Go to the documentation of this file.
59 int jobnr,
int nb_jobs);
61 int jobnr,
int nb_jobs);
68 const float imax =
s->imax;
69 const int width =
s->planewidth[1];
70 const int height =
s->planeheight[1];
71 const int slice_start = (
height * jobnr) / nb_jobs;
73 const int ulinesize =
frame->linesize[1];
74 const int vlinesize =
frame->linesize[2];
75 const uint8_t *uptr = (
const uint8_t *)
frame->data[1] + slice_start * ulinesize;
76 const uint8_t *vptr = (
const uint8_t *)
frame->data[2] + slice_start * vlinesize;
77 int sum_u = 0, sum_v = 0;
79 for (
int y = slice_start; y <
slice_end; y++) {
80 for (
int x = 0; x <
width; x++) {
89 s->analyzeret[jobnr][0] =
s->analyzeret[jobnr][2] = imax * sum_u / (float)((
slice_end - slice_start) *
width) - 0.5
f;
90 s->analyzeret[jobnr][1] =
s->analyzeret[jobnr][3] = imax * sum_v / (float)((
slice_end - slice_start) *
width) - 0.5
f;
99 const float imax =
s->imax;
100 const int width =
s->planewidth[1];
101 const int height =
s->planeheight[1];
102 const int slice_start = (
height * jobnr) / nb_jobs;
104 const int ulinesize =
frame->linesize[1] / 2;
105 const int vlinesize =
frame->linesize[2] / 2;
106 const uint16_t *uptr = (
const uint16_t *)
frame->data[1] + slice_start * ulinesize;
107 const uint16_t *vptr = (
const uint16_t *)
frame->data[2] + slice_start * vlinesize;
108 int64_t sum_u = 0, sum_v = 0;
110 for (
int y = slice_start; y <
slice_end; y++) {
111 for (
int x = 0; x <
width; x++) {
120 s->analyzeret[jobnr][0] =
s->analyzeret[jobnr][2] = imax * sum_u / (float)((
slice_end - slice_start) *
width) - 0.5
f;
121 s->analyzeret[jobnr][1] =
s->analyzeret[jobnr][3] = imax * sum_v / (float)((
slice_end - slice_start) *
width) - 0.5
f;
130 const float imax =
s->imax;
131 const int width =
s->planewidth[1];
132 const int height =
s->planeheight[1];
133 const int slice_start = (
height * jobnr) / nb_jobs;
135 const int ulinesize =
frame->linesize[1];
136 const int vlinesize =
frame->linesize[2];
137 const uint8_t *uptr = (
const uint8_t *)
frame->data[1] + slice_start * ulinesize;
138 const uint8_t *vptr = (
const uint8_t *)
frame->data[2] + slice_start * vlinesize;
139 int min_u = 255, min_v = 255;
140 int max_u = 0, max_v = 0;
142 for (
int y = slice_start; y <
slice_end; y++) {
143 for (
int x = 0; x <
width; x++) {
144 min_u =
FFMIN(min_u, uptr[x]);
145 min_v =
FFMIN(min_v, vptr[x]);
146 max_u =
FFMAX(max_u, uptr[x]);
147 max_v =
FFMAX(max_v, vptr[x]);
154 s->analyzeret[jobnr][0] = imax * min_u - 0.5f;
155 s->analyzeret[jobnr][1] = imax * min_v - 0.5f;
156 s->analyzeret[jobnr][2] = imax * max_u - 0.5f;
157 s->analyzeret[jobnr][3] = imax * max_v - 0.5f;
166 const float imax =
s->imax;
167 const int width =
s->planewidth[1];
168 const int height =
s->planeheight[1];
169 const int slice_start = (
height * jobnr) / nb_jobs;
171 const int ulinesize =
frame->linesize[1] / 2;
172 const int vlinesize =
frame->linesize[2] / 2;
173 const uint16_t *uptr = (
const uint16_t *)
frame->data[1] + slice_start * ulinesize;
174 const uint16_t *vptr = (
const uint16_t *)
frame->data[2] + slice_start * vlinesize;
175 int min_u = INT_MAX, min_v = INT_MAX;
176 int max_u = INT_MIN, max_v = INT_MIN;
178 for (
int y = slice_start; y <
slice_end; y++) {
179 for (
int x = 0; x <
width; x++) {
180 min_u =
FFMIN(min_u, uptr[x]);
181 min_v =
FFMIN(min_v, vptr[x]);
182 max_u =
FFMAX(max_u, uptr[x]);
183 max_v =
FFMAX(max_v, vptr[x]);
190 s->analyzeret[jobnr][0] = imax * min_u - 0.5f;
191 s->analyzeret[jobnr][1] = imax * min_v - 0.5f;
192 s->analyzeret[jobnr][2] = imax * max_u - 0.5f;
193 s->analyzeret[jobnr][3] = imax * max_v - 0.5f;
202 const float imax =
s->imax;
203 const int width =
s->planewidth[1];
204 const int height =
s->planeheight[1];
205 const int ulinesize =
frame->linesize[1];
206 const int vlinesize =
frame->linesize[2];
207 const uint8_t *uptr = (
const uint8_t *)
frame->data[1];
208 const uint8_t *vptr = (
const uint8_t *)
frame->data[2];
209 unsigned *uhistogram =
s->uhistogram;
210 unsigned *vhistogram =
s->vhistogram;
212 int umedian =
s->max, vmedian =
s->max;
213 unsigned ucnt = 0, vcnt = 0;
215 memset(uhistogram, 0,
sizeof(*uhistogram) * (
s->max + 1));
216 memset(vhistogram, 0,
sizeof(*vhistogram) * (
s->max + 1));
218 for (
int y = 0; y <
height; y++) {
219 for (
int x = 0; x <
width; x++) {
220 uhistogram[uptr[x]]++;
221 vhistogram[vptr[x]]++;
228 for (
int i = 0;
i <
s->max + 1;
i++) {
229 ucnt += uhistogram[
i];
230 if (ucnt >= half_size) {
236 for (
int i = 0;
i <
s->max + 1;
i++) {
237 vcnt += vhistogram[
i];
238 if (vcnt >= half_size) {
244 s->analyzeret[0][0] = imax * umedian - 0.5f;
245 s->analyzeret[0][1] = imax * vmedian - 0.5f;
246 s->analyzeret[0][2] = imax * umedian - 0.5f;
247 s->analyzeret[0][3] = imax * vmedian - 0.5f;
256 const float imax =
s->imax;
257 const int width =
s->planewidth[1];
258 const int height =
s->planeheight[1];
259 const int ulinesize =
frame->linesize[1] / 2;
260 const int vlinesize =
frame->linesize[2] / 2;
261 const uint16_t *uptr = (
const uint16_t *)
frame->data[1];
262 const uint16_t *vptr = (
const uint16_t *)
frame->data[2];
263 unsigned *uhistogram =
s->uhistogram;
264 unsigned *vhistogram =
s->vhistogram;
266 int umedian =
s->max, vmedian =
s->max;
267 unsigned ucnt = 0, vcnt = 0;
269 memset(uhistogram, 0,
sizeof(*uhistogram) * (
s->max + 1));
270 memset(vhistogram, 0,
sizeof(*vhistogram) * (
s->max + 1));
272 for (
int y = 0; y <
height; y++) {
273 for (
int x = 0; x <
width; x++) {
274 uhistogram[uptr[x]]++;
275 vhistogram[vptr[x]]++;
282 for (
int i = 0;
i <
s->max + 1;
i++) {
283 ucnt += uhistogram[
i];
284 if (ucnt >= half_size) {
290 for (
int i = 0;
i <
s->max + 1;
i++) {
291 vcnt += vhistogram[
i];
292 if (vcnt >= half_size) {
298 s->analyzeret[0][0] = imax * umedian - 0.5f;
299 s->analyzeret[0][1] = imax * vmedian - 0.5f;
300 s->analyzeret[0][2] = imax * umedian - 0.5f;
301 s->analyzeret[0][3] = imax * vmedian - 0.5f;
307 float y = yptr[x * chroma_w] * imax; \
308 float u = uptr[x] * imax - .5f; \
309 float v = vptr[x] * imax - .5f; \
312 nu = saturation * (u + y * bd + bl); \
313 nv = saturation * (v + y * rd + rl);
319 const float max =
s->max;
320 const float imax =
s->imax;
321 const int chroma_w =
s->chroma_w;
322 const int chroma_h =
s->chroma_h;
323 const int width =
s->planewidth[1];
324 const int height =
s->planeheight[1];
325 const int slice_start = (
height * jobnr) / nb_jobs;
327 const int ylinesize =
frame->linesize[0];
328 const int ulinesize =
frame->linesize[1];
329 const int vlinesize =
frame->linesize[2];
330 uint8_t *yptr =
frame->data[0] + slice_start * chroma_h * ylinesize;
331 uint8_t *uptr =
frame->data[1] + slice_start * ulinesize;
332 uint8_t *vptr =
frame->data[2] + slice_start * vlinesize;
333 const float saturation =
s->saturation;
334 const float bl =
s->bl;
335 const float rl =
s->rl;
336 const float bd =
s->bh - bl;
337 const float rd =
s->rh - rl;
339 for (
int y = slice_start; y <
slice_end; y++) {
340 for (
int x = 0; x <
width; x++) {
347 yptr += ylinesize * chroma_h;
359 const int depth =
s->depth;
360 const float max =
s->max;
361 const float imax =
s->imax;
362 const int chroma_w =
s->chroma_w;
363 const int chroma_h =
s->chroma_h;
364 const int width =
s->planewidth[1];
365 const int height =
s->planeheight[1];
366 const int slice_start = (
height * jobnr) / nb_jobs;
368 const int ylinesize =
frame->linesize[0] / 2;
369 const int ulinesize =
frame->linesize[1] / 2;
370 const int vlinesize =
frame->linesize[2] / 2;
371 uint16_t *yptr = (uint16_t *)
frame->data[0] + slice_start * chroma_h * ylinesize;
372 uint16_t *uptr = (uint16_t *)
frame->data[1] + slice_start * ulinesize;
373 uint16_t *vptr = (uint16_t *)
frame->data[2] + slice_start * vlinesize;
374 const float saturation =
s->saturation;
375 const float bl =
s->bl;
376 const float rl =
s->rl;
377 const float bd =
s->bh - bl;
378 const float rd =
s->rh - rl;
381 for (
int x = 0; x <
width; x++) {
388 yptr += ylinesize * chroma_h;
403 const int nb_athreads =
s->analyze ==
MEDIAN ? 1 : nb_threads;
404 float bl = 0.f, rl = 0.f, bh = 0.f, rh = 0.f;
408 for (
int i = 0;
i < nb_athreads;
i++) {
409 bl +=
s->analyzeret[
i][0];
410 rl +=
s->analyzeret[
i][1];
411 bh +=
s->analyzeret[
i][2];
412 rh +=
s->analyzeret[
i][3];
453 s->depth =
desc->comp[0].depth;
454 s->max = (1 <<
s->depth) - 1;
455 s->imax = 1.f /
s->max;
458 s->uhistogram =
av_calloc(
s->max == 255 ? 256 : 65536,
sizeof(*
s->uhistogram));
462 s->vhistogram =
av_calloc(
s->max == 255 ? 256 : 65536,
sizeof(*
s->vhistogram));
470 switch (
s->analyze) {
486 s->chroma_w = 1 <<
desc->log2_chroma_w;
487 s->chroma_h = 1 <<
desc->log2_chroma_h;
489 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
491 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
520 #define OFFSET(x) offsetof(ColorCorrectContext, x)
521 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
540 .
name =
"colorcorrect",
541 .description =
NULL_IF_CONFIG_SMALL(
"Adjust color white balance selectively for blacks and whites."),
543 .priv_class = &colorcorrect_class,
#define AV_PIX_FMT_YUVA422P16
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
const AVFilter ff_vf_colorcorrect
static int average_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int median_16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
static int colorcorrect_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define FILTER_PIXFMTS_ARRAY(array)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static int colorcorrect_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P10
static const AVFilterPad colorcorrect_inputs[]
#define AV_PIX_FMT_YUV420P10
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
const char * name
Filter name.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
static const AVOption colorcorrect_options[]
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
static av_cold int config_input(AVFilterLink *inlink)
static int minmax_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUV422P9
A filter pad used for either input or output.
static int average_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
#define AV_PIX_FMT_YUV422P16
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define FILTER_INPUTS(array)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Describe the class of an AVClass context structure.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
#define AV_PIX_FMT_YUV440P10
#define AV_PIX_FMT_YUV422P10
static int median_8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static enum AVPixelFormat pixel_fmts[]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV444P12
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
int(* do_analyze)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
#define i(width, name, range_min, range_max)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
void * av_calloc(size_t nmemb, size_t size)
#define AV_PIX_FMT_YUV444P9
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
static av_cold void uninit(AVFilterContext *ctx)
#define AV_PIX_FMT_YUVA422P12
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
#define FILTER_OUTPUTS(array)
static const AVFilterPad colorcorrect_outputs[]
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
AVFILTER_DEFINE_CLASS(colorcorrect)
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
static int minmax_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int analyze(const uint8_t *buf, int size, int packet_size, int probe)
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14
#define AVFILTERPAD_FLAG_NEEDS_WRITABLE
The filter expects writable frames from its input link, duplicating data buffers if needed.