Go to the documentation of this file.
40 int jobnr,
int nb_jobs);
43 static inline float lerpf(
float v0,
float v1,
float f)
45 return v0 + (v1 -
v0) *
f;
51 const float strength = -
lerpf(16.
f, 4.01
f,
s->strength);
55 for (
int p = 0; p <
s->nb_planes; p++) {
56 const int slice_start = (
s->planeheight[p] * jobnr) / nb_jobs;
57 const int slice_end = (
s->planeheight[p] * (jobnr+1)) / nb_jobs;
58 const int linesize =
out->linesize[p];
59 const int in_linesize = in->
linesize[p];
60 const int w =
s->planewidth[p];
62 const int h =
s->planeheight[p];
64 uint8_t *dst =
out->data[p] + slice_start * linesize;
65 const uint8_t *
src = in->
data[p];
67 if (!((1 << p) &
s->planes)) {
73 for (
int y = slice_start; y <
slice_end; y++) {
74 const int y0 =
FFMAX(y - 1, 0);
75 const int y1 =
FFMIN(y + 1, h1);
76 for (
int x = 0; x <
w; x++) {
77 const int x0 =
FFMAX(x - 1, 0);
78 const int x1 =
FFMIN(x + 1, w1);
79 int a =
src[y0 * in_linesize + x0];
80 int b =
src[y0 * in_linesize + x];
81 int c =
src[y0 * in_linesize + x1];
82 int d =
src[y * in_linesize + x0];
83 int e =
src[y * in_linesize + x];
84 int f =
src[y * in_linesize + x1];
85 int g =
src[y1 * in_linesize + x0];
86 int h =
src[y1 * in_linesize + x];
87 int i =
src[y1 * in_linesize + x1];
117 const float strength = -
lerpf(16.
f, 4.01
f,
s->strength);
118 const int max = 2 * (1 <<
s->depth) - 1;
122 for (
int p = 0; p <
s->nb_planes; p++) {
123 const int slice_start = (
s->planeheight[p] * jobnr) / nb_jobs;
124 const int slice_end = (
s->planeheight[p] * (jobnr+1)) / nb_jobs;
125 const int linesize =
out->linesize[p] / 2;
126 const int in_linesize = in->
linesize[p] / 2;
127 const int w =
s->planewidth[p];
128 const int w1 =
w - 1;
129 const int h =
s->planeheight[p];
130 const int h1 =
h - 1;
131 uint16_t *dst = (uint16_t *)
out->data[p] + slice_start * linesize;
132 const uint16_t *
src = (
const uint16_t *)in->
data[p];
134 if (!((1 << p) &
s->planes)) {
140 for (
int y = slice_start; y <
slice_end; y++) {
141 const int y0 =
FFMAX(y - 1, 0);
142 const int y1 =
FFMIN(y + 1, h1);
143 for (
int x = 0; x <
w; x++) {
144 const int x0 =
FFMAX(x - 1, 0);
145 const int x1 =
FFMIN(x + 1, w1);
146 int a =
src[y0 * in_linesize + x0];
147 int b =
src[y0 * in_linesize + x];
148 int c =
src[y0 * in_linesize + x1];
149 int d =
src[y * in_linesize + x0];
150 int e =
src[y * in_linesize + x];
151 int f =
src[y * in_linesize + x1];
152 int g =
src[y1 * in_linesize + x0];
153 int h =
src[y1 * in_linesize + x];
154 int i =
src[y1 * in_linesize + x1];
155 int mn, mn2, mx, mx2;
238 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
240 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
242 s->depth =
desc->comp[0].depth;
243 s->nb_planes =
desc->nb_components;
265 #define OFFSET(x) offsetof(CASContext, x)
266 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
280 .priv_class = &cas_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_GBRAP16
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define FILTER_PIXFMTS_ARRAY(array)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
AVFILTER_DEFINE_CLASS(cas)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUV420P10
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
const char * name
Filter name.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
void * priv
private data for use by the filter
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_GRAY16
A filter pad used for either input or output.
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
#define AV_PIX_FMT_YUV422P16
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
static int cas_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
static av_cold int config_input(AVFilterLink *inlink)
#define AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_GRAY14
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define FILTER_INPUTS(array)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
static const struct @321 planes[]
#define AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GBRP16
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static enum AVPixelFormat pixel_fmts[]
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static float lerpf(float v0, float v1, float f)
#define AV_PIX_FMT_YUV440P10
static const AVOption cas_options[]
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int weight(int i, int blen, int offset)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV444P12
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
static const AVFilterPad cas_outputs[]
#define i(width, name, range_min, range_max)
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
static int cas_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
int h
agreed upon image height
#define AV_PIX_FMT_YUVA422P12
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
#define FILTER_OUTPUTS(array)
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define AV_PIX_FMT_YUV440P12
static const AVFilterPad cas_inputs[]
#define AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_GRAY12
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14