FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cinepakenc.c
Go to the documentation of this file.
1 /*
2  * Cinepak encoder (c) 2011 Tomas Härdin
3  * http://titan.codemill.se/~tomhar/cinepakenc.patch
4  *
5  * Fixes and improvements, vintage decoders compatibility
6  * (c) 2013, 2014 Rl, Aetey Global Technologies AB
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included
16  * in all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 /*
28  * TODO:
29  * - optimize: color space conversion (move conversion to libswscale), ...
30  * MAYBE:
31  * - "optimally" split the frame into several non-regular areas
32  * using a separate codebook pair for each area and approximating
33  * the area by several rectangular strips (generally not full width ones)
34  * (use quadtree splitting? a simple fixed-granularity grid?)
35  */
36 
37 #include <string.h>
38 
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/internal.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/lfg.h"
44 #include "libavutil/opt.h"
45 
46 #include "avcodec.h"
47 #include "elbg.h"
48 #include "internal.h"
49 
50 #define CVID_HEADER_SIZE 10
51 #define STRIP_HEADER_SIZE 12
52 #define CHUNK_HEADER_SIZE 4
53 
54 #define MB_SIZE 4 //4x4 MBs
55 #define MB_AREA (MB_SIZE * MB_SIZE)
56 
57 #define VECTOR_MAX 6 // six or four entries per vector depending on format
58 #define CODEBOOK_MAX 256 // size of a codebook
59 
60 #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
61 #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious)
62 // MAX_STRIPS limits the maximum quality you can reach
63 // when you want high quality on high resolutions,
64 // MIN_STRIPS limits the minimum efficiently encodable bit rate
65 // on low resolutions
66 // the numbers are only used for brute force optimization for the first frame,
67 // for the following frames they are adaptively readjusted
68 // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
69 // of strips, currently 32
70 
71 typedef enum CinepakMode {
75 
77 } CinepakMode;
78 
79 typedef enum mb_encoding {
83 
85 } mb_encoding;
86 
87 typedef struct mb_info {
88  int v1_vector; // index into v1 codebook
89  int v1_error; // error when using V1 encoding
90  int v4_vector[4]; // indices into v4 codebook
91  int v4_error; // error when using V4 encoding
92  int skip_error; // error when block is skipped (aka copied from last frame)
93  mb_encoding best_encoding; // last result from calculate_mode_score()
94 } mb_info;
95 
96 typedef struct strip_info {
99  int v1_size;
100  int v4_size;
102 } strip_info;
103 
104 typedef struct CinepakEncContext {
105  const AVClass *class;
107  unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
113  int w, h;
117  uint64_t lambda;
120  mb_info *mb; // MB RD state
121  int min_strips; // the current limit
122  int max_strips; // the current limit
123  // options
130 
131 #define OFFSET(x) offsetof(CinepakEncContext, x)
132 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
133 static const AVOption options[] = {
134  { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
135  OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE },
136  { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder",
137  OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
138  { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
139  OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE },
140  { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
141  OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE },
142  { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
143  OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE },
144  { NULL },
145 };
146 
147 static const AVClass cinepak_class = {
148  .class_name = "cinepak",
149  .item_name = av_default_item_name,
150  .option = options,
151  .version = LIBAVUTIL_VERSION_INT,
152 };
153 
155 {
156  CinepakEncContext *s = avctx->priv_data;
157  int x, mb_count, strip_buf_size, frame_buf_size;
158 
159  if (avctx->width & 3 || avctx->height & 3) {
160  av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
161  avctx->width, avctx->height);
162  return AVERROR(EINVAL);
163  }
164 
165  if (s->min_min_strips > s->max_max_strips) {
166  av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
168  return AVERROR(EINVAL);
169  }
170 
171  if (!(s->last_frame = av_frame_alloc()))
172  return AVERROR(ENOMEM);
173  if (!(s->best_frame = av_frame_alloc()))
174  goto enomem;
175  if (!(s->scratch_frame = av_frame_alloc()))
176  goto enomem;
177  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
178  if (!(s->input_frame = av_frame_alloc()))
179  goto enomem;
180 
181  if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
182  goto enomem;
183 
184  if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
185  goto enomem;
186 
187  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
188  if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
189  goto enomem;
190 
191  mb_count = avctx->width * avctx->height / MB_AREA;
192 
193  // the largest possible chunk is 0x31 with all MBs encoded in V4 mode
194  // and full codebooks being replaced in INTER mode,
195  // which is 34 bits per MB
196  // and 2*256 extra flag bits per strip
197  strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
198 
199  frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
200 
201  if (!(s->strip_buf = av_malloc(strip_buf_size)))
202  goto enomem;
203 
204  if (!(s->frame_buf = av_malloc(frame_buf_size)))
205  goto enomem;
206 
207  if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
208  goto enomem;
209 
210  av_lfg_init(&s->randctx, 1);
211  s->avctx = avctx;
212  s->w = avctx->width;
213  s->h = avctx->height;
214  s->frame_buf_size = frame_buf_size;
215  s->curframe = 0;
216  s->keyint = avctx->keyint_min;
217  s->pix_fmt = avctx->pix_fmt;
218 
219  // set up AVFrames
220  s->last_frame->data[0] = s->pict_bufs[0];
221  s->last_frame->linesize[0] = s->w;
222  s->best_frame->data[0] = s->pict_bufs[1];
223  s->best_frame->linesize[0] = s->w;
224  s->scratch_frame->data[0] = s->pict_bufs[2];
225  s->scratch_frame->linesize[0] = s->w;
226 
227  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
228  s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h;
229  s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2);
230  s->last_frame->linesize[1] =
231  s->last_frame->linesize[2] = s->w >> 1;
232 
233  s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h;
234  s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2);
235  s->best_frame->linesize[1] =
236  s->best_frame->linesize[2] = s->w >> 1;
237 
238  s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h;
239  s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
240  s->scratch_frame->linesize[1] =
241  s->scratch_frame->linesize[2] = s->w >> 1;
242 
243  s->input_frame->data[0] = s->pict_bufs[3];
244  s->input_frame->linesize[0] = s->w;
245  s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h;
246  s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2);
247  s->input_frame->linesize[1] =
248  s->input_frame->linesize[2] = s->w >> 1;
249  }
250 
251  s->min_strips = s->min_min_strips;
252  s->max_strips = s->max_max_strips;
253 
254  return 0;
255 
256 enomem:
260  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
264  av_freep(&s->strip_buf);
265  av_freep(&s->frame_buf);
266  av_freep(&s->mb);
267 
268  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
269  av_freep(&s->pict_bufs[x]);
270 
271  return AVERROR(ENOMEM);
272 }
273 
275  strip_info *info, int report,
276  int *training_set_v1_shrunk,
277  int *training_set_v4_shrunk)
278 {
279  // score = FF_LAMBDA_SCALE * error + lambda * bits
280  int x;
281  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
282  int mb_count = s->w * h / MB_AREA;
283  mb_info *mb;
284  int64_t score1, score2, score3;
285  int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
286  (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
287  CHUNK_HEADER_SIZE) << 3;
288 
289  switch (info->mode) {
290  case MODE_V1_ONLY:
291  // one byte per MB
292  ret += s->lambda * 8 * mb_count;
293 
294  // while calculating we assume all blocks are ENC_V1
295  for (x = 0; x < mb_count; x++) {
296  mb = &s->mb[x];
297  ret += FF_LAMBDA_SCALE * mb->v1_error;
298  // this function is never called for report in MODE_V1_ONLY
299  // if (!report)
300  mb->best_encoding = ENC_V1;
301  }
302 
303  break;
304  case MODE_V1_V4:
305  // 9 or 33 bits per MB
306  if (report) {
307  // no moves between the corresponding training sets are allowed
308  *training_set_v1_shrunk = *training_set_v4_shrunk = 0;
309  for (x = 0; x < mb_count; x++) {
310  int mberr;
311  mb = &s->mb[x];
312  if (mb->best_encoding == ENC_V1)
313  score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
314  else
315  score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
316  ret += score1;
317  }
318  } else { // find best mode per block
319  for (x = 0; x < mb_count; x++) {
320  mb = &s->mb[x];
321  score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
322  score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
323 
324  if (score1 <= score2) {
325  ret += score1;
326  mb->best_encoding = ENC_V1;
327  } else {
328  ret += score2;
329  mb->best_encoding = ENC_V4;
330  }
331  }
332  }
333 
334  break;
335  case MODE_MC:
336  // 1, 10 or 34 bits per MB
337  if (report) {
338  int v1_shrunk = 0, v4_shrunk = 0;
339  for (x = 0; x < mb_count; x++) {
340  mb = &s->mb[x];
341  // it is OK to move blocks to ENC_SKIP here
342  // but not to any codebook encoding!
343  score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
344  if (mb->best_encoding == ENC_SKIP) {
345  ret += score1;
346  } else if (mb->best_encoding == ENC_V1) {
347  if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
348  mb->best_encoding = ENC_SKIP;
349  ++v1_shrunk;
350  ret += score1;
351  } else {
352  ret += score2;
353  }
354  } else {
355  if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
356  mb->best_encoding = ENC_SKIP;
357  ++v4_shrunk;
358  ret += score1;
359  } else {
360  ret += score3;
361  }
362  }
363  }
364  *training_set_v1_shrunk = v1_shrunk;
365  *training_set_v4_shrunk = v4_shrunk;
366  } else { // find best mode per block
367  for (x = 0; x < mb_count; x++) {
368  mb = &s->mb[x];
369  score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
370  score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
371  score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
372 
373  if (score1 <= score2 && score1 <= score3) {
374  ret += score1;
375  mb->best_encoding = ENC_SKIP;
376  } else if (score2 <= score3) {
377  ret += score2;
378  mb->best_encoding = ENC_V1;
379  } else {
380  ret += score3;
381  mb->best_encoding = ENC_V4;
382  }
383  }
384  }
385 
386  break;
387  }
388 
389  return ret;
390 }
391 
392 static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
393 {
394  buf[0] = chunk_type;
395  AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
396  return CHUNK_HEADER_SIZE;
397 }
398 
399 static int encode_codebook(CinepakEncContext *s, int *codebook, int size,
400  int chunk_type_yuv, int chunk_type_gray,
401  unsigned char *buf)
402 {
403  int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
404  int incremental_codebook_replacement_mode = 0; // hardcoded here,
405  // the compiler should notice that this is a constant -- rl
406 
407  ret = write_chunk_header(buf,
408  s->pix_fmt == AV_PIX_FMT_RGB24 ?
409  chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) :
410  chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
411  entry_size * size +
412  (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
413 
414  // we do codebook encoding according to the "intra" mode
415  // but we keep the "dead" code for reference in case we will want
416  // to use incremental codebook updates (which actually would give us
417  // "kind of" motion compensation, especially in 1 strip/frame case) -- rl
418  // (of course, the code will be not useful as-is)
419  if (incremental_codebook_replacement_mode) {
420  int flags = 0;
421  int flagsind;
422  for (x = 0; x < size; x++) {
423  if (flags == 0) {
424  flagsind = ret;
425  ret += 4;
426  flags = 0x80000000;
427  } else
428  flags = ((flags >> 1) | 0x80000000);
429  for (y = 0; y < entry_size; y++)
430  buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
431  if ((flags & 0xffffffff) == 0xffffffff) {
432  AV_WB32(&buf[flagsind], flags);
433  flags = 0;
434  }
435  }
436  if (flags)
437  AV_WB32(&buf[flagsind], flags);
438  } else
439  for (x = 0; x < size; x++)
440  for (y = 0; y < entry_size; y++)
441  buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
442 
443  return ret;
444 }
445 
446 // sets out to the sub picture starting at (x,y) in in
447 static void get_sub_picture(CinepakEncContext *s, int x, int y,
448  uint8_t * in_data[4], int in_linesize[4],
449  uint8_t *out_data[4], int out_linesize[4])
450 {
451  out_data[0] = in_data[0] + x + y * in_linesize[0];
452  out_linesize[0] = in_linesize[0];
453 
454  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
455  out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
456  out_linesize[1] = in_linesize[1];
457 
458  out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
459  out_linesize[2] = in_linesize[2];
460  }
461 }
462 
463 // decodes the V1 vector in mb into the 4x4 MB pointed to by data
465  int linesize[4], int v1_vector, strip_info *info)
466 {
467  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
468 
469  data[0][0] =
470  data[0][1] =
471  data[0][ linesize[0]] =
472  data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
473 
474  data[0][2] =
475  data[0][3] =
476  data[0][2 + linesize[0]] =
477  data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
478 
479  data[0][ 2 * linesize[0]] =
480  data[0][1 + 2 * linesize[0]] =
481  data[0][ 3 * linesize[0]] =
482  data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
483 
484  data[0][2 + 2 * linesize[0]] =
485  data[0][3 + 2 * linesize[0]] =
486  data[0][2 + 3 * linesize[0]] =
487  data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
488 
489  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
490  data[1][0] =
491  data[1][1] =
492  data[1][ linesize[1]] =
493  data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
494 
495  data[2][0] =
496  data[2][1] =
497  data[2][ linesize[2]] =
498  data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
499  }
500 }
501 
502 // decodes the V4 vectors in mb into the 4x4 MB pointed to by data
504  int linesize[4], int *v4_vector, strip_info *info)
505 {
506  int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
507 
508  for (i = y = 0; y < 4; y += 2) {
509  for (x = 0; x < 4; x += 2, i++) {
510  data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
511  data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
512  data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
513  data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
514 
515  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
516  data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
517  data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
518  }
519  }
520  }
521 }
522 
524  uint8_t *a_data[4], int a_linesize[4],
525  uint8_t *b_data[4], int b_linesize[4])
526 {
527  int y, p;
528 
529  for (y = 0; y < MB_SIZE; y++)
530  memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
531  MB_SIZE);
532 
533  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
534  for (p = 1; p <= 2; p++)
535  for (y = 0; y < MB_SIZE / 2; y++)
536  memcpy(a_data[p] + y * a_linesize[p],
537  b_data[p] + y * b_linesize[p],
538  MB_SIZE / 2);
539  }
540 }
541 
542 static int encode_mode(CinepakEncContext *s, int h,
543  uint8_t *scratch_data[4], int scratch_linesize[4],
544  uint8_t *last_data[4], int last_linesize[4],
545  strip_info *info, unsigned char *buf)
546 {
547  int x, y, z, flags, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
548  int needs_extra_bit, should_write_temp;
549  unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
550  mb_info *mb;
551  uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
552  int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
553 
554  // encode codebooks
555  ////// MacOS vintage decoder compatibility dictates the presence of
556  ////// the codebook chunk even when the codebook is empty - pretty dumb...
557  ////// and also the certain order of the codebook chunks -- rl
558  if (info->v4_size || !s->skip_empty_cb)
559  ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
560 
561  if (info->v1_size || !s->skip_empty_cb)
562  ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
563 
564  // update scratch picture
565  for (z = y = 0; y < h; y += MB_SIZE)
566  for (x = 0; x < s->w; x += MB_SIZE, z++) {
567  mb = &s->mb[z];
568 
569  get_sub_picture(s, x, y, scratch_data, scratch_linesize,
570  sub_scratch_data, sub_scratch_linesize);
571 
572  if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
573  get_sub_picture(s, x, y, last_data, last_linesize,
574  sub_last_data, sub_last_linesize);
575  copy_mb(s, sub_scratch_data, sub_scratch_linesize,
576  sub_last_data, sub_last_linesize);
577  } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
578  decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
579  mb->v1_vector, info);
580  else
581  decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
582  mb->v4_vector, info);
583  }
584 
585  switch (info->mode) {
586  case MODE_V1_ONLY:
587  ret += write_chunk_header(buf + ret, 0x32, mb_count);
588 
589  for (x = 0; x < mb_count; x++)
590  buf[ret++] = s->mb[x].v1_vector;
591 
592  break;
593  case MODE_V1_V4:
594  // remember header position
595  header_ofs = ret;
596  ret += CHUNK_HEADER_SIZE;
597 
598  for (x = 0; x < mb_count; x += 32) {
599  flags = 0;
600  for (y = x; y < FFMIN(x + 32, mb_count); y++)
601  if (s->mb[y].best_encoding == ENC_V4)
602  flags |= 1 << (31 - y + x);
603 
604  AV_WB32(&buf[ret], flags);
605  ret += 4;
606 
607  for (y = x; y < FFMIN(x + 32, mb_count); y++) {
608  mb = &s->mb[y];
609 
610  if (mb->best_encoding == ENC_V1)
611  buf[ret++] = mb->v1_vector;
612  else
613  for (z = 0; z < 4; z++)
614  buf[ret++] = mb->v4_vector[z];
615  }
616  }
617 
618  write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
619 
620  break;
621  case MODE_MC:
622  // remember header position
623  header_ofs = ret;
624  ret += CHUNK_HEADER_SIZE;
625  flags = bits = temp_size = 0;
626 
627  for (x = 0; x < mb_count; x++) {
628  mb = &s->mb[x];
629  flags |= (mb->best_encoding != ENC_SKIP) << (31 - bits++);
630  needs_extra_bit = 0;
631  should_write_temp = 0;
632 
633  if (mb->best_encoding != ENC_SKIP) {
634  if (bits < 32)
635  flags |= (mb->best_encoding == ENC_V4) << (31 - bits++);
636  else
637  needs_extra_bit = 1;
638  }
639 
640  if (bits == 32) {
641  AV_WB32(&buf[ret], flags);
642  ret += 4;
643  flags = bits = 0;
644 
645  if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
646  memcpy(&buf[ret], temp, temp_size);
647  ret += temp_size;
648  temp_size = 0;
649  } else
650  should_write_temp = 1;
651  }
652 
653  if (needs_extra_bit) {
654  flags = (mb->best_encoding == ENC_V4) << 31;
655  bits = 1;
656  }
657 
658  if (mb->best_encoding == ENC_V1)
659  temp[temp_size++] = mb->v1_vector;
660  else if (mb->best_encoding == ENC_V4)
661  for (z = 0; z < 4; z++)
662  temp[temp_size++] = mb->v4_vector[z];
663 
664  if (should_write_temp) {
665  memcpy(&buf[ret], temp, temp_size);
666  ret += temp_size;
667  temp_size = 0;
668  }
669  }
670 
671  if (bits > 0) {
672  AV_WB32(&buf[ret], flags);
673  ret += 4;
674  memcpy(&buf[ret], temp, temp_size);
675  ret += temp_size;
676  }
677 
678  write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
679 
680  break;
681  }
682 
683  return ret;
684 }
685 
686 // computes distortion of 4x4 MB in b compared to a
688  uint8_t *a_data[4], int a_linesize[4],
689  uint8_t *b_data[4], int b_linesize[4])
690 {
691  int x, y, p, d, ret = 0;
692 
693  for (y = 0; y < MB_SIZE; y++)
694  for (x = 0; x < MB_SIZE; x++) {
695  d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
696  ret += d * d;
697  }
698 
699  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
700  for (p = 1; p <= 2; p++) {
701  for (y = 0; y < MB_SIZE / 2; y++)
702  for (x = 0; x < MB_SIZE / 2; x++) {
703  d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
704  ret += d * d;
705  }
706  }
707  }
708 
709  return ret;
710 }
711 
712 // return the possibly adjusted size of the codebook
713 #define CERTAIN(x) ((x) != ENC_UNCERTAIN)
714 static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
715  int linesize[4], int v1mode, strip_info *info,
716  mb_encoding encoding)
717 {
718  int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
719  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
720  int *codebook = v1mode ? info->v1_codebook : info->v4_codebook;
721  int size = v1mode ? info->v1_size : info->v4_size;
722  int64_t total_error = 0;
723  uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
724  uint8_t *sub_data[4], *vq_data[4];
725  int sub_linesize[4], vq_linesize[4];
726 
727  for (mbn = i = y = 0; y < h; y += MB_SIZE) {
728  for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
729  int *base;
730 
731  if (CERTAIN(encoding)) {
732  // use for the training only the blocks known to be to be encoded [sic:-]
733  if (s->mb[mbn].best_encoding != encoding)
734  continue;
735  }
736 
737  base = s->codebook_input + i * entry_size;
738  if (v1mode) {
739  // subsample
740  for (j = y2 = 0; y2 < entry_size; y2 += 2)
741  for (x2 = 0; x2 < 4; x2 += 2, j++) {
742  plane = y2 < 4 ? 0 : 1 + (x2 >> 1);
743  shift = y2 < 4 ? 0 : 1;
744  x3 = shift ? 0 : x2;
745  y3 = shift ? 0 : y2;
746  base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] +
747  data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] +
748  data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] +
749  data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
750  }
751  } else {
752  // copy
753  for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
754  for (x2 = 0; x2 < MB_SIZE; x2 += 2)
755  for (k = 0; k < entry_size; k++, j++) {
756  plane = k >= 4 ? k - 3 : 0;
757 
758  if (k >= 4) {
759  x3 = (x + x2) >> 1;
760  y3 = (y + y2) >> 1;
761  } else {
762  x3 = x + x2 + (k & 1);
763  y3 = y + y2 + (k >> 1);
764  }
765 
766  base[j] = data[plane][x3 + y3 * linesize[plane]];
767  }
768  }
769  }
770  i += v1mode ? 1 : 4;
771  }
772  }
773 
774  if (i == 0) // empty training set, nothing to do
775  return 0;
776  if (i < size)
777  size = i;
778 
779  avpriv_init_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
780  avpriv_do_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
781 
782  // set up vq_data, which contains a single MB
783  vq_data[0] = vq_pict_buf;
784  vq_linesize[0] = MB_SIZE;
785  vq_data[1] = &vq_pict_buf[MB_AREA];
786  vq_data[2] = vq_data[1] + (MB_AREA >> 2);
787  vq_linesize[1] =
788  vq_linesize[2] = MB_SIZE >> 1;
789 
790  // copy indices
791  for (i = j = y = 0; y < h; y += MB_SIZE)
792  for (x = 0; x < s->w; x += MB_SIZE, j++) {
793  mb_info *mb = &s->mb[j];
794  // skip uninteresting blocks if we know their preferred encoding
795  if (CERTAIN(encoding) && mb->best_encoding != encoding)
796  continue;
797 
798  // point sub_data to current MB
799  get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
800 
801  if (v1mode) {
802  mb->v1_vector = s->codebook_closest[i];
803 
804  // fill in vq_data with V1 data
805  decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
806 
807  mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
808  vq_data, vq_linesize);
809  total_error += mb->v1_error;
810  } else {
811  for (k = 0; k < 4; k++)
812  mb->v4_vector[k] = s->codebook_closest[i + k];
813 
814  // fill in vq_data with V4 data
815  decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
816 
817  mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
818  vq_data, vq_linesize);
819  total_error += mb->v4_error;
820  }
821  i += v1mode ? 1 : 4;
822  }
823  // check that we did it right in the beginning of the function
824  av_assert0(i >= size); // training set is no smaller than the codebook
825 
826  return size;
827 }
828 
830  uint8_t *last_data[4], int last_linesize[4],
831  uint8_t *data[4], int linesize[4],
832  strip_info *info)
833 {
834  int x, y, i;
835  uint8_t *sub_last_data [4], *sub_pict_data [4];
836  int sub_last_linesize[4], sub_pict_linesize[4];
837 
838  for (i = y = 0; y < h; y += MB_SIZE)
839  for (x = 0; x < s->w; x += MB_SIZE, i++) {
840  get_sub_picture(s, x, y, last_data, last_linesize,
841  sub_last_data, sub_last_linesize);
842  get_sub_picture(s, x, y, data, linesize,
843  sub_pict_data, sub_pict_linesize);
844 
845  s->mb[i].skip_error =
847  sub_last_data, sub_last_linesize,
848  sub_pict_data, sub_pict_linesize);
849  }
850 }
851 
852 static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
853  unsigned char *buf, int strip_size)
854 {
855  // actually we are exclusively using intra strip coding (how much can we win
856  // otherwise? how to choose which part of a codebook to update?),
857  // keyframes are different only because we disallow ENC_SKIP on them -- rl
858  // (besides, the logic here used to be inverted: )
859  // buf[0] = keyframe ? 0x11: 0x10;
860  buf[0] = keyframe ? 0x10 : 0x11;
861  AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
862  // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
863  AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
864  AV_WB16(&buf[6], 0);
865  // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
866  AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
867  AV_WB16(&buf[10], s->w);
868 }
869 
870 static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
871  uint8_t *last_data[4], int last_linesize[4],
872  uint8_t *data[4], int linesize[4],
873  uint8_t *scratch_data[4], int scratch_linesize[4],
874  unsigned char *buf, int64_t *best_score)
875 {
876  int64_t score = 0;
877  int best_size = 0;
878  strip_info info;
879  // for codebook optimization:
880  int v1enough, v1_size, v4enough, v4_size;
881  int new_v1_size, new_v4_size;
882  int v1shrunk, v4shrunk;
883 
884  if (!keyframe)
885  calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
886  &info);
887 
888  // try some powers of 4 for the size of the codebooks
889  // constraint the v4 codebook to be no bigger than v1 one,
890  // (and no less than v1_size/4)
891  // thus making v1 preferable and possibly losing small details? should be ok
892 #define SMALLEST_CODEBOOK 1
893  for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
894  for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
896  // try all modes
897  for (mode = 0; mode < MODE_COUNT; mode++) {
898  // don't allow MODE_MC in intra frames
899  if (keyframe && mode == MODE_MC)
900  continue;
901 
902  if (mode == MODE_V1_ONLY) {
903  info.v1_size = v1_size;
904  // the size may shrink even before optimizations if the input is short:
905  info.v1_size = quantize(s, h, data, linesize, 1,
906  &info, ENC_UNCERTAIN);
907  if (info.v1_size < v1_size)
908  // too few eligible blocks, no sense in trying bigger sizes
909  v1enough = 1;
910 
911  info.v4_size = 0;
912  } else { // mode != MODE_V1_ONLY
913  // if v4 codebook is empty then only allow V1-only mode
914  if (!v4_size)
915  continue;
916 
917  if (mode == MODE_V1_V4) {
918  info.v4_size = v4_size;
919  info.v4_size = quantize(s, h, data, linesize, 0,
920  &info, ENC_UNCERTAIN);
921  if (info.v4_size < v4_size)
922  // too few eligible blocks, no sense in trying bigger sizes
923  v4enough = 1;
924  }
925  }
926 
927  info.mode = mode;
928  // choose the best encoding per block, based on current experience
929  score = calculate_mode_score(s, h, &info, 0,
930  &v1shrunk, &v4shrunk);
931 
932  if (mode != MODE_V1_ONLY) {
933  int extra_iterations_limit = s->max_extra_cb_iterations;
934  // recompute the codebooks, omitting the extra blocks
935  // we assume we _may_ come here with more blocks to encode than before
936  info.v1_size = v1_size;
937  new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
938  if (new_v1_size < info.v1_size)
939  info.v1_size = new_v1_size;
940  // we assume we _may_ come here with more blocks to encode than before
941  info.v4_size = v4_size;
942  new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
943  if (new_v4_size < info.v4_size)
944  info.v4_size = new_v4_size;
945  // calculate the resulting score
946  // (do not move blocks to codebook encodings now, as some blocks may have
947  // got bigger errors despite a smaller training set - but we do not
948  // ever grow the training sets back)
949  for (;;) {
950  score = calculate_mode_score(s, h, &info, 1,
951  &v1shrunk, &v4shrunk);
952  // do we have a reason to reiterate? if so, have we reached the limit?
953  if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
954  break;
955  // recompute the codebooks, omitting the extra blocks
956  if (v1shrunk) {
957  info.v1_size = v1_size;
958  new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
959  if (new_v1_size < info.v1_size)
960  info.v1_size = new_v1_size;
961  }
962  if (v4shrunk) {
963  info.v4_size = v4_size;
964  new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
965  if (new_v4_size < info.v4_size)
966  info.v4_size = new_v4_size;
967  }
968  }
969  }
970 
971  if (best_size == 0 || score < *best_score) {
972  *best_score = score;
973  best_size = encode_mode(s, h,
974  scratch_data, scratch_linesize,
975  last_data, last_linesize, &info,
977 
978  write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
979  }
980  }
981  }
982  }
983 
984  best_size += STRIP_HEADER_SIZE;
985  memcpy(buf, s->strip_buf, best_size);
986 
987  return best_size;
988 }
989 
990 static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
991  int num_strips, int data_size, int isakeyframe)
992 {
993  buf[0] = isakeyframe ? 0 : 1;
994  AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
995  AV_WB16(&buf[4], s->w);
996  AV_WB16(&buf[6], s->h);
997  AV_WB16(&buf[8], num_strips);
998 
999  return CVID_HEADER_SIZE;
1000 }
1001 
1003  int isakeyframe, unsigned char *buf, int buf_size)
1004 {
1005  int num_strips, strip, i, y, nexty, size, temp_size, best_size;
1006  uint8_t *last_data [4], *data [4], *scratch_data [4];
1007  int last_linesize[4], linesize[4], scratch_linesize[4];
1008  int64_t best_score = 0, score, score_temp;
1009  int best_nstrips;
1010 
1011  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
1012  int x;
1013  // build a copy of the given frame in the correct colorspace
1014  for (y = 0; y < s->h; y += 2)
1015  for (x = 0; x < s->w; x += 2) {
1016  uint8_t *ir[2];
1017  int32_t r, g, b, rr, gg, bb;
1018  ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
1019  ir[1] = ir[0] + frame->linesize[0];
1020  get_sub_picture(s, x, y,
1022  scratch_data, scratch_linesize);
1023  r = g = b = 0;
1024  for (i = 0; i < 4; ++i) {
1025  int i1, i2;
1026  i1 = (i & 1);
1027  i2 = (i >= 2);
1028  rr = ir[i2][i1 * 3 + 0];
1029  gg = ir[i2][i1 * 3 + 1];
1030  bb = ir[i2][i1 * 3 + 2];
1031  r += rr;
1032  g += gg;
1033  b += bb;
1034  // using fixed point arithmetic for portable repeatability, scaling by 2^23
1035  // "Y"
1036  // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
1037  rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
1038  if (rr < 0)
1039  rr = 0;
1040  else if (rr > 255)
1041  rr = 255;
1042  scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
1043  }
1044  // let us scale down as late as possible
1045  // r /= 4; g /= 4; b /= 4;
1046  // "U"
1047  // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
1048  rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
1049  if (rr < -128)
1050  rr = -128;
1051  else if (rr > 127)
1052  rr = 127;
1053  scratch_data[1][0] = rr + 128; // quantize needs unsigned
1054  // "V"
1055  // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
1056  rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
1057  if (rr < -128)
1058  rr = -128;
1059  else if (rr > 127)
1060  rr = 127;
1061  scratch_data[2][0] = rr + 128; // quantize needs unsigned
1062  }
1063  }
1064 
1065  // would be nice but quite certainly incompatible with vintage players:
1066  // support encoding zero strips (meaning skip the whole frame)
1067  for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
1068  score = 0;
1069  size = 0;
1070 
1071  for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
1072  int strip_height;
1073 
1074  nexty = strip * s->h / num_strips; // <= s->h
1075  // make nexty the next multiple of 4 if not already there
1076  if (nexty & 3)
1077  nexty += 4 - (nexty & 3);
1078 
1079  strip_height = nexty - y;
1080  if (strip_height <= 0) { // can this ever happen?
1081  av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
1082  continue;
1083  }
1084 
1085  if (s->pix_fmt == AV_PIX_FMT_RGB24)
1086  get_sub_picture(s, 0, y,
1088  data, linesize);
1089  else
1090  get_sub_picture(s, 0, y,
1091  (uint8_t **)frame->data, (int *)frame->linesize,
1092  data, linesize);
1093  get_sub_picture(s, 0, y,
1095  last_data, last_linesize);
1096  get_sub_picture(s, 0, y,
1098  scratch_data, scratch_linesize);
1099 
1100  if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
1101  last_data, last_linesize, data, linesize,
1102  scratch_data, scratch_linesize,
1103  s->frame_buf + size + CVID_HEADER_SIZE,
1104  &score_temp)) < 0)
1105  return temp_size;
1106 
1107  score += score_temp;
1108  size += temp_size;
1109  }
1110 
1111  if (best_score == 0 || score < best_score) {
1112  best_score = score;
1113  best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, isakeyframe);
1114 
1116  memcpy(buf, s->frame_buf, best_size);
1117  best_nstrips = num_strips;
1118  }
1119  // avoid trying too many strip numbers without a real reason
1120  // (this makes the processing of the very first frame faster)
1121  if (num_strips - best_nstrips > 4)
1122  break;
1123  }
1124 
1125  // let the number of strips slowly adapt to the changes in the contents,
1126  // compared to full bruteforcing every time this will occasionally lead
1127  // to some r/d performance loss but makes encoding up to several times faster
1128  if (!s->strip_number_delta_range) {
1129  if (best_nstrips == s->max_strips) { // let us try to step up
1130  s->max_strips = best_nstrips + 1;
1131  if (s->max_strips >= s->max_max_strips)
1132  s->max_strips = s->max_max_strips;
1133  } else { // try to step down
1134  s->max_strips = best_nstrips;
1135  }
1136  s->min_strips = s->max_strips - 1;
1137  if (s->min_strips < s->min_min_strips)
1138  s->min_strips = s->min_min_strips;
1139  } else {
1140  s->max_strips = best_nstrips + s->strip_number_delta_range;
1141  if (s->max_strips >= s->max_max_strips)
1142  s->max_strips = s->max_max_strips;
1143  s->min_strips = best_nstrips - s->strip_number_delta_range;
1144  if (s->min_strips < s->min_min_strips)
1145  s->min_strips = s->min_min_strips;
1146  }
1147 
1148  return best_size;
1149 }
1150 
1152  const AVFrame *frame, int *got_packet)
1153 {
1154  CinepakEncContext *s = avctx->priv_data;
1155  int ret;
1156 
1157  s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
1158 
1159  if ((ret = ff_alloc_packet2(avctx, pkt, s->frame_buf_size, 0)) < 0)
1160  return ret;
1161  ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size);
1162  pkt->size = ret;
1163  if (s->curframe == 0)
1164  pkt->flags |= AV_PKT_FLAG_KEY;
1165  *got_packet = 1;
1166 
1167  FFSWAP(AVFrame *, s->last_frame, s->best_frame);
1168 
1169  if (++s->curframe >= s->keyint)
1170  s->curframe = 0;
1171 
1172  return 0;
1173 }
1174 
1176 {
1177  CinepakEncContext *s = avctx->priv_data;
1178  int x;
1179 
1183  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
1185  av_freep(&s->codebook_input);
1187  av_freep(&s->strip_buf);
1188  av_freep(&s->frame_buf);
1189  av_freep(&s->mb);
1190 
1191  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
1192  av_freep(&s->pict_bufs[x]);
1193 
1194  return 0;
1195 }
1196 
1198  .name = "cinepak",
1199  .long_name = NULL_IF_CONFIG_SMALL("Cinepak"),
1200  .type = AVMEDIA_TYPE_VIDEO,
1201  .id = AV_CODEC_ID_CINEPAK,
1202  .priv_data_size = sizeof(CinepakEncContext),
1204  .encode2 = cinepak_encode_frame,
1205  .close = cinepak_encode_end,
1207  .priv_class = &cinepak_class,
1208 };
Definition: lfg.h:27
int plane
Definition: avisynth_c.h:422
#define VECTOR_MAX
Definition: cinepakenc.c:57
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:768
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:201
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
static void calculate_skip_errors(CinepakEncContext *s, int h, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], strip_info *info)
Definition: cinepakenc.c:829
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:64
else temp
Definition: vf_mcdeint.c:256
const char * g
Definition: vf_curves.c:112
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: cinepakenc.c:1151
static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe, unsigned char *buf, int strip_size)
Definition: cinepakenc.c:852
int size
Definition: avcodec.h:1401
const char * b
Definition: vf_curves.c:113
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:193
int strip_number_delta_range
Definition: cinepakenc.c:128
#define MIN_STRIPS
Definition: cinepakenc.c:61
int v1_vector
Definition: cinepakenc.c:88
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1697
static AVPacket pkt
int v4_vector[4]
Definition: cinepakenc.c:90
#define CVID_HEADER_SIZE
Definition: cinepakenc.c:50
AVCodec.
Definition: avcodec.h:3351
static void get_sub_picture(CinepakEncContext *s, int x, int y, uint8_t *in_data[4], int in_linesize[4], uint8_t *out_data[4], int out_linesize[4])
Definition: cinepakenc.c:447
int v1_codebook[CODEBOOK_MAX *VECTOR_MAX]
Definition: cinepakenc.c:97
#define report
Definition: checkasm.h:115
#define VE
Definition: cinepakenc.c:132
#define MAX_STRIPS
Definition: cinepakenc.c:60
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:32
uint8_t
#define av_cold
Definition: attributes.h:82
static int compute_mb_distortion(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
Definition: cinepakenc.c:687
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:150
int * codebook_closest
Definition: cinepakenc.c:119
#define mb
AVFrame * input_frame
Definition: cinepakenc.c:111
AVOptions.
#define CHUNK_HEADER_SIZE
Definition: cinepakenc.c:52
static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], uint8_t *scratch_data[4], int scratch_linesize[4], unsigned char *buf, int64_t *best_score)
Definition: cinepakenc.c:870
int avpriv_do_elbg(int *points, int dim, int numpoints, int *codebook, int numCB, int max_steps, int *closest_cb, AVLFG *rand_state)
Implementation of the Enhanced LBG Algorithm Based on the paper "Neural Networks 14:1219-1237" that c...
Definition: elbg.c:371
static AVFrame * frame
#define SMALLEST_CODEBOOK
uint8_t * data
Definition: avcodec.h:1400
static int flags
Definition: log.c:57
int v4_codebook[CODEBOOK_MAX *VECTOR_MAX]
Definition: cinepakenc.c:98
ptrdiff_t size
Definition: opengl_enc.c:101
#define CERTAIN(x)
Definition: cinepakenc.c:713
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
#define av_log(a,...)
static const AVOption options[]
Definition: cinepakenc.c:133
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: avcodec.h:1432
#define OFFSET(x)
Definition: cinepakenc.c:131
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define MB_AREA
Definition: cinepakenc.c:55
#define MB_SIZE
Definition: cinepakenc.c:54
unsigned char * frame_buf
Definition: cinepakenc.c:107
#define AVERROR(e)
Definition: error.h:43
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
Definition: cinepakenc.c:523
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:163
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
int skip_error
Definition: cinepakenc.c:92
const char * r
Definition: vf_curves.c:111
mb_encoding
Definition: cinepakenc.c:79
simple assert() macros that are a bit more flexible than ISO C assert().
const char * name
Name of the codec implementation.
Definition: avcodec.h:3358
static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int v1_vector, strip_info *info)
Definition: cinepakenc.c:464
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:1406
common internal API header
#define FFMIN(a, b)
Definition: common.h:96
int v1_error
Definition: cinepakenc.c:89
static av_cold int cinepak_encode_init(AVCodecContext *avctx)
Definition: cinepakenc.c:154
int width
picture width / height.
Definition: avcodec.h:1660
static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
Definition: cinepakenc.c:392
static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int *v4_vector, strip_info *info)
Definition: cinepakenc.c:503
int32_t
int v1_size
Definition: cinepakenc.c:99
#define AV_WB24(p, d)
Definition: intreadwrite.h:450
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:324
int v4_error
Definition: cinepakenc.c:91
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
mb_encoding best_encoding
Definition: cinepakenc.c:93
#define FF_LAMBDA_SCALE
Definition: avutil.h:226
AVFrame * best_frame
Definition: cinepakenc.c:109
int avpriv_init_elbg(int *points, int dim, int numpoints, int *codebook, int numCB, int max_steps, int *closest_cb, AVLFG *rand_state)
Initialize the **codebook vector for the elbg algorithm.
Definition: elbg.c:337
Libavcodec external API header.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:232
main external API structure.
Definition: avcodec.h:1488
AVCodec ff_cinepak_encoder
Definition: cinepakenc.c:1197
void * buf
Definition: avisynth_c.h:690
Describe the class of an AVClass context structure.
Definition: log.h:67
#define AV_WB32(p, v)
Definition: intreadwrite.h:419
AVFrame * scratch_frame
Definition: cinepakenc.c:110
#define STRIP_HEADER_SIZE
Definition: cinepakenc.c:51
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:32
static int encode_codebook(CinepakEncContext *s, int *codebook, int size, int chunk_type_yuv, int chunk_type_gray, unsigned char *buf)
Definition: cinepakenc.c:399
static int encode_mode(CinepakEncContext *s, int h, uint8_t *scratch_data[4], int scratch_linesize[4], uint8_t *last_data[4], int last_linesize[4], strip_info *info, unsigned char *buf)
Definition: cinepakenc.c:542
static const AVClass cinepak_class
Definition: cinepakenc.c:147
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:266
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:215
int max_extra_cb_iterations
Definition: cinepakenc.c:124
Y , 8bpp.
Definition: pixfmt.h:70
common internal api header.
common internal and external API header
if(ret< 0)
Definition: vf_mcdeint.c:279
void * priv_data
Definition: avcodec.h:1515
static int quantize(CinepakEncContext *s, int h, uint8_t *data[4], int linesize[4], int v1mode, strip_info *info, mb_encoding encoding)
Definition: cinepakenc.c:714
unsigned char * strip_buf
Definition: cinepakenc.c:107
unsigned char * pict_bufs[4]
Definition: cinepakenc.c:107
static int rd_frame(CinepakEncContext *s, const AVFrame *frame, int isakeyframe, unsigned char *buf, int buf_size)
Definition: cinepakenc.c:1002
AVFrame * last_frame
Definition: cinepakenc.c:108
#define av_freep(p)
CinepakMode
Definition: cinepakenc.c:71
#define CODEBOOK_MAX
Definition: cinepakenc.c:58
static int64_t calculate_mode_score(CinepakEncContext *s, int h, strip_info *info, int report, int *training_set_v1_shrunk, int *training_set_v4_shrunk)
Definition: cinepakenc.c:274
#define av_malloc_array(a, b)
#define FFSWAP(type, a, b)
Definition: common.h:99
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
This structure stores compressed data.
Definition: avcodec.h:1377
enum AVPixelFormat pix_fmt
Definition: cinepakenc.c:112
mode
Use these values in ebur128_init (or'ed).
Definition: ebur128.h:83
static av_cold int cinepak_encode_end(AVCodecContext *avctx)
Definition: cinepakenc.c:1175
for(j=16;j >0;--j)
CinepakMode mode
Definition: cinepakenc.c:101
static int write_cvid_header(CinepakEncContext *s, unsigned char *buf, int num_strips, int data_size, int isakeyframe)
Definition: cinepakenc.c:990
AVCodecContext * avctx
Definition: cinepakenc.c:106
int keyint_min
minimum GOP size
Definition: avcodec.h:2064