_FILTER_MODE_LOWPASS,
                                            FILT_ORDER, cutoff_coeff, 0.0, 0.0);
-    if(ctx->fcoeffs){
+    if (ctx->fcoeffs) {
         ctx->fstate = av_mallocz(sizeof(ctx->fstate[0]) * avctx->channels);
-        for(i = 0; i < avctx->channels; i++)
+        for (i = 0; i < avctx->channels; i++)
             ctx->fstate[i] = ff_iir_filter_init_state(FILT_ORDER);
     }
     return ctx;
@@ -104,15 +104,15 @@ void ff_psy_preprocess(struct FFPsyPrepr
                        int tag, int channels)
 {
     int ch, i;
-    if(ctx->fstate){
-        for(ch = 0; ch < channels; ch++){
+    if (ctx->fstate) {
+        for (ch = 0; ch < channels; ch++) {
             ff_iir_filter(ctx->fcoeffs, ctx->fstate[tag+ch], ctx->avctx->frame_size,
                           audio + ch, ctx->avctx->channels,
                           dest  + ch, ctx->avctx->channels);
         }
-    }else{
-        for(ch = 0; ch < channels; ch++){
-            for(i = 0; i < ctx->avctx->frame_size; i++)
+    } else {
+        for (ch = 0; ch < channels; ch++) {
+            for (i = 0; i < ctx->avctx->frame_size; i++)
                 dest[i*ctx->avctx->channels + ch] = audio[i*ctx->avctx->channels + ch];
         }
     }

Modified: trunk/libavcodec/psymodel.h
==============================================================================
--- trunk/libavcodec/psymodel.h	Wed Jul  8 22:01:31 2009	(r19375)
+++ trunk/libavcodec/psymodel.h	Wed Jul  8 22:36:45 2009	(r19376)
@@ -30,29 +30,29 @@
 /**
  * single band psychoacoustic information
  */
-typedef struct FFPsyBand{
+typedef struct FFPsyBand {
     int   bits;
     float energy;
     float threshold;
     float distortion;
     float perceptual_weight;
-}FFPsyBand;
+} FFPsyBand;
 
 /**
  * windowing related information
  */
-typedef struct FFPsyWindowInfo{
+typedef struct FFPsyWindowInfo {
     int window_type[3];               ///< window type (short/long/transitional, etc.) - current, previous and next
     int window_shape;                 ///< window shape (sine/KBD/whatever)
     int num_windows;                  ///< number of windows in a frame
     int grouping[8];                  ///< window grouping (for e.g. AAC)
     int *window_sizes;                ///< sequence of window sizes inside one frame (for eg. WMA)
-}FFPsyWindowInfo;
+} FFPsyWindowInfo;
 
 /**
  * context used by psychoacoustic model
  */
-typedef struct FFPsyContext{
+typedef struct FFPsyContext {
     AVCodecContext *avctx;            ///< encoder context
     const struct FFPsyModel *model;   ///< encoder-specific model functions
 
@@ -63,7 +63,7 @@ typedef struct FFPsyContext{
     int num_lens;                     ///< number of scalefactor band sets
 
     void* model_priv_data;            ///< psychoacoustic model implementation private data
-}FFPsyContext;
+} FFPsyContext;
 
 /**
  * codec-specific psychoacoustic model implementation
@@ -74,7 +74,7 @@ typedef struct FFPsyModel {
     FFPsyWindowInfo (*window)(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type);
     void (*analyze)(FFPsyContext *ctx, int channel, const float *coeffs, FFPsyWindowInfo *wi);
     void (*end)    (FFPsyContext *apc);
-}FFPsyModel;
+} FFPsyModel;
 
 /**
  * Initialize psychoacoustic model.



More information about the ffmpeg-cvslog mailing list