FFmpeg
g722enc.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) CMU 1993 Computer Science, Speech Group
3  * Chengxiang Lu and Alex Hauptmann
4  * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
5  * Copyright (c) 2009 Kenan Gillet
6  * Copyright (c) 2010 Martin Storsjo
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * G.722 ADPCM audio encoder
28  */
29 
30 #include "libavutil/avassert.h"
31 #include "avcodec.h"
32 #include "internal.h"
33 #include "g722.h"
34 #include "libavutil/common.h"
35 
36 #define FREEZE_INTERVAL 128
37 
38 /* This is an arbitrary value. Allowing insanely large values leads to strange
39  problems, so we limit it to a reasonable value */
40 #define MAX_FRAME_SIZE 32768
41 
42 /* We clip the value of avctx->trellis to prevent data type overflows and
43  undefined behavior. Using larger values is insanely slow anyway. */
44 #define MIN_TRELLIS 0
45 #define MAX_TRELLIS 16
46 
48 {
49  G722Context *c = avctx->priv_data;
50  int i;
51  for (i = 0; i < 2; i++) {
52  av_freep(&c->paths[i]);
53  av_freep(&c->node_buf[i]);
54  av_freep(&c->nodep_buf[i]);
55  }
56  return 0;
57 }
58 
60 {
61  G722Context *c = avctx->priv_data;
62  int ret;
63 
64  c->band[0].scale_factor = 8;
65  c->band[1].scale_factor = 2;
66  c->prev_samples_pos = 22;
67 
68  if (avctx->trellis) {
69  int frontier = 1 << avctx->trellis;
70  int max_paths = frontier * FREEZE_INTERVAL;
71  int i;
72  for (i = 0; i < 2; i++) {
73  c->paths[i] = av_mallocz_array(max_paths, sizeof(**c->paths));
74  c->node_buf[i] = av_mallocz_array(frontier, 2 * sizeof(**c->node_buf));
75  c->nodep_buf[i] = av_mallocz_array(frontier, 2 * sizeof(**c->nodep_buf));
76  if (!c->paths[i] || !c->node_buf[i] || !c->nodep_buf[i]) {
77  ret = AVERROR(ENOMEM);
78  goto error;
79  }
80  }
81  }
82 
83  if (avctx->frame_size) {
84  /* validate frame size */
85  if (avctx->frame_size & 1 || avctx->frame_size > MAX_FRAME_SIZE) {
86  int new_frame_size;
87 
88  if (avctx->frame_size == 1)
89  new_frame_size = 2;
90  else if (avctx->frame_size > MAX_FRAME_SIZE)
91  new_frame_size = MAX_FRAME_SIZE;
92  else
93  new_frame_size = avctx->frame_size - 1;
94 
95  av_log(avctx, AV_LOG_WARNING, "Requested frame size is not "
96  "allowed. Using %d instead of %d\n", new_frame_size,
97  avctx->frame_size);
98  avctx->frame_size = new_frame_size;
99  }
100  } else {
101  /* This is arbitrary. We use 320 because it's 20ms @ 16kHz, which is
102  a common packet size for VoIP applications */
103  avctx->frame_size = 320;
104  }
105  avctx->initial_padding = 22;
106 
107  if (avctx->trellis) {
108  /* validate trellis */
109  if (avctx->trellis < MIN_TRELLIS || avctx->trellis > MAX_TRELLIS) {
110  int new_trellis = av_clip(avctx->trellis, MIN_TRELLIS, MAX_TRELLIS);
111  av_log(avctx, AV_LOG_WARNING, "Requested trellis value is not "
112  "allowed. Using %d instead of %d\n", new_trellis,
113  avctx->trellis);
114  avctx->trellis = new_trellis;
115  }
116  }
117 
118  ff_g722dsp_init(&c->dsp);
119 
120  return 0;
121 error:
122  g722_encode_close(avctx);
123  return ret;
124 }
125 
126 static const int16_t low_quant[33] = {
127  35, 72, 110, 150, 190, 233, 276, 323,
128  370, 422, 473, 530, 587, 650, 714, 786,
129  858, 940, 1023, 1121, 1219, 1339, 1458, 1612,
130  1765, 1980, 2195, 2557, 2919
131 };
132 
133 static inline void filter_samples(G722Context *c, const int16_t *samples,
134  int *xlow, int *xhigh)
135 {
136  int xout[2];
137  c->prev_samples[c->prev_samples_pos++] = samples[0];
138  c->prev_samples[c->prev_samples_pos++] = samples[1];
139  c->dsp.apply_qmf(c->prev_samples + c->prev_samples_pos - 24, xout);
140  *xlow = xout[0] + xout[1] >> 14;
141  *xhigh = xout[0] - xout[1] >> 14;
142  if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
143  memmove(c->prev_samples,
144  c->prev_samples + c->prev_samples_pos - 22,
145  22 * sizeof(c->prev_samples[0]));
146  c->prev_samples_pos = 22;
147  }
148 }
149 
150 static inline int encode_high(const struct G722Band *state, int xhigh)
151 {
152  int diff = av_clip_int16(xhigh - state->s_predictor);
153  int pred = 141 * state->scale_factor >> 8;
154  /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
155  return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
156 }
157 
158 static inline int encode_low(const struct G722Band* state, int xlow)
159 {
160  int diff = av_clip_int16(xlow - state->s_predictor);
161  /* = diff >= 0 ? diff : -(diff + 1) */
162  int limit = diff ^ (diff >> (sizeof(diff)*8-1));
163  int i = 0;
164  limit = limit + 1 << 10;
165  if (limit > low_quant[8] * state->scale_factor)
166  i = 9;
167  while (i < 29 && limit > low_quant[i] * state->scale_factor)
168  i++;
169  return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
170 }
171 
172 static void g722_encode_trellis(G722Context *c, int trellis,
173  uint8_t *dst, int nb_samples,
174  const int16_t *samples)
175 {
176  int i, j, k;
177  int frontier = 1 << trellis;
178  struct TrellisNode **nodes[2];
179  struct TrellisNode **nodes_next[2];
180  int pathn[2] = {0, 0}, froze = -1;
181  struct TrellisPath *p[2];
182 
183  for (i = 0; i < 2; i++) {
184  nodes[i] = c->nodep_buf[i];
185  nodes_next[i] = c->nodep_buf[i] + frontier;
186  memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf[i]));
187  nodes[i][0] = c->node_buf[i] + frontier;
188  nodes[i][0]->ssd = 0;
189  nodes[i][0]->path = 0;
190  nodes[i][0]->state = c->band[i];
191  }
192 
193  for (i = 0; i < nb_samples >> 1; i++) {
194  int xlow, xhigh;
195  struct TrellisNode *next[2];
196  int heap_pos[2] = {0, 0};
197 
198  for (j = 0; j < 2; j++) {
199  next[j] = c->node_buf[j] + frontier*(i & 1);
200  memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
201  }
202 
203  filter_samples(c, &samples[2*i], &xlow, &xhigh);
204 
205  for (j = 0; j < frontier && nodes[0][j]; j++) {
206  /* Only k >> 2 affects the future adaptive state, therefore testing
207  * small steps that don't change k >> 2 is useless, the original
208  * value from encode_low is better than them. Since we step k
209  * in steps of 4, make sure range is a multiple of 4, so that
210  * we don't miss the original value from encode_low. */
211  int range = j < frontier/2 ? 4 : 0;
212  struct TrellisNode *cur_node = nodes[0][j];
213 
214  int ilow = encode_low(&cur_node->state, xlow);
215 
216  for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
217  int decoded, dec_diff, pos;
218  uint32_t ssd;
219  struct TrellisNode* node;
220 
221  if (k < 0)
222  continue;
223 
224  decoded = av_clip_intp2((cur_node->state.scale_factor *
225  ff_g722_low_inv_quant6[k] >> 10)
226  + cur_node->state.s_predictor, 14);
227  dec_diff = xlow - decoded;
228 
229 #define STORE_NODE(index, UPDATE, VALUE)\
230  ssd = cur_node->ssd + dec_diff*dec_diff;\
231  /* Check for wraparound. Using 64 bit ssd counters would \
232  * be simpler, but is slower on x86 32 bit. */\
233  if (ssd < cur_node->ssd)\
234  continue;\
235  if (heap_pos[index] < frontier) {\
236  pos = heap_pos[index]++;\
237  av_assert2(pathn[index] < FREEZE_INTERVAL * frontier);\
238  node = nodes_next[index][pos] = next[index]++;\
239  node->path = pathn[index]++;\
240  } else {\
241  /* Try to replace one of the leaf nodes with the new \
242  * one, but not always testing the same leaf position */\
243  pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
244  if (ssd >= nodes_next[index][pos]->ssd)\
245  continue;\
246  heap_pos[index]++;\
247  node = nodes_next[index][pos];\
248  }\
249  node->ssd = ssd;\
250  node->state = cur_node->state;\
251  UPDATE;\
252  c->paths[index][node->path].value = VALUE;\
253  c->paths[index][node->path].prev = cur_node->path;\
254  /* Sift the newly inserted node up in the heap to restore \
255  * the heap property */\
256  while (pos > 0) {\
257  int parent = (pos - 1) >> 1;\
258  if (nodes_next[index][parent]->ssd <= ssd)\
259  break;\
260  FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
261  nodes_next[index][pos]);\
262  pos = parent;\
263  }
264  STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k);
265  }
266  }
267 
268  for (j = 0; j < frontier && nodes[1][j]; j++) {
269  int ihigh;
270  struct TrellisNode *cur_node = nodes[1][j];
271 
272  /* We don't try to get any initial guess for ihigh via
273  * encode_high - since there's only 4 possible values, test
274  * them all. Testing all of these gives a much, much larger
275  * gain than testing a larger range around ilow. */
276  for (ihigh = 0; ihigh < 4; ihigh++) {
277  int dhigh, decoded, dec_diff, pos;
278  uint32_t ssd;
279  struct TrellisNode* node;
280 
281  dhigh = cur_node->state.scale_factor *
282  ff_g722_high_inv_quant[ihigh] >> 10;
283  decoded = av_clip_intp2(dhigh + cur_node->state.s_predictor, 14);
284  dec_diff = xhigh - decoded;
285 
286  STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh);
287  }
288  }
289 
290  for (j = 0; j < 2; j++) {
291  FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);
292 
293  if (nodes[j][0]->ssd > (1 << 16)) {
294  for (k = 1; k < frontier && nodes[j][k]; k++)
295  nodes[j][k]->ssd -= nodes[j][0]->ssd;
296  nodes[j][0]->ssd = 0;
297  }
298  }
299 
300  if (i == froze + FREEZE_INTERVAL) {
301  p[0] = &c->paths[0][nodes[0][0]->path];
302  p[1] = &c->paths[1][nodes[1][0]->path];
303  for (j = i; j > froze; j--) {
304  dst[j] = p[1]->value << 6 | p[0]->value;
305  p[0] = &c->paths[0][p[0]->prev];
306  p[1] = &c->paths[1][p[1]->prev];
307  }
308  froze = i;
309  pathn[0] = pathn[1] = 0;
310  memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
311  memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
312  }
313  }
314 
315  p[0] = &c->paths[0][nodes[0][0]->path];
316  p[1] = &c->paths[1][nodes[1][0]->path];
317  for (j = i; j > froze; j--) {
318  dst[j] = p[1]->value << 6 | p[0]->value;
319  p[0] = &c->paths[0][p[0]->prev];
320  p[1] = &c->paths[1][p[1]->prev];
321  }
322  c->band[0] = nodes[0][0]->state;
323  c->band[1] = nodes[1][0]->state;
324 }
325 
327  const int16_t *samples)
328 {
329  int xlow, xhigh, ilow, ihigh;
330  filter_samples(c, samples, &xlow, &xhigh);
331  ihigh = encode_high(&c->band[1], xhigh);
332  ilow = encode_low (&c->band[0], xlow);
333  ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor *
334  ff_g722_high_inv_quant[ihigh] >> 10, ihigh);
335  ff_g722_update_low_predictor(&c->band[0], ilow >> 2);
336  *dst = ihigh << 6 | ilow;
337 }
338 
340  uint8_t *dst, int nb_samples,
341  const int16_t *samples)
342 {
343  int i;
344  for (i = 0; i < nb_samples; i += 2)
345  encode_byte(c, dst++, &samples[i]);
346 }
347 
348 static int g722_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
349  const AVFrame *frame, int *got_packet_ptr)
350 {
351  G722Context *c = avctx->priv_data;
352  const int16_t *samples = (const int16_t *)frame->data[0];
353  int nb_samples, out_size, ret;
354 
355  out_size = (frame->nb_samples + 1) / 2;
356  if ((ret = ff_alloc_packet2(avctx, avpkt, out_size, 0)) < 0)
357  return ret;
358 
359  nb_samples = frame->nb_samples - (frame->nb_samples & 1);
360 
361  if (avctx->trellis)
362  g722_encode_trellis(c, avctx->trellis, avpkt->data, nb_samples, samples);
363  else
364  g722_encode_no_trellis(c, avpkt->data, nb_samples, samples);
365 
366  /* handle last frame with odd frame_size */
367  if (nb_samples < frame->nb_samples) {
368  int16_t last_samples[2] = { samples[nb_samples], samples[nb_samples] };
369  encode_byte(c, &avpkt->data[nb_samples >> 1], last_samples);
370  }
371 
372  if (frame->pts != AV_NOPTS_VALUE)
373  avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
374  *got_packet_ptr = 1;
375  return 0;
376 }
377 
379  .name = "g722",
380  .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
381  .type = AVMEDIA_TYPE_AUDIO,
383  .priv_data_size = sizeof(G722Context),
385  .close = g722_encode_close,
386  .encode2 = g722_encode_frame,
387  .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME,
389  .channel_layouts = (const uint64_t[]){ AV_CH_LAYOUT_MONO, 0 },
390 };
AVCodecContext::frame_size
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:2245
AVCodec
AVCodec.
Definition: avcodec.h:3481
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
init
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
FFSWAP
#define FFSWAP(type, a, b)
Definition: common.h:99
sample_fmts
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:686
PREV_SAMPLES_BUF_SIZE
#define PREV_SAMPLES_BUF_SIZE
Definition: g722.h:32
AV_CH_LAYOUT_MONO
#define AV_CH_LAYOUT_MONO
Definition: channel_layout.h:85
TrellisNode::path
int path
Definition: adpcmenc.c:45
out_size
int out_size
Definition: movenc.c:55
MIN_TRELLIS
#define MIN_TRELLIS
Definition: g722enc.c:44
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
internal.h
AVPacket::data
uint8_t * data
Definition: avcodec.h:1477
av_mallocz_array
void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.c:191
AV_CODEC_ID_ADPCM_G722
@ AV_CODEC_ID_ADPCM_G722
Definition: avcodec.h:530
encode_high
static int encode_high(const struct G722Band *state, int xhigh)
Definition: g722enc.c:150
filter_samples
static void filter_samples(G722Context *c, const int16_t *samples, int *xlow, int *xhigh)
Definition: g722enc.c:133
g722_encode_init
static av_cold int g722_encode_init(AVCodecContext *avctx)
Definition: g722enc.c:59
g722_encode_no_trellis
static void g722_encode_no_trellis(G722Context *c, uint8_t *dst, int nb_samples, const int16_t *samples)
Definition: g722enc.c:336
ff_g722_low_inv_quant6
const int16_t ff_g722_low_inv_quant6[64]
Definition: g722.c:63
AVCodecContext::initial_padding
int initial_padding
Audio only.
Definition: avcodec.h:3096
TrellisNode
Definition: adpcmenc.c:43
avassert.h
TrellisNode::ssd
uint32_t ssd
Definition: adpcmenc.c:44
ff_samples_to_time_base
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
Definition: internal.h:288
state
static struct @313 state
av_cold
#define av_cold
Definition: attributes.h:84
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
ff_g722_high_inv_quant
const int16_t ff_g722_high_inv_quant[4]
Definition: g722.c:51
TrellisPath
Definition: aaccoder.c:188
G722Context
Definition: g722.h:34
ff_g722_update_high_predictor
void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, const int ihigh)
Definition: g722.c:154
g722_encode_trellis
static void g722_encode_trellis(G722Context *c, int trellis, uint8_t *dst, int nb_samples, const int16_t *samples)
Definition: g722enc.c:172
ff_adpcm_g722_encoder
AVCodec ff_adpcm_g722_encoder
Definition: g722enc.c:375
g722_encode_close
static av_cold int g722_encode_close(AVCodecContext *avctx)
Definition: g722enc.c:47
FREEZE_INTERVAL
#define FREEZE_INTERVAL
Definition: g722enc.c:36
AVCodecContext::trellis
int trellis
trellis RD quantization
Definition: avcodec.h:2514
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
error
static void error(const char *err)
Definition: target_dec_fuzzer.c:61
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:188
MAX_FRAME_SIZE
#define MAX_FRAME_SIZE
Definition: g722enc.c:40
low_quant
static const int16_t low_quant[33]
Definition: g722enc.c:126
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:59
AV_NOPTS_VALUE
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:248
encode_low
static int encode_low(const struct G722Band *state, int xlow)
Definition: g722enc.c:158
g722.h
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
AVPacket::pts
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
Definition: avcodec.h:1470
common.h
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
av_always_inline
#define av_always_inline
Definition: attributes.h:43
uint8_t
uint8_t
Definition: audio_convert.c:194
TrellisPath::prev
int prev
Definition: aaccoder.c:190
AV_SAMPLE_FMT_S16
@ AV_SAMPLE_FMT_S16
signed 16 bits
Definition: samplefmt.h:61
AVCodec::name
const char * name
Name of the codec implementation.
Definition: avcodec.h:3488
avcodec.h
ret
ret
Definition: filter_design.txt:187
pred
static const float pred[4]
Definition: siprdata.h:259
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
AVCodecContext
main external API structure.
Definition: avcodec.h:1565
STORE_NODE
#define STORE_NODE(index, UPDATE, VALUE)
samples
Filter the word “frame” indicates either a video frame or a group of audio samples
Definition: filter_design.txt:8
g722_encode_frame
static int g722_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
Definition: g722enc.c:345
MAX_TRELLIS
#define MAX_TRELLIS
Definition: g722enc.c:45
diff
static av_always_inline int diff(const uint32_t a, const uint32_t b)
Definition: vf_palettegen.c:136
AVPacket
This structure stores compressed data.
Definition: avcodec.h:1454
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:1592
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
ff_g722_update_low_predictor
void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
Definition: g722.c:143
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
ff_g722dsp_init
av_cold void ff_g722dsp_init(G722DSPContext *c)
Definition: g722dsp.c:68
AV_CODEC_CAP_SMALL_LAST_FRAME
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
Definition: avcodec.h:1011
ff_alloc_packet2
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:32
encode_byte
static av_always_inline void encode_byte(G722Context *c, uint8_t *dst, const int16_t *samples)
Definition: g722enc.c:323