[FFmpeg-devel] [PATCH 1/2] lavfi: Add vf_ssim360 filter
Anton Khirnov
anton at khirnov.net
Mon Jan 23 13:54:17 EET 2023
From: Shannon Chen <shann at fb.com>
Customized SSIM for various projections (and stereo formats) of 360 images and videos.
Further contributions by:
Ashok Mathew Kuruvilla
Matthieu Patou
Yu-Hui Wu
Anton Khirnov
Suggested-By: ffmpeg at fb.com
Signed-off-by: Anton Khirnov <anton at khirnov.net>
---
No longer loading the heatmap file manually, instead it is passed to the
filter as a string.
A new syntax for loading option values from files in ffmpeg CLI,
currently under review, will be useful for this.
---
Changelog | 1 +
libavfilter/Makefile | 1 +
libavfilter/allfilters.c | 1 +
libavfilter/version.h | 2 +-
libavfilter/vf_ssim360.c | 1768 ++++++++++++++++++++++++++++++++++++++
5 files changed, 1772 insertions(+), 1 deletion(-)
create mode 100644 libavfilter/vf_ssim360.c
diff --git a/Changelog b/Changelog
index 5c01e8365e..2f2574b320 100644
--- a/Changelog
+++ b/Changelog
@@ -29,6 +29,7 @@ version <next>:
- corr video filter
- adrc audio filter
- afdelaysrc audio filter
+- ssim360 video filter
version 5.1:
diff --git a/libavfilter/Makefile b/libavfilter/Makefile
index 211ff4daaa..d4e38bd4e8 100644
--- a/libavfilter/Makefile
+++ b/libavfilter/Makefile
@@ -486,6 +486,7 @@ OBJS-$(CONFIG_SPLIT_FILTER) += split.o
OBJS-$(CONFIG_SPP_FILTER) += vf_spp.o qp_table.o
OBJS-$(CONFIG_SR_FILTER) += vf_sr.o
OBJS-$(CONFIG_SSIM_FILTER) += vf_ssim.o framesync.o
+OBJS-$(CONFIG_SSIM360_FILTER) += vf_ssim360.o framesync.o
OBJS-$(CONFIG_STEREO3D_FILTER) += vf_stereo3d.o
OBJS-$(CONFIG_STREAMSELECT_FILTER) += f_streamselect.o framesync.o
OBJS-$(CONFIG_SUBTITLES_FILTER) += vf_subtitles.o
diff --git a/libavfilter/allfilters.c b/libavfilter/allfilters.c
index 1ab3c8319a..5c86d0789f 100644
--- a/libavfilter/allfilters.c
+++ b/libavfilter/allfilters.c
@@ -458,6 +458,7 @@ extern const AVFilter ff_vf_split;
extern const AVFilter ff_vf_spp;
extern const AVFilter ff_vf_sr;
extern const AVFilter ff_vf_ssim;
+extern const AVFilter ff_vf_ssim360;
extern const AVFilter ff_vf_stereo3d;
extern const AVFilter ff_vf_streamselect;
extern const AVFilter ff_vf_subtitles;
diff --git a/libavfilter/version.h b/libavfilter/version.h
index a56ba3bb6d..09b9954597 100644
--- a/libavfilter/version.h
+++ b/libavfilter/version.h
@@ -31,7 +31,7 @@
#include "version_major.h"
-#define LIBAVFILTER_VERSION_MINOR 54
+#define LIBAVFILTER_VERSION_MINOR 55
#define LIBAVFILTER_VERSION_MICRO 100
diff --git a/libavfilter/vf_ssim360.c b/libavfilter/vf_ssim360.c
new file mode 100644
index 0000000000..0990db0ed5
--- /dev/null
+++ b/libavfilter/vf_ssim360.c
@@ -0,0 +1,1768 @@
+/**
+ * Copyright (c) 2015-2021, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/* Computes the Structural Similarity Metric between two 360 video streams.
+ * original SSIM algorithm:
+ * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
+ * "Image quality assessment: From error visibility to structural similarity,"
+ * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
+ *
+ * To improve speed, this implementation uses the standard approximation of
+ * overlapped 8x8 block sums, rather than the original gaussian weights.
+ *
+ * To address warping from 360 projections for videos with same
+ * projection and resolution, the 8x8 blocks sampled are weighted by
+ * their location in the image.
+ *
+ * To apply SSIM across projections and video sizes, we render the video on to
+ * a flat "tape" from which the 8x8 are selected and compared.
+ */
+
+/*
+ * @file
+ * Caculate the SSIM between two input 360 videos.
+ */
+
+#include <math.h>
+
+#include "libavutil/avstring.h"
+#include "libavutil/file_open.h"
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+
+#include "avfilter.h"
+#include "drawutils.h"
+#include "formats.h"
+#include "internal.h"
+#include "video.h"
+#include "framesync.h"
+
+#define RIGHT 0
+#define LEFT 1
+#define TOP 2
+#define BOTTOM 3
+#define FRONT 4
+#define BACK 5
+
+#define DEFAULT_HEATMAP_W 32
+#define DEFAULT_HEATMAP_H 16
+
+#define M_PI_F ((float)M_PI)
+#define M_PI_2_F ((float)M_PI_2)
+#define M_PI_4_F ((float)M_PI_4)
+#define M_SQRT2_F ((float)M_SQRT2)
+
+#define DEFAULT_EXPANSION_COEF 1.01f
+
+static const float BARREL_THETA_RANGE = DEFAULT_EXPANSION_COEF * 2.0f * M_PI_F;
+static const float BARREL_PHI_RANGE = DEFAULT_EXPANSION_COEF * M_PI_2_F;
+
+// Use fixed-point with 16 bit precision for fast bilinear math
+static const int FIXED_POINT_PRECISION = 16;
+
+// Use 1MB per channel for the histogram to get 5-digit precise SSIM value
+#define SSIM360_HIST_SIZE 131072
+
+// The last number is a marker < 0 to mark end of list
+static const double PERCENTILE_LIST[] = {
+ 1.0, 0.9, 0.8, 0.7, 0.6,
+ 0.5, 0.4, 0.3, 0.2, 0.1, 0, -1
+};
+
+typedef enum StereoFormat {
+ STEREO_FORMAT_TB,
+ STEREO_FORMAT_LR,
+ STEREO_FORMAT_MONO,
+ STEREO_FORMAT_N
+} StereoFormat;
+
+typedef enum Projection {
+ PROJECTION_CUBEMAP32,
+ PROJECTION_CUBEMAP23,
+ PROJECTION_BARREL,
+ PROJECTION_BARREL_SPLIT,
+ PROJECTION_EQUIRECT,
+ PROJECTION_N
+} Projection;
+
+typedef struct Map2D {
+ int w, h;
+ double *value;
+} Map2D;
+
+typedef struct HeatmapList {
+ Map2D map;
+ struct HeatmapList *next;
+} HeatmapList;
+
+typedef struct SampleParams {
+ int stride;
+ int planewidth;
+ int planeheight;
+ int x_image_offset;
+ int y_image_offset;
+ int x_image_range;
+ int y_image_range;
+ int projection;
+ float expand_coef;
+} SampleParams;
+
+typedef struct BilinearMap {
+ // Indices to the 4 samples to compute bilinear
+ int tli;
+ int tri;
+ int bli;
+ int bri;
+
+ // Fixed point factors with which the above 4 sample vector's
+ // dot product needs to be computed for the final bilinear value
+ int tlf;
+ int trf;
+ int blf;
+ int brf;
+} BilinearMap;
+
+typedef struct SSIM360Context {
+ const AVClass *class;
+
+ FFFrameSync fs;
+ // Stats file configuration
+ FILE *stats_file;
+ char *stats_file_str;
+
+ // Component properties
+ int nb_components;
+ double coefs[4];
+ char comps[4];
+ int max;
+
+ // Channel configuration & properties
+ int compute_chroma;
+
+ int is_rgb;
+ uint8_t rgba_map[4];
+
+ // Standard SSIM computation configuration & workspace
+ uint64_t frame_skip_ratio;
+
+ int *temp;
+ uint64_t nb_ssim_frames;
+ uint64_t nb_net_frames;
+ double ssim360[4], ssim360_total;
+ double *ssim360_hist[4];
+ double ssim360_hist_net[4];
+ double ssim360_percentile_sum[4][256];
+
+ // 360 projection configuration & workspace
+ int ref_projection;
+ int main_projection;
+ int ref_stereo_format;
+ int main_stereo_format;
+ float ref_pad;
+ float main_pad;
+ int use_tape;
+ char *heatmap_str;
+ int default_heatmap_w;
+ int default_heatmap_h;
+
+ Map2D density;
+ HeatmapList *heatmaps;
+ int ref_planewidth[4];
+ int ref_planeheight[4];
+ int main_planewidth[4];
+ int main_planeheight[4];
+ int tape_length[4];
+ BilinearMap *ref_tape_map[4][2];
+ BilinearMap *main_tape_map[4][2];
+ float angular_resolution[4][2];
+ double (*ssim360_plane)(
+ uint8_t *main, int main_stride,
+ uint8_t *ref, int ref_stride,
+ int width, int height, void *temp,
+ int max, Map2D density);
+} SSIM360Context;
+
+#define OFFSET(x) offsetof(SSIM360Context, x)
+#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
+
+static const AVOption ssim360_options[] = {
+ { "stats_file", "Set file where to store per-frame difference information",
+ OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
+ { "f", "Set file where to store per-frame difference information",
+ OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
+
+ { "compute_chroma",
+ "Specifies if non-luma channels must be computed",
+ OFFSET(compute_chroma), AV_OPT_TYPE_INT, {.i64 = 1},
+ 0, 1, .flags = FLAGS },
+
+ { "frame_skip_ratio",
+ "Specifies the number of frames to be skipped from evaluation, for every evaluated frame",
+ OFFSET(frame_skip_ratio), AV_OPT_TYPE_INT, {.i64 = 0},
+ 0, 1000000, .flags = FLAGS },
+
+ { "ref_projection", "projection of the reference video",
+ OFFSET(ref_projection), AV_OPT_TYPE_INT, {.i64 = PROJECTION_EQUIRECT},
+ 0, PROJECTION_N - 1, .flags = FLAGS, "projection" },
+
+ { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64 = PROJECTION_EQUIRECT}, 0, 0, FLAGS, "projection" },
+ { "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64 = PROJECTION_EQUIRECT}, 0, 0, FLAGS, "projection" },
+ { "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64 = PROJECTION_CUBEMAP32}, 0, 0, FLAGS, "projection" },
+ { "c2x3", "cubemap 2x3", 0, AV_OPT_TYPE_CONST, {.i64 = PROJECTION_CUBEMAP23}, 0, 0, FLAGS, "projection" },
+ { "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64 = PROJECTION_BARREL}, 0, 0, FLAGS, "projection" },
+ { "barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64 = PROJECTION_BARREL_SPLIT}, 0, 0, FLAGS, "projection" },
+
+ { "main_projection", "projection of the main video",
+ OFFSET(main_projection), AV_OPT_TYPE_INT, {.i64 = PROJECTION_N},
+ 0, PROJECTION_N, .flags = FLAGS, "projection" },
+
+ { "ref_stereo", "stereo format of the reference video",
+ OFFSET(ref_stereo_format), AV_OPT_TYPE_INT, {.i64 = STEREO_FORMAT_MONO},
+ 0, STEREO_FORMAT_N - 1, .flags = FLAGS, "stereo_format" },
+
+ { "mono", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = STEREO_FORMAT_MONO }, 0, 0, FLAGS, "stereo_format" },
+ { "tb", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = STEREO_FORMAT_TB }, 0, 0, FLAGS, "stereo_format" },
+ { "lr", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = STEREO_FORMAT_LR }, 0, 0, FLAGS, "stereo_format" },
+
+ { "main_stereo", "stereo format of main video",
+ OFFSET(main_stereo_format), AV_OPT_TYPE_INT, {.i64 = STEREO_FORMAT_N},
+ 0, STEREO_FORMAT_N, .flags = FLAGS, "stereo_format" },
+
+ { "ref_pad",
+ "Expansion (padding) coefficient for each cube face of the reference video",
+ OFFSET(ref_pad), AV_OPT_TYPE_FLOAT, {.dbl = .0f}, 0, 10, .flags = FLAGS },
+
+ { "main_pad",
+ "Expansion (padding) coeffiecient for each cube face of the main video",
+ OFFSET(main_pad), AV_OPT_TYPE_FLOAT, {.dbl = .0f}, 0, 10, .flags = FLAGS },
+
+ { "use_tape",
+ "Specifies if the tape based SSIM 360 algorithm must be used independent of the input video types",
+ OFFSET(use_tape), AV_OPT_TYPE_INT, {.i64 = 0},
+ 0, 1, .flags = FLAGS },
+
+ { "heatmap_str",
+ "Heatmap data for view-based evaluation. For heatmap file format, please refer to EntSphericalVideoHeatmapData.",
+ OFFSET(heatmap_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, .flags = FLAGS },
+
+ { "default_heatmap_width",
+ "Default heatmap dimension. Will be used when dimension is not specified in heatmap data.",
+ OFFSET(default_heatmap_w), AV_OPT_TYPE_INT, {.i64 = 32}, 1, 4096, .flags = FLAGS },
+
+ { "default_heatmap_height",
+ "Default heatmap dimension. Will be used when dimension is not specified in heatmap data.",
+ OFFSET(default_heatmap_h), AV_OPT_TYPE_INT, {.i64 = 16}, 1, 4096, .flags = FLAGS },
+
+ { NULL }
+};
+
+FRAMESYNC_DEFINE_CLASS(ssim360, SSIM360Context, fs);
+
+static void set_meta(AVDictionary **metadata, const char *key, char comp, float d)
+{
+ char value[128];
+ snprintf(value, sizeof(value), "%0.2f", d);
+ if (comp) {
+ char key2[128];
+ snprintf(key2, sizeof(key2), "%s%c", key, comp);
+ av_dict_set(metadata, key2, value, 0);
+ } else {
+ av_dict_set(metadata, key, value, 0);
+ }
+}
+
+static void map_uninit(Map2D *map)
+{
+ av_freep(&map->value);
+}
+
+static int map_init(Map2D *map, int w, int h)
+{
+ map->value = av_calloc(h * w, sizeof(*map->value));
+ if (!map->value)
+ return AVERROR(ENOMEM);
+
+ map->h = h;
+ map->w = w;
+
+ return 0;
+}
+
+static void map_list_free(HeatmapList **pl)
+{
+ HeatmapList *l = *pl;
+
+ while (l) {
+ HeatmapList *next = l->next;
+ map_uninit(&l->map);
+ av_freep(&l);
+ l = next;
+ }
+
+ *pl = NULL;
+}
+
+static int map_alloc(HeatmapList **pl, int w, int h)
+{
+ HeatmapList *l;
+ int ret;
+
+ l = av_mallocz(sizeof(*l));
+ if (!l)
+ return AVERROR(ENOMEM);
+
+ ret = map_init(&l->map, w, h);
+ if (ret < 0) {
+ av_freep(&l);
+ return ret;
+ }
+
+ *pl = l;
+ return 0;
+}
+
+static void
+ssim360_4x4xn_16bit(const uint8_t *main8, ptrdiff_t main_stride,
+ const uint8_t *ref8, ptrdiff_t ref_stride,
+ int64_t (*sums)[4], int width)
+{
+ const uint16_t *main16 = (const uint16_t *)main8;
+ const uint16_t *ref16 = (const uint16_t *)ref8;
+
+ main_stride >>= 1;
+ ref_stride >>= 1;
+
+ for (int z = 0; z < width; z++) {
+ uint64_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
+
+ for (int y = 0; y < 4; y++) {
+ for (int x = 0; x < 4; x++) {
+ unsigned a = main16[x + y * main_stride];
+ unsigned b = ref16[x + y * ref_stride];
+
+ s1 += a;
+ s2 += b;
+ ss += a*a;
+ ss += b*b;
+ s12 += a*b;
+ }
+ }
+
+ sums[z][0] = s1;
+ sums[z][1] = s2;
+ sums[z][2] = ss;
+ sums[z][3] = s12;
+ main16 += 4;
+ ref16 += 4;
+ }
+}
+
+static void
+ssim360_4x4xn_8bit(const uint8_t *main, ptrdiff_t main_stride,
+ const uint8_t *ref, ptrdiff_t ref_stride,
+ int (*sums)[4], int width)
+{
+ for (int z = 0; z < width; z++) {
+ uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
+
+ for (int y = 0; y < 4; y++) {
+ for (int x = 0; x < 4; x++) {
+ int a = main[x + y * main_stride];
+ int b = ref[x + y * ref_stride];
+
+ s1 += a;
+ s2 += b;
+ ss += a*a;
+ ss += b*b;
+ s12 += a*b;
+ }
+ }
+
+ sums[z][0] = s1;
+ sums[z][1] = s2;
+ sums[z][2] = ss;
+ sums[z][3] = s12;
+ main += 4;
+ ref += 4;
+ }
+}
+
+static float ssim360_end1x(int64_t s1, int64_t s2, int64_t ss, int64_t s12, int max)
+{
+ int64_t ssim_c1 = (int64_t)(.01 * .01 * max * max * 64 + .5);
+ int64_t ssim_c2 = (int64_t)(.03 * .03 * max * max * 64 * 63 + .5);
+
+ int64_t fs1 = s1;
+ int64_t fs2 = s2;
+ int64_t fss = ss;
+ int64_t fs12 = s12;
+ int64_t vars = fss * 64 - fs1 * fs1 - fs2 * fs2;
+ int64_t covar = fs12 * 64 - fs1 * fs2;
+
+ return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2)
+ / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2));
+}
+
+static float ssim360_end1(int s1, int s2, int ss, int s12)
+{
+ static const int ssim_c1 = (int)(.01*.01*255*255*64 + .5);
+ static const int ssim_c2 = (int)(.03*.03*255*255*64*63 + .5);
+
+ int fs1 = s1;
+ int fs2 = s2;
+ int fss = ss;
+ int fs12 = s12;
+ int vars = fss * 64 - fs1 * fs1 - fs2 * fs2;
+ int covar = fs12 * 64 - fs1 * fs2;
+
+ return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2)
+ / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2));
+}
+
+static double
+ssim360_endn_16bit(const int64_t (*sum0)[4], const int64_t (*sum1)[4],
+ int width, int max,
+ double *density_map, int map_width, double *total_weight)
+{
+ double ssim360 = 0.0, weight;
+
+ for (int i = 0; i < width; i++) {
+ weight = density_map ? density_map[(int) ((0.5 + i) / width * map_width)] : 1.0;
+ ssim360 += weight * ssim360_end1x(
+ sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0],
+ sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1],
+ sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2],
+ sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3],
+ max);
+ *total_weight += weight;
+ }
+ return ssim360;
+}
+
+static double
+ssim360_endn_8bit(const int (*sum0)[4], const int (*sum1)[4], int width,
+ double *density_map, int map_width, double *total_weight)
+{
+ double ssim360 = 0.0, weight;
+
+ for (int i = 0; i < width; i++) {
+ weight = density_map ? density_map[(int) ((0.5 + i) / width * map_width)] : 1.0;
+ ssim360 += weight * ssim360_end1(
+ sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0],
+ sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1],
+ sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2],
+ sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3]);
+ *total_weight += weight;
+ }
+ return ssim360;
+}
+
+static double
+ssim360_plane_16bit(uint8_t *main, int main_stride,
+ uint8_t *ref, int ref_stride,
+ int width, int height, void *temp,
+ int max, Map2D density)
+{
+ int z = 0;
+ double ssim360 = 0.0;
+ int64_t (*sum0)[4] = temp;
+ int64_t (*sum1)[4] = sum0 + (width >> 2) + 3;
+ double total_weight = 0.0;
+
+ width >>= 2;
+ height >>= 2;
+
+ for (int y = 1; y < height; y++) {
+ for (; z <= y; z++) {
+ FFSWAP(void*, sum0, sum1);
+ ssim360_4x4xn_16bit(&main[4 * z * main_stride], main_stride,
+ &ref[4 * z * ref_stride], ref_stride,
+ sum0, width);
+ }
+ ssim360 += ssim360_endn_16bit(
+ (const int64_t (*)[4])sum0, (const int64_t (*)[4])sum1,
+ width - 1, max,
+ density.value ? density.value + density.w * ((int) ((z - 1.0) / height * density.h)) : NULL,
+ density.w, &total_weight);
+ }
+
+ return (double) (ssim360 / total_weight);
+}
+
+static double
+ssim360_plane_8bit(uint8_t *main, int main_stride,
+ uint8_t *ref, int ref_stride,
+ int width, int height, void *temp,
+ int max, Map2D density)
+{
+ int z = 0;
+ double ssim360 = 0.0;
+ int (*sum0)[4] = temp;
+ int (*sum1)[4] = sum0 + (width >> 2) + 3;
+ double total_weight = 0.0;
+
+ width >>= 2;
+ height >>= 2;
+
+ for (int y = 1; y < height; y++) {
+ for (; z <= y; z++) {
+ FFSWAP(void*, sum0, sum1);
+ ssim360_4x4xn_8bit(
+ &main[4 * z * main_stride], main_stride,
+ &ref[4 * z * ref_stride], ref_stride,
+ sum0, width);
+ }
+ ssim360 += ssim360_endn_8bit(
+ (const int (*)[4])sum0, (const int (*)[4])sum1, width - 1,
+ density.value ? density.value + density.w * ((int) ((z - 1.0) / height * density.h)) : NULL,
+ density.w, &total_weight);
+ }
+
+ return (double) (ssim360 / total_weight);
+}
+
+static double ssim360_db(double ssim360, double weight)
+{
+ return 10 * log10(weight / (weight - ssim360));
+}
+
+static int get_bilinear_sample(const uint8_t *data, BilinearMap *m, int max_value)
+{
+ static const int fixed_point_half = 1 << (FIXED_POINT_PRECISION - 1);
+ static const int inv_byte_mask = (-1) << 8;
+
+ int tl, tr, bl, br, v;
+
+ if (max_value & inv_byte_mask) {
+ uint16_t *data16 = (uint16_t *)data;
+ tl = data16[m->tli];
+ tr = data16[m->tri];
+ bl = data16[m->bli];
+ br = data16[m->bri];
+ } else {
+ tl = data[m->tli];
+ tr = data[m->tri];
+ bl = data[m->bli];
+ br = data[m->bri];
+ }
+
+ v = m->tlf * tl +
+ m->trf * tr +
+ m->blf * bl +
+ m->brf * br;
+
+ // Round by half, and revert the fixed-point offset
+ return ((v + fixed_point_half) >> FIXED_POINT_PRECISION) & max_value;
+}
+
+static void
+ssim360_4x4x2_tape(const uint8_t *main, BilinearMap *main_maps,
+ const uint8_t *ref, BilinearMap *ref_maps,
+ int offset_y, int max_value, int (*sums)[4])
+{
+ int offset_x = 0;
+
+ // Two blocks along the width
+ for (int z = 0; z < 2; z++) {
+ int s1 = 0, s2 = 0, ss = 0, s12 = 0;
+
+ // 4 pixel block from (offset_x, offset_y)
+ for (int y = offset_y; y < offset_y + 4; y++) {
+ int y_stride = y << 3;
+ for (int x = offset_x; x < offset_x + 4; x++) {
+ int map_index = x + y_stride;
+ int a = get_bilinear_sample(main, main_maps + map_index, max_value);
+ int b = get_bilinear_sample(ref, ref_maps + map_index, max_value);
+
+ s1 += a;
+ s2 += b;
+ ss += a*a;
+ ss += b*b;
+ s12 += a*b;
+ }
+ }
+
+ sums[z][0] = s1;
+ sums[z][1] = s2;
+ sums[z][2] = ss;
+ sums[z][3] = s12;
+
+ offset_x += 4;
+ }
+}
+
+static float get_radius_between_negative_and_positive_pi(float theta)
+{
+ int floor_theta_by_2pi, floor_theta_by_pi;
+
+ // Convert theta to range [0, 2*pi]
+ floor_theta_by_2pi = (int)(theta / (2.0f * M_PI_F)) - (theta < 0.0f);
+ theta -= 2.0f * M_PI_F * floor_theta_by_2pi;
+
+ // Convert theta to range [-pi, pi]
+ floor_theta_by_pi = theta / M_PI_F;
+ theta -= 2.0f * M_PI_F * floor_theta_by_pi;
+ return FFMIN(M_PI_F, FFMAX(-M_PI_F, theta));
+}
+
+static float get_heat(HeatmapList *heatmaps, float angular_resoluation, float norm_tape_pos)
+{
+ float pitch, yaw, norm_pitch, norm_yaw;
+ int w, h;
+
+ if (!heatmaps)
+ return 1.0f;
+
+ pitch = asinf(norm_tape_pos*2);
+ yaw = M_PI_2_F * pitch / angular_resoluation;
+ yaw = get_radius_between_negative_and_positive_pi(yaw);
+
+ // normalize into [0,1]
+ norm_pitch = 1.0f - (pitch / M_PI_F + 0.5f);
+ norm_yaw = yaw / 2.0f / M_PI_F + 0.5f;
+
+ // get heat on map
+ w = FFMIN(heatmaps->map.w - 1, FFMAX(0, heatmaps->map.w * norm_yaw));
+ h = FFMIN(heatmaps->map.h - 1, FFMAX(0, heatmaps->map.h * norm_pitch));
+ return heatmaps->map.value[h * heatmaps->map.w + w];
+}
+
+static double
+ssim360_tape(uint8_t *main, BilinearMap *main_maps,
+ uint8_t *ref, BilinearMap *ref_maps,
+ int tape_length, int max_value, void *temp,
+ double *ssim360_hist, double *ssim360_hist_net,
+ float angular_resolution, HeatmapList *heatmaps)
+{
+ int horizontal_block_count = 2;
+ int vertical_block_count = tape_length >> 2;
+
+ int z = 0, y;
+ // Since the tape will be very long and we need to average over all 8x8 blocks, use double
+ double ssim360 = 0.0;
+ double sum_weight = 0.0;
+
+ int (*sum0)[4] = temp;
+ int (*sum1)[4] = sum0 + horizontal_block_count + 3;
+
+ for (y = 1; y < vertical_block_count; y++) {
+ int fs1, fs2, fss, fs12, hist_index;
+ float norm_tape_pos, weight;
+ double sample_ssim360;
+
+ for (; z <= y; z++) {
+ FFSWAP(void*, sum0, sum1);
+ ssim360_4x4x2_tape(main, main_maps, ref, ref_maps, z*4, max_value, sum0);
+ }
+
+ // Given we have only one 8x8 block, following sums fit within 26 bits even for 10bit videos
+ fs1 = sum0[0][0] + sum0[1][0] + sum1[0][0] + sum1[1][0];
+ fs2 = sum0[0][1] + sum0[1][1] + sum1[0][1] + sum1[1][1];
+ fss = sum0[0][2] + sum0[1][2] + sum1[0][2] + sum1[1][2];
+ fs12 = sum0[0][3] + sum0[1][3] + sum1[0][3] + sum1[1][3];
+
+ if (max_value > 255) {
+ // Since we need high precision to multiply fss / fs12 by 64, use double
+ double ssim_c1_d = .01*.01*64*max_value*max_value;
+ double ssim_c2_d = .03*.03*64*63*max_value*max_value;
+
+ double vars = 64. * fss - 1. * fs1 * fs1 - 1. * fs2 * fs2;
+ double covar = 64. * fs12 - 1.*fs1 * fs2;
+ sample_ssim360 = (2. * fs1 * fs2 + ssim_c1_d) * (2. * covar + ssim_c2_d)
+ / ((1. * fs1 * fs1 + 1. * fs2 * fs2 + ssim_c1_d) * (1. * vars + ssim_c2_d));
+ } else {
+ static const int ssim_c1 = (int)(.01*.01*255*255*64 + .5);
+ static const int ssim_c2 = (int)(.03*.03*255*255*64*63 + .5);
+
+ int vars = fss * 64 - fs1 * fs1 - fs2 * fs2;
+ int covar = fs12 * 64 - fs1 * fs2;
+ sample_ssim360 = (double)(2 * fs1 * fs2 + ssim_c1) * (double)(2 * covar + ssim_c2)
+ / ((double)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (double)(vars + ssim_c2));
+ }
+
+ hist_index = (int)(sample_ssim360 * ((double)SSIM360_HIST_SIZE - .5));
+ hist_index = av_clip(hist_index, 0, SSIM360_HIST_SIZE - 1);
+
+ norm_tape_pos = (y - 0.5f) / (vertical_block_count - 1.0f) - 0.5f;
+ // weight from an input heatmap if available, otherwise weight = 1.0
+ weight = get_heat(heatmaps, angular_resolution, norm_tape_pos);
+ ssim360_hist[hist_index] += weight;
+ *ssim360_hist_net += weight;
+
+ ssim360 += (sample_ssim360 * weight);
+ sum_weight += weight;
+ }
+
+ return ssim360 / sum_weight;
+}
+
+static void compute_bilinear_map(SampleParams *p, BilinearMap *m, float x, float y)
+{
+ float fixed_point_scale = (float)(1 << FIXED_POINT_PRECISION);
+
+ // All operations in here will fit in the 22 bit mantissa of floating point,
+ // since the fixed point precision is well under 22 bits
+ float x_image = av_clipf(x * p->x_image_range, 0, p->x_image_range) + p->x_image_offset;
+ float y_image = av_clipf(y * p->y_image_range, 0, p->y_image_range) + p->y_image_offset;
+
+ int x_floor = x_image;
+ int y_floor = y_image;
+ float x_diff = x_image - x_floor;
+ float y_diff = y_image - y_floor;
+
+ int x_ceil = x_floor + (x_diff > 1e-6);
+ int y_ceil = y_floor + (y_diff > 1e-6);
+ float x_inv_diff = 1.0f - x_diff;
+ float y_inv_diff = 1.0f - y_diff;
+
+ // Indices of the 4 samples from source frame
+ m->tli = x_floor + y_floor * p->stride;
+ m->tri = x_ceil + y_floor * p->stride;
+ m->bli = x_floor + y_ceil * p->stride;
+ m->bri = x_ceil + y_ceil * p->stride;
+
+ // Scale to be applied to each of the 4 samples from source frame
+ m->tlf = x_inv_diff * y_inv_diff * fixed_point_scale;
+ m->trf = x_diff * y_inv_diff * fixed_point_scale;
+ m->blf = x_inv_diff * y_diff * fixed_point_scale;
+ m->brf = x_diff * y_diff * fixed_point_scale;
+}
+
+static void get_equirect_map(float phi, float theta, float *x, float *y)
+{
+ *x = 0.5f + theta / (2.0f * M_PI_F);
+ // y increases downwards
+ *y = 0.5f - phi / M_PI_F;
+}
+
+static void get_barrel_map(float phi, float theta, float *x, float *y)
+{
+ float abs_phi = FFABS(phi);
+
+ if (abs_phi <= M_PI_4_F) {
+ // Equirect region
+ *x = 0.8f * (0.5f + theta / BARREL_THETA_RANGE);
+ // y increases downwards
+ *y = 0.5f - phi / BARREL_PHI_RANGE;
+ } else {
+ // Radial ratio on a unit circle = cot(abs_phi) / (expansion_cefficient).
+ // Using cos(abs_phi)/sin(abs_phi) explicitly to avoid division by zero
+ float radial_ratio = cosf(abs_phi) / (sinf(abs_phi) * DEFAULT_EXPANSION_COEF);
+ float circle_x = radial_ratio * sinf(theta);
+ float circle_y = radial_ratio * cosf(theta);
+ float offset_y = 0.25f;
+ if (phi < 0) {
+ // Bottom circle: theta increases clockwise, and front is upward
+ circle_y *= -1.0f;
+ offset_y += 0.5f;
+ }
+
+ *x = 0.8f + 0.1f * (1.0f + circle_x);
+ *y = offset_y + 0.25f * circle_y;
+ }
+}
+
+static void get_barrel_split_map(float phi, float theta, float expand_coef, float *x, float *y)
+{
+ float abs_phi = FFABS(phi);
+
+ // Front Face [-PI/2, PI/2] -> [0,1].
+ // Back Face [PI/2, PI] and [-PI, -PI/2] -> [1, 2]
+ float radian_pi_theta = theta / M_PI_F + 0.5f;
+ int vFace;
+
+ if (radian_pi_theta < 0.0f)
+ radian_pi_theta += 2.0f;
+
+ // Front face at top (= 0), back face at bottom (= 1).
+ vFace = radian_pi_theta >= 1.0f;
+
+ if (abs_phi <= M_PI_4_F) {
+ // Equirect region
+ *x = 2.0f / 3.0f * (0.5f + (radian_pi_theta - vFace - 0.5f) / expand_coef);
+ // y increases downwards
+ *y = 0.25f + 0.5f * vFace - phi / (M_PI_F * expand_coef);
+ } else {
+ // Radial ratio on a unit circle = cot(abs_phi) / (expansion_cefficient).
+ // Using cos(abs_phi)/sin(abs_phi) explicitly to avoid division by zero
+ float radial_ratio = cosf(abs_phi) / (sinf(abs_phi) * expand_coef);
+ float circle_x = radial_ratio * sinf(theta);
+ float circle_y = radial_ratio * cosf(theta);
+ float offset_y = 0.25f;
+
+ if (vFace == 1) {
+ // Back Face: Flip
+ circle_x *= -1.0f;
+ circle_y = (circle_y >= 0.0f) ? (1 - circle_y) : (-1 - circle_y);
+ offset_y += 0.5f;
+
+ // Bottom circle: theta increases clockwise
+ if (phi < 0)
+ circle_y *= -1.0f;
+ } else {
+ // Front Face
+ // Bottom circle: theta increases clockwise
+ if (phi < 0)
+ circle_y *= -1.0f;
+ }
+
+ *x = 2.0f / 3.0f + 0.5f / 3.0f * (1.0f + circle_x);
+ *y = offset_y + 0.25f * circle_y / expand_coef; // y direction of expand_coeff (margin)
+ }
+}
+
+// Returns cube face, and provided face_x & face_y will range from [0, 1]
+static int get_cubemap_face_map(float axis_vec_x, float axis_vec_y, float axis_vec_z, float *face_x, float *face_y)
+{
+ // To check if phi, theta hits the top / bottom faces, we check the hit point of
+ // the axis vector on planes y = 1 and y = -1, and see if x & z are within [-1, 1]
+
+ // 0.577 < 1 / sqrt(3), which is less than the smallest sin(phi) falling on top/bottom faces
+ // This angle check will save computation from unnecessarily checking the top/bottom faces
+ if (FFABS(axis_vec_y) > 0.577f) {
+ float x_hit = axis_vec_x / FFABS(axis_vec_y);
+ float z_hit = axis_vec_z / axis_vec_y;
+
+ if (FFABS(x_hit) <= 1.f && FFABS(z_hit) <= 1.f) {
+ *face_x = x_hit;
+ // y increases downwards
+ *face_y = z_hit;
+ return axis_vec_y > 0 ? TOP : BOTTOM;
+ }
+ }
+
+ // Check for left / right faces
+ if (FFABS(axis_vec_x) > 0.577f) {
+ float z_hit = -axis_vec_z / axis_vec_x;
+ float y_hit = axis_vec_y / FFABS(axis_vec_x);
+
+ if (FFABS(z_hit) <= 1.f && FFABS(y_hit) <= 1.f) {
+ *face_x = z_hit;
+ // y increases downwards
+ *face_y = -y_hit;
+ return axis_vec_x > 0 ? RIGHT : LEFT;
+ }
+ }
+
+ // Front / back faces
+ *face_x = axis_vec_x / axis_vec_z;
+ // y increases downwards
+ *face_y = -axis_vec_y / FFABS(axis_vec_z);
+
+ return axis_vec_z > 0 ? FRONT : BACK;
+}
+
+static void get_cubemap32_map(float phi, float theta, float *x, float *y)
+{
+ // face_projection_map maps each cube face to an index representing the face on the projection
+ // The indices 0->5 for cubemap 32 goes as:
+ // [0, 1, 2] as row 1, left to right
+ // [3, 4, 5] as row 2, left to right
+ static const int face_projection_map[] = {
+ [RIGHT] = 0, [LEFT] = 1, [TOP] = 2,
+ [BOTTOM] = 3, [FRONT] = 4, [BACK] = 5,
+ };
+
+ float axis_vec_x = cosf(phi) * sinf(theta);
+ float axis_vec_y = sinf(phi);
+ float axis_vec_z = cosf(phi) * cosf(theta);
+ float face_x = 0, face_y = 0;
+ int face_index = get_cubemap_face_map(axis_vec_x, axis_vec_y, axis_vec_z, &face_x, &face_y);
+
+ float x_offset = 1.f / 3.f * (face_projection_map[face_index] % 3);
+ float y_offset = .5f * (face_projection_map[face_index] / 3);
+
+ *x = x_offset + (face_x / DEFAULT_EXPANSION_COEF + 1.f) / 6.f;
+ *y = y_offset + (face_y / DEFAULT_EXPANSION_COEF + 1.f) / 4.f;
+}
+
+static void get_rotated_cubemap_map(float phi, float theta, float expand_coef, float *x, float *y)
+{
+ // face_projection_map maps each cube face to an index representing the face on the projection
+ // The indices 0->5 for rotated cubemap goes as:
+ // [0, 1] as row 1, left to right
+ // [2, 3] as row 2, left to right
+ // [4, 5] as row 3, left to right
+ static const int face_projection_map[] = {
+ [LEFT] = 0, [TOP] = 1,
+ [FRONT] = 2, [BACK] = 3,
+ [RIGHT] = 4, [BOTTOM] = 5,
+ };
+
+ float axis_yaw_vec_x, axis_yaw_vec_y, axis_yaw_vec_z;
+ float axis_pitch_vec_z, axis_pitch_vec_y;
+ float x_offset, y_offset;
+ float face_x = 0, face_y = 0;
+ int face_index;
+
+ // Unrotate the cube and fix the face map:
+ // First undo the 45 degree yaw
+ theta += M_PI_4_F;
+
+ // Now we are looking at the middle of an edge. So convert to axis vector & undo the pitch
+ axis_yaw_vec_x = cosf(phi) * sinf(theta);
+ axis_yaw_vec_y = sinf(phi);
+ axis_yaw_vec_z = cosf(phi) * cosf(theta);
+
+ // The pitch axis is along +x, and has value of -45 degree. So, only y and z components change
+ axis_pitch_vec_z = (axis_yaw_vec_z - axis_yaw_vec_y) / M_SQRT2_F;
+ axis_pitch_vec_y = (axis_yaw_vec_y + axis_yaw_vec_z) / M_SQRT2_F;
+
+ face_index = get_cubemap_face_map(axis_yaw_vec_x, axis_pitch_vec_y, axis_pitch_vec_z, &face_x, &face_y);
+
+ // Correct for the orientation of the axes on the faces
+ if (face_index == LEFT || face_index == FRONT || face_index == RIGHT) {
+ // x increases downwards & y increases towards left
+ float upright_y = face_y;
+ face_y = face_x;
+ face_x = -upright_y;
+ } else if (face_index == TOP || face_index == BOTTOM) {
+ // turn the face upside-down for top and bottom
+ face_x *= -1.f;
+ face_y *= -1.f;
+ }
+
+ x_offset = .5f * (face_projection_map[face_index] & 1);
+ y_offset = 1.f / 3.f * (face_projection_map[face_index] >> 1);
+
+ *x = x_offset + (face_x / expand_coef + 1.f) / 4.f;
+ *y = y_offset + (face_y / expand_coef + 1.f) / 6.f;
+}
+
+static void get_projected_map(float phi, float theta, SampleParams *p, BilinearMap *m)
+{
+ float x = 0, y = 0;
+ switch(p->projection) {
+// TODO: Calculate for CDS
+ case PROJECTION_CUBEMAP23:
+ get_rotated_cubemap_map(phi, theta, p->expand_coef, &x, &y);
+ break;
+ case PROJECTION_CUBEMAP32:
+ get_cubemap32_map(phi, theta, &x, &y);
+ break;
+ case PROJECTION_BARREL:
+ get_barrel_map(phi, theta, &x, &y);
+ break;
+ case PROJECTION_BARREL_SPLIT:
+ get_barrel_split_map(phi, theta, p->expand_coef, &x, &y);
+ break;
+ // Assume PROJECTION_EQUIRECT as the default
+ case PROJECTION_EQUIRECT:
+ default:
+ get_equirect_map(phi, theta, &x, &y);
+ break;
+ }
+ compute_bilinear_map(p, m, x, y);
+}
+
+static int tape_supports_projection(int projection)
+{
+ switch(projection) {
+ case PROJECTION_CUBEMAP23:
+ case PROJECTION_CUBEMAP32:
+ case PROJECTION_BARREL:
+ case PROJECTION_BARREL_SPLIT:
+ case PROJECTION_EQUIRECT:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+static float get_tape_angular_resolution(int projection, float expand_coef, int image_width, int image_height)
+{
+ // NOTE: The angular resolution of a projected sphere is defined as
+ // the maximum possible horizontal angle of a pixel on the equator.
+ // We apply an intentional bias to the horizon as opposed to the meridian,
+ // since the view direction of most content is rarely closer to the poles
+
+ switch(projection) {
+// TODO: Calculate for CDS
+ case PROJECTION_CUBEMAP23:
+ // Approximating atanf(pixel_width / (half_edge_width * sqrt2)) = pixel_width / (half_face_width * sqrt2)
+ return expand_coef / (M_SQRT2_F * image_width / 4.f);
+ case PROJECTION_CUBEMAP32:
+ // Approximating atanf(pixel_width / half_face_width) = pixel_width / half_face_width
+ return DEFAULT_EXPANSION_COEF / (image_width / 6.f);
+ case PROJECTION_BARREL:
+ return FFMAX(BARREL_THETA_RANGE / (0.8f * image_width), BARREL_PHI_RANGE / image_height);
+ case PROJECTION_BARREL_SPLIT:
+ return FFMAX((expand_coef * M_PI_F) / (2.0f / 3.0f * image_width),
+ expand_coef * M_PI_2_F / (image_height / 2.0f));
+ // Assume PROJECTION_EQUIRECT as the default
+ case PROJECTION_EQUIRECT:
+ default:
+ return FFMAX(2.0f * M_PI_F / image_width, M_PI_F / image_height);
+ }
+}
+
+static int
+generate_eye_tape_map(SSIM360Context *s,
+ int plane, int eye,
+ SampleParams *ref_sample_params,
+ SampleParams *main_sample_params)
+{
+ int ref_image_width = ref_sample_params->x_image_range + 1;
+ int ref_image_height = ref_sample_params->y_image_range + 1;
+
+ float angular_resolution =
+ get_tape_angular_resolution(s->ref_projection, 1.f + s->ref_pad,
+ ref_image_width, ref_image_height);
+
+ float conversion_factor = M_PI_2_F / (angular_resolution * angular_resolution);
+ float start_phi = -M_PI_2_F + 4.0f * angular_resolution;
+ float start_x = conversion_factor * sinf(start_phi);
+ float end_phi = M_PI_2_F - 3.0f * angular_resolution;
+ float end_x = conversion_factor * sinf(end_phi);
+ float x_range = end_x - start_x;
+
+ // Ensure tape length is a multiple of 4, for full SSIM block coverage
+ int tape_length = s->tape_length[plane] = ((int)ROUNDED_DIV(x_range, 4)) << 2;
+
+ s->ref_tape_map[plane][eye] = av_malloc_array(tape_length * 8, sizeof(BilinearMap));
+ s->main_tape_map[plane][eye] = av_malloc_array(tape_length * 8, sizeof(BilinearMap));
+ if (!s->ref_tape_map[plane][eye] || !s->main_tape_map[plane][eye])
+ return AVERROR(ENOMEM);
+
+ s->angular_resolution[plane][eye] = angular_resolution;
+
+ // For easy memory access, we navigate the tape lengthwise on y
+ for (int y_index = 0; y_index < tape_length; y_index ++) {
+ int y_stride = y_index << 3;
+
+ float x = start_x + x_range * (y_index / (tape_length - 1.0f));
+ // phi will be in range [-pi/2, pi/2]
+ float mid_phi = asinf(x / conversion_factor);
+
+ float theta = mid_phi * M_PI_2_F / angular_resolution;
+ theta = get_radius_between_negative_and_positive_pi(theta);
+
+ for (int x_index = 0; x_index < 8; x_index ++) {
+ float phi = mid_phi + angular_resolution * (3.0f - x_index);
+ int tape_index = y_stride + x_index;
+ get_projected_map(phi, theta, ref_sample_params, &s->ref_tape_map [plane][eye][tape_index]);
+ get_projected_map(phi, theta, main_sample_params, &s->main_tape_map[plane][eye][tape_index]);
+ }
+ }
+
+ return 0;
+}
+
+static int generate_tape_maps(SSIM360Context *s, AVFrame *main, const AVFrame *ref)
+{
+ // A tape is a long segment with 8 pixels thickness, with the angular center at the middle (below 4th pixel).
+ // When it takes a full loop around a sphere, it will overlap the starting point at half the width from above.
+ int ref_stereo_format = s->ref_stereo_format;
+ int main_stereo_format = s->main_stereo_format;
+ int are_both_stereo = (main_stereo_format != STEREO_FORMAT_MONO) && (ref_stereo_format != STEREO_FORMAT_MONO);
+ int min_eye_count = 1 + are_both_stereo;
+ int ret;
+
+ for (int i = 0; i < s->nb_components; i ++) {
+ int ref_width = s->ref_planewidth[i];
+ int ref_height = s->ref_planeheight[i];
+ int main_width = s->main_planewidth[i];
+ int main_height = s->main_planeheight[i];
+
+ int is_ref_LR = (ref_stereo_format == STEREO_FORMAT_LR);
+ int is_ref_TB = (ref_stereo_format == STEREO_FORMAT_TB);
+ int is_main_LR = (main_stereo_format == STEREO_FORMAT_LR);
+ int is_main_TB = (main_stereo_format == STEREO_FORMAT_TB);
+
+ int ref_image_width = is_ref_LR ? ref_width >> 1 : ref_width;
+ int ref_image_height = is_ref_TB ? ref_height >> 1 : ref_height;
+ int main_image_width = is_main_LR ? main_width >> 1 : main_width;
+ int main_image_height = is_main_TB ? main_height >> 1 : main_height;
+
+ for (int eye = 0; eye < min_eye_count; eye ++) {
+ SampleParams ref_sample_params = {
+ .stride = ref->linesize[i],
+ .planewidth = ref_width,
+ .planeheight = ref_height,
+ .x_image_range = ref_image_width - 1,
+ .y_image_range = ref_image_height - 1,
+ .x_image_offset = is_ref_LR * eye * ref_image_width,
+ .y_image_offset = is_ref_TB * eye * ref_image_height,
+ .projection = s->ref_projection,
+ .expand_coef = 1.f + s->ref_pad,
+ };
+
+ SampleParams main_sample_params = {
+ .stride = main->linesize[i],
+ .planewidth = main_width,
+ .planeheight = main_height,
+ .x_image_range = main_image_width - 1,
+ .y_image_range = main_image_height - 1,
+ .x_image_offset = is_main_LR * eye * main_image_width,
+ .y_image_offset = is_main_TB * eye * main_image_height,
+ .projection = s->main_projection,
+ .expand_coef = 1.f + s->main_pad,
+ };
+
+ ret = generate_eye_tape_map(s, i, eye, &ref_sample_params, &main_sample_params);
+ if (ret < 0)
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static int do_ssim360(FFFrameSync *fs)
+{
+ AVFilterContext *ctx = fs->parent;
+ SSIM360Context *s = ctx->priv;
+ AVFrame *master, *ref;
+ AVDictionary **metadata;
+ double c[4], ssim360v = 0.0, ssim360p50 = 0.0;
+ int i, ret;
+ int need_frame_skip = s->nb_net_frames % (s->frame_skip_ratio + 1);
+ HeatmapList* h_ptr = NULL;
+
+ ret = ff_framesync_dualinput_get(fs, &master, &ref);
+ if (ret < 0)
+ return ret;
+
+ s->nb_net_frames++;
+
+ if (need_frame_skip)
+ return ff_filter_frame(ctx->outputs[0], master);
+
+ metadata = &master->metadata;
+
+ if (s->use_tape && !s->tape_length[0]) {
+ ret = generate_tape_maps(s, master, ref);
+ if (ret < 0)
+ return ret;
+ }
+
+ for (i = 0; i < s->nb_components; i++) {
+ if (s->use_tape) {
+ c[i] = ssim360_tape(master->data[i], s->main_tape_map[i][0],
+ ref->data[i], s->ref_tape_map [i][0],
+ s->tape_length[i], s->max, s->temp,
+ s->ssim360_hist[i], &s->ssim360_hist_net[i],
+ s->angular_resolution[i][0], s->heatmaps);
+
+ if (s->ref_tape_map[i][1]) {
+ c[i] += ssim360_tape(master->data[i], s->main_tape_map[i][1],
+ ref->data[i], s->ref_tape_map[i][1],
+ s->tape_length[i], s->max, s->temp,
+ s->ssim360_hist[i], &s->ssim360_hist_net[i],
+ s->angular_resolution[i][1], s->heatmaps);
+ c[i] /= 2.f;
+ }
+ } else {
+ c[i] = s->ssim360_plane(master->data[i], master->linesize[i],
+ ref->data[i], ref->linesize[i],
+ s->ref_planewidth[i], s->ref_planeheight[i],
+ s->temp, s->max, s->density);
+ }
+
+ s->ssim360[i] += c[i];
+ ssim360v += s->coefs[i] * c[i];
+ }
+
+ s->nb_ssim_frames++;
+ if (s->heatmaps) {
+ map_uninit(&s->heatmaps->map);
+ h_ptr = s->heatmaps;
+ s->heatmaps = s->heatmaps->next;
+ av_freep(&h_ptr);
+ }
+ s->ssim360_total += ssim360v;
+
+ // Record percentiles from histogram and attach metadata when using tape
+ if (s->use_tape) {
+ int i, p, hist_indices[4];
+ double hist_weight[4];
+
+ for (i = 0; i < s->nb_components; i++) {
+ hist_indices[i] = SSIM360_HIST_SIZE - 1;
+ hist_weight[i] = 0;
+ }
+
+ for (p = 0; PERCENTILE_LIST[p] >= 0.0; p ++) {
+ for (i = 0; i < s->nb_components; i++) {
+ double target_weight, ssim360p;
+
+ // Target weight = total number of samples above the specified percentile
+ target_weight = (1. - PERCENTILE_LIST[p]) * s->ssim360_hist_net[i];
+ target_weight = FFMAX(target_weight, 1);
+ while(hist_indices[i] >= 0 && hist_weight[i] < target_weight) {
+ hist_weight[i] += s->ssim360_hist[i][hist_indices[i]];
+ hist_indices[i] --;
+ }
+
+ ssim360p = (double)(hist_indices[i] + 1) / (double)(SSIM360_HIST_SIZE - 1);
+ if (PERCENTILE_LIST[p] == 0.5)
+ ssim360p50 += s->coefs[i] * ssim360p;
+ s->ssim360_percentile_sum[i][p] += ssim360p;
+ }
+ }
+
+ for (i = 0; i < s->nb_components; i++) {
+ memset(s->ssim360_hist[i], 0, SSIM360_HIST_SIZE * sizeof(double));
+ s->ssim360_hist_net[i] = 0;
+ }
+
+ for (i = 0; i < s->nb_components; i++) {
+ int cidx = s->is_rgb ? s->rgba_map[i] : i;
+ set_meta(metadata, "lavfi.ssim360.", s->comps[i], c[cidx]);
+ }
+
+ // Use p50 as the aggregated value
+ set_meta(metadata, "lavfi.ssim360.All", 0, ssim360p50);
+ set_meta(metadata, "lavfi.ssim360.dB", 0, ssim360_db(ssim360p50, 1.0));
+
+ if (s->stats_file) {
+ fprintf(s->stats_file, "n:%"PRId64" ", s->nb_ssim_frames);
+
+ for (i = 0; i < s->nb_components; i++) {
+ int cidx = s->is_rgb ? s->rgba_map[i] : i;
+ fprintf(s->stats_file, "%c:%f ", s->comps[i], c[cidx]);
+ }
+
+ fprintf(s->stats_file, "All:%f (%f)\n", ssim360p50, ssim360_db(ssim360p50, 1.0));
+ }
+ }
+
+ return ff_filter_frame(ctx->outputs[0], master);
+}
+
+static int parse_heatmaps(void *logctx, HeatmapList **proot,
+ const char *data, int w, int h)
+{
+ HeatmapList *root = NULL;
+ HeatmapList **next = &root;
+
+ int ret;
+
+ // skip video id line
+ data = strchr(data, '\n');
+ if (!data) {
+ av_log(logctx, AV_LOG_ERROR, "Invalid heatmap syntax\n");
+ return AVERROR(EINVAL);
+ }
+ data++;
+
+ while (*data) {
+ HeatmapList *cur;
+ char *line = av_get_token(&data, "\n");
+ char *saveptr, *val;
+ int i;
+
+ if (!line) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+ if (!line) {
+ av_freep(&line);
+ break;
+ }
+
+ // first value is frame id
+ av_strtok(line, ",", &saveptr);
+
+ ret = map_alloc(next, w, h);
+ if (ret < 0)
+ goto line_fail;
+
+ cur = *next;
+ next = &cur->next;
+
+ i = 0;
+ while ((val = av_strtok(NULL, ",", &saveptr))) {
+ if (i >= w * h) {
+ av_log(logctx, AV_LOG_ERROR, "Too many entries in a heat map\n");
+ ret = AVERROR(EINVAL);
+ goto line_fail;
+ }
+
+ cur->map.value[i++] = atof(val);
+ }
+
+line_fail:
+ av_freep(&line);
+ if (ret < 0)
+ goto fail;
+ }
+
+ *proot = root;
+
+ return 0;
+fail:
+ map_list_free(&root);
+ return ret;
+}
+
+static av_cold int init(AVFilterContext *ctx)
+{
+ SSIM360Context *s = ctx->priv;
+ int err;
+
+ if (s->stats_file_str) {
+ if (!strcmp(s->stats_file_str, "-")) {
+ s->stats_file = stdout;
+ } else {
+ s->stats_file = avpriv_fopen_utf8(s->stats_file_str, "w");
+ if (!s->stats_file) {
+ char buf[128];
+
+ err = AVERROR(errno);
+ av_strerror(err, buf, sizeof(buf));
+ av_log(ctx, AV_LOG_ERROR, "Could not open stats file %s: %s\n",
+ s->stats_file_str, buf);
+ return err;
+ }
+ }
+ }
+
+ if (s->use_tape && s->heatmap_str) {
+ err = parse_heatmaps(ctx, &s->heatmaps, s->heatmap_str,
+ s->default_heatmap_w, s->default_heatmap_h);
+ if (err < 0)
+ return err;
+ }
+
+ s->fs.on_event = do_ssim360;
+ return 0;
+}
+
+static int config_input_main(AVFilterLink *inlink)
+{
+ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
+ AVFilterContext *ctx = inlink->dst;
+ SSIM360Context *s = ctx->priv;
+
+ s->main_planeheight[0] = inlink->h;
+ s->main_planeheight[3] = inlink->h;
+ s->main_planeheight[1] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
+ s->main_planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
+
+ s->main_planewidth[0] = inlink->w;
+ s->main_planewidth[3] = inlink->w;
+ s->main_planewidth[1] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
+ s->main_planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
+
+ // If main projection is unindentified, assume it is same as reference
+ if (s->main_projection == PROJECTION_N)
+ s->main_projection = s->ref_projection;
+
+ // If main stereo format is unindentified, assume it is same as reference
+ if (s->main_stereo_format == STEREO_FORMAT_N)
+ s->main_stereo_format = s->ref_stereo_format;
+
+ return 0;
+}
+
+static int generate_density_map(SSIM360Context *s, int w, int h)
+{
+ double d, r_square, cos_square;
+ int ow, oh, ret;
+
+ ret = map_init(&s->density, w, h);
+ if (ret < 0)
+ return ret;
+
+ switch (s->ref_stereo_format) {
+ case STEREO_FORMAT_TB:
+ h >>= 1;
+ break;
+ case STEREO_FORMAT_LR:
+ w >>= 1;
+ break;
+ }
+
+ switch (s->ref_projection) {
+ case PROJECTION_EQUIRECT:
+ for (int i = 0; i < h; i++) {
+ d = cos(((0.5 + i) / h - 0.5) * M_PI);
+ for (int j = 0; j < w; j++)
+ s->density.value[i * w + j] = d;
+ }
+ break;
+ case PROJECTION_CUBEMAP32:
+ // for one quater of a face
+ for (int i = 0; i < h / 4; i++) {
+ for (int j = 0; j < w / 6; j++) {
+ // r = normalized distance to the face center
+ r_square =
+ (0.5 + i) / (h / 2) * (0.5 + i) / (h / 2) +
+ (0.5 + j) / (w / 3) * (0.5 + j) / (w / 3);
+ r_square /= DEFAULT_EXPANSION_COEF * DEFAULT_EXPANSION_COEF;
+ cos_square = 0.25 / (r_square + 0.25);
+ d = pow(cos_square, 1.5);
+
+ for (int face = 0; face < 6; face++) {
+ // center of a face
+ switch (face) {
+ case 0:
+ oh = h / 4;
+ ow = w / 6;
+ break;
+ case 1:
+ oh = h / 4;
+ ow = w / 6 + w / 3;
+ break;
+ case 2:
+ oh = h / 4;
+ ow = w / 6 + 2 * w / 3;
+ break;
+ case 3:
+ oh = h / 4 + h / 2;
+ ow = w / 6;
+ break;
+ case 4:
+ oh = h / 4 + h / 2;
+ ow = w / 6 + w / 3;
+ break;
+ case 5:
+ oh = h / 4 + h / 2;
+ ow = w / 6 + 2 * w / 3;
+ break;
+ }
+ s->density.value[(oh - 1 - i) * w + ow - 1 - j] = d;
+ s->density.value[(oh - 1 - i) * w + ow + j] = d;
+ s->density.value[(oh + i) * w + ow - 1 - j] = d;
+ s->density.value[(oh + i) * w + ow + j] = d;
+ }
+ }
+ }
+ break;
+ case PROJECTION_CUBEMAP23:
+ // for one quater of a face
+ for (int i = 0; i < h / 6; i++) {
+ for (int j = 0; j < w / 4; j++) {
+ // r = normalized distance to the face center
+ r_square =
+ (0.5 + i) / (h / 3) * (0.5 + i) / (h / 3) +
+ (0.5 + j) / (w / 2) * (0.5 + j) / (w / 2);
+ r_square /= (1.f + s->ref_pad) * (1.f + s->ref_pad);
+ cos_square = 0.25 / (r_square + 0.25);
+ d = pow(cos_square, 1.5);
+
+ for (int face = 0; face < 6; face++) {
+ // center of a face
+ switch (face) {
+ case 0:
+ ow = w / 4;
+ oh = h / 6;
+ break;
+ case 1:
+ ow = w / 4;
+ oh = h / 6 + h / 3;
+ break;
+ case 2:
+ ow = w / 4;
+ oh = h / 6 + 2 * h / 3;
+ break;
+ case 3:
+ ow = w / 4 + w / 2;
+ oh = h / 6;
+ break;
+ case 4:
+ ow = w / 4 + w / 2;
+ oh = h / 6 + h / 3;
+ break;
+ case 5:
+ ow = w / 4 + w / 2;
+ oh = h / 6 + 2 * h / 3;
+ break;
+ }
+ s->density.value[(oh - 1 - i) * w + ow - 1 - j] = d;
+ s->density.value[(oh - 1 - i) * w + ow + j] = d;
+ s->density.value[(oh + i) * w + ow - 1 - j] = d;
+ s->density.value[(oh + i) * w + ow + j] = d;
+ }
+ }
+ }
+ break;
+ case PROJECTION_BARREL:
+ // side face
+ for (int i = 0; i < h; i++) {
+ for (int j = 0; j < w * 4 / 5; j++) {
+ d = cos(((0.5 + i) / h - 0.5) * DEFAULT_EXPANSION_COEF * M_PI_2);
+ s->density.value[i * w + j] = d * d * d;
+ }
+ }
+ // top and bottom
+ for (int i = 0; i < h; i++) {
+ for (int j = w * 4 / 5; j < w; j++) {
+ double dx = DEFAULT_EXPANSION_COEF * (0.5 + j - w * 0.90) / (w * 0.10);
+ double dx_squared = dx * dx;
+
+ double top_dy = DEFAULT_EXPANSION_COEF * (0.5 + i - h * 0.25) / (h * 0.25);
+ double top_dy_squared = top_dy * top_dy;
+
+ double bottom_dy = DEFAULT_EXPANSION_COEF * (0.5 + i - h * 0.75) / (h * 0.25);
+ double bottom_dy_squared = bottom_dy * bottom_dy;
+
+ // normalized distance to the circle center
+ r_square = (i < h / 2 ? top_dy_squared : bottom_dy_squared) + dx_squared;
+ if (r_square > 1.0)
+ continue;
+
+ cos_square = 1.0 / (r_square + 1.0);
+ d = pow(cos_square, 1.5);
+ s->density.value[i * w + j] = d;
+ }
+ }
+ break;
+ default:
+ // TODO: SSIM360_v1
+ for (int i = 0; i < h; i++) {
+ for (int j = 0; j < w; j++)
+ s->density.value[i * w + j] = 0;
+ }
+ }
+
+ switch (s->ref_stereo_format) {
+ case STEREO_FORMAT_TB:
+ for (int i = 0; i < h; i++) {
+ for (int j = 0; j < w; j++)
+ s->density.value[(i + h) * w + j] = s->density.value[i * w + j];
+ }
+ break;
+ case STEREO_FORMAT_LR:
+ for (int i = 0; i < h; i++) {
+ for (int j = 0; j < w; j++)
+ s->density.value[i * w + j + w] = s->density.value[i * w + j];
+ }
+ }
+
+ return 0;
+}
+
+static int config_input_ref(AVFilterLink *inlink)
+{
+ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
+ AVFilterContext *ctx = inlink->dst;
+ SSIM360Context *s = ctx->priv;
+ int sum = 0;
+
+ s->nb_components = desc->nb_components;
+
+ s->ref_planeheight[0] = inlink->h;
+ s->ref_planeheight[3] = inlink->h;
+ s->ref_planeheight[1] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
+ s->ref_planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
+
+ s->ref_planewidth[0] = inlink->w;
+ s->ref_planewidth[3] = inlink->w;
+ s->ref_planewidth[1] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
+ s->ref_planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
+
+ s->is_rgb = ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0;
+ s->comps[0] = s->is_rgb ? 'R' : 'Y';
+ s->comps[1] = s->is_rgb ? 'G' : 'U';
+ s->comps[2] = s->is_rgb ? 'B' : 'V';
+ s->comps[3] = 'A';
+
+ // If chroma computation is disabled, and the format is YUV, skip U & V channels
+ if (!s->is_rgb && !s->compute_chroma)
+ s->nb_components = 1;
+
+ s->max = (1 << desc->comp[0].depth) - 1;
+
+ s->ssim360_plane = desc->comp[0].depth > 8 ? ssim360_plane_16bit : ssim360_plane_8bit;
+
+ for (int i = 0; i < s->nb_components; i++)
+ sum += s->ref_planeheight[i] * s->ref_planewidth[i];
+ for (int i = 0; i < s->nb_components; i++)
+ s->coefs[i] = (double) s->ref_planeheight[i] * s->ref_planewidth[i] / sum;
+
+ return 0;
+}
+
+static int config_output(AVFilterLink *outlink)
+{
+ AVFilterContext *ctx = outlink->src;
+ SSIM360Context *s = ctx->priv;
+ AVFilterLink *mainlink = ctx->inputs[0];
+ AVFilterLink *reflink = ctx->inputs[0];
+ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format);
+ int ret;
+
+ // Use tape algorithm if any of frame sizes, projections or stereo format are not equal
+ if (ctx->inputs[0]->w != ctx->inputs[1]->w || ctx->inputs[0]->h != ctx->inputs[1]->h ||
+ s->ref_projection != s->main_projection || s->ref_stereo_format != s->main_stereo_format)
+ s->use_tape = 1;
+
+ // Finally, if we have decided to / forced to use tape, check if tape supports both input and output projection
+ if (s->use_tape &&
+ !(tape_supports_projection(s->main_projection) &&
+ tape_supports_projection(s->ref_projection))) {
+ av_log(ctx, AV_LOG_ERROR, "Projection is unsupported for the tape based algorithm\n");
+ return AVERROR(EINVAL);
+ }
+
+ if (s->use_tape) {
+ // s->temp will be allocated for the tape width = 8. The tape is long downwards
+ s->temp = av_malloc_array((2 * 8 + 12), sizeof(*s->temp));
+ if (!s->temp)
+ return AVERROR(ENOMEM);
+
+ memset(s->ssim360_percentile_sum, 0, sizeof(s->ssim360_percentile_sum));
+
+ for (int i = 0; i < s->nb_components; i++) {
+ s->ssim360_hist[i] = av_calloc(SSIM360_HIST_SIZE, sizeof(*s->ssim360_hist));
+ if (!s->ssim360_hist[i])
+ return AVERROR(ENOMEM);
+ }
+ } else {
+ s->temp = av_malloc_array((2 * reflink->w + 12), sizeof(*s->temp) * (1 + (desc->comp[0].depth > 8)));
+ if (!s->temp)
+ return AVERROR(ENOMEM);
+
+ if (!s->density.value) {
+ ret = generate_density_map(s, reflink->w, reflink->h);
+ if (ret < 0)
+ return ret;
+ }
+ }
+
+ ret = ff_framesync_init_dualinput(&s->fs, ctx);
+ if (ret < 0)
+ return ret;
+
+ outlink->w = mainlink->w;
+ outlink->h = mainlink->h;
+ outlink->time_base = mainlink->time_base;
+ outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
+ outlink->frame_rate = mainlink->frame_rate;
+
+ s->fs.opt_shortest = 1;
+ s->fs.opt_repeatlast = 1;
+
+ ret = ff_framesync_configure(&s->fs);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+static int activate(AVFilterContext *ctx)
+{
+ SSIM360Context *s = ctx->priv;
+ return ff_framesync_activate(&s->fs);
+}
+
+static av_cold void uninit(AVFilterContext *ctx)
+{
+ SSIM360Context *s = ctx->priv;
+
+ if (s->nb_ssim_frames > 0) {
+ char buf[256];
+ buf[0] = 0;
+ // Log average SSIM360 values
+ for (int i = 0; i < s->nb_components; i++) {
+ int c = s->is_rgb ? s->rgba_map[i] : i;
+ av_strlcatf(buf, sizeof(buf), " %c:%f (%f)", s->comps[i], s->ssim360[c] / s->nb_ssim_frames,
+ ssim360_db(s->ssim360[c], s->nb_ssim_frames));
+ }
+ av_log(ctx, AV_LOG_INFO, "SSIM360%s All:%f (%f)\n", buf,
+ s->ssim360_total / s->nb_ssim_frames, ssim360_db(s->ssim360_total, s->nb_ssim_frames));
+
+ // Log percentiles from histogram when using tape
+ if (s->use_tape) {
+ for (int p = 0; PERCENTILE_LIST[p] >= 0.0; p++) {
+ buf[0] = 0;
+ for (int i = 0; i < s->nb_components; i++) {
+ int c = s->is_rgb ? s->rgba_map[i] : i;
+ double ssim360p = s->ssim360_percentile_sum[i][p] / (double)(s->nb_ssim_frames);
+ av_strlcatf(buf, sizeof(buf), " %c:%f (%f)", s->comps[c], ssim360p, ssim360_db(ssim360p, 1));
+ }
+ av_log(ctx, AV_LOG_INFO, "SSIM360_p%d%s\n", (int)(PERCENTILE_LIST[p] * 100.), buf);
+ }
+ }
+ }
+
+ // free density map
+ map_uninit(&s->density);
+
+ map_list_free(&s->heatmaps);
+
+ for (int i = 0; i < s->nb_components; i++) {
+ for (int eye = 0; eye < 2; eye++) {
+ av_freep(&s->ref_tape_map[i][eye]);
+ av_freep(&s->main_tape_map[i][eye]);
+ }
+ av_freep(&s->ssim360_hist[i]);
+ }
+
+ ff_framesync_uninit(&s->fs);
+
+ if (s->stats_file && s->stats_file != stdout)
+ fclose(s->stats_file);
+
+ av_freep(&s->temp);
+}
+
+#define PF(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf, AV_PIX_FMT_GBR##suf
+static const enum AVPixelFormat ssim360_pixfmts[] = {
+ AV_PIX_FMT_GRAY8,
+ AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
+ AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
+ AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
+ AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
+ AV_PIX_FMT_GBRP,
+ PF(P9), PF(P10), PF(P12), PF(P14), PF(P16),
+ AV_PIX_FMT_NONE
+};
+#undef PF
+
+static const AVFilterPad ssim360_inputs[] = {
+ {
+ .name = "main",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = config_input_main,
+ },
+ {
+ .name = "reference",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = config_input_ref,
+ },
+};
+
+static const AVFilterPad ssim360_outputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = config_output,
+ },
+};
+
+AVFilter ff_vf_ssim360 = {
+ .name = "ssim360",
+ .description = NULL_IF_CONFIG_SMALL("Calculate the SSIM between two 360 video streams."),
+ .preinit = ssim360_framesync_preinit,
+ .init = init,
+ .uninit = uninit,
+ .activate = activate,
+ .priv_size = sizeof(SSIM360Context),
+ .priv_class = &ssim360_class,
+ .inputs = ssim360_inputs,
+ .outputs = ssim360_outputs,
+ FILTER_INPUTS(ssim360_inputs),
+ FILTER_OUTPUTS(ssim360_outputs),
+ FILTER_PIXFMTS_ARRAY(ssim360_pixfmts),
+};
--
2.35.1
More information about the ffmpeg-devel
mailing list