FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
matroskadec.c
Go to the documentation of this file.
1 /*
2  * Matroska file demuxer
3  * Copyright (c) 2003-2008 The FFmpeg Project
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Matroska file demuxer
25  * @author Ronald Bultje <rbultje@ronald.bitfreak.net>
26  * @author with a little help from Moritz Bunkus <moritz@bunkus.org>
27  * @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
28  * @see specs available on the Matroska project page: http://www.matroska.org/
29  */
30 
31 #include "config.h"
32 
33 #include <inttypes.h>
34 #include <stdio.h>
35 #if CONFIG_BZLIB
36 #include <bzlib.h>
37 #endif
38 #if CONFIG_ZLIB
39 #include <zlib.h>
40 #endif
41 
42 #include "libavutil/avstring.h"
43 #include "libavutil/base64.h"
44 #include "libavutil/dict.h"
45 #include "libavutil/intfloat.h"
46 #include "libavutil/intreadwrite.h"
47 #include "libavutil/lzo.h"
48 #include "libavutil/mathematics.h"
49 
50 #include "libavcodec/bytestream.h"
51 #include "libavcodec/flac.h"
52 #include "libavcodec/mpeg4audio.h"
53 
54 #include "avformat.h"
55 #include "avio_internal.h"
56 #include "internal.h"
57 #include "isom.h"
58 #include "matroska.h"
59 #include "oggdec.h"
60 /* For ff_codec_get_id(). */
61 #include "riff.h"
62 #include "rmsipr.h"
63 
64 typedef enum {
76 } EbmlType;
77 
78 typedef const struct EbmlSyntax {
79  uint32_t id;
83  union {
84  uint64_t u;
85  double f;
86  const char *s;
87  const struct EbmlSyntax *n;
88  } def;
89 } EbmlSyntax;
90 
91 typedef struct {
92  int nb_elem;
93  void *elem;
94 } EbmlList;
95 
96 typedef struct {
97  int size;
99  int64_t pos;
100 } EbmlBin;
101 
102 typedef struct {
103  uint64_t version;
104  uint64_t max_size;
105  uint64_t id_length;
106  char *doctype;
107  uint64_t doctype_version;
108 } Ebml;
109 
110 typedef struct {
111  uint64_t algo;
114 
115 typedef struct {
116  uint64_t algo;
119 
120 typedef struct {
121  uint64_t scope;
122  uint64_t type;
126 
127 typedef struct {
128  double frame_rate;
129  uint64_t display_width;
130  uint64_t display_height;
131  uint64_t pixel_width;
132  uint64_t pixel_height;
134  uint64_t stereo_mode;
135  uint64_t alpha_mode;
137 
138 typedef struct {
139  double samplerate;
141  uint64_t bitdepth;
142  uint64_t channels;
143 
144  /* real audio header (extracted from extradata) */
150  int pkt_cnt;
151  uint64_t buf_timecode;
154 
155 typedef struct {
156  uint64_t uid;
157  uint64_t type;
159 
160 typedef struct {
163 
164 typedef struct {
165  uint64_t num;
166  uint64_t uid;
167  uint64_t type;
168  char *name;
169  char *codec_id;
171  char *language;
172  double time_scale;
174  uint64_t flag_default;
175  uint64_t flag_forced;
176  uint64_t seek_preroll;
181  uint64_t codec_delay;
182 
184  int64_t end_timecode;
187 } MatroskaTrack;
188 
189 typedef struct {
190  uint64_t uid;
191  char *filename;
192  char *mime;
194 
197 
198 typedef struct {
199  uint64_t start;
200  uint64_t end;
201  uint64_t uid;
202  char *title;
203 
206 
207 typedef struct {
208  uint64_t track;
209  uint64_t pos;
211 
212 typedef struct {
213  uint64_t time;
215 } MatroskaIndex;
216 
217 typedef struct {
218  char *name;
219  char *string;
220  char *lang;
221  uint64_t def;
223 } MatroskaTag;
224 
225 typedef struct {
226  char *type;
227  uint64_t typevalue;
228  uint64_t trackuid;
229  uint64_t chapteruid;
230  uint64_t attachuid;
232 
233 typedef struct {
236 } MatroskaTags;
237 
238 typedef struct {
239  uint64_t id;
240  uint64_t pos;
242 
243 typedef struct {
244  uint64_t start;
245  uint64_t length;
246 } MatroskaLevel;
247 
248 typedef struct {
249  uint64_t timecode;
252 
253 typedef struct {
255 
256  /* EBML stuff */
259  int level_up;
260  uint32_t current_id;
261 
262  uint64_t time_scale;
263  double duration;
264  char *title;
265  char *muxingapp;
273 
274  /* byte position of the segment inside the stream */
275  int64_t segment_start;
276 
277  /* the packet queue */
281 
282  int done;
283 
284  /* What to skip before effectively reading a packet. */
287 
288  /* File has a CUES element, but we defer parsing until it is needed. */
290 
294 
295  /* File has SSA subtitles which prevent incremental cluster parsing. */
298 
299 typedef struct {
300  uint64_t duration;
301  int64_t reference;
302  uint64_t non_simple;
304  uint64_t additional_id;
307 } MatroskaBlock;
308 
310  { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
311  { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
312  { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
313  { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
314  { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
317  { 0 }
318 };
319 
321  { EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
322  { 0 }
323 };
324 
326  { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
328  { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
330  { MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) },
331  { MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) },
333  { 0 }
334 };
335 
337  { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
338  { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } },
339  { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } },
340  { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
341  { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
342  { MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) },
343  { MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) },
352  { 0 }
353 };
354 
356  { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
357  { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
359  { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
360  { 0 }
361 };
362 
366  { 0 }
367 };
368 
377  { 0 }
378 };
380  { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
381  { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
382  { MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
383  { MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } },
385  { 0 }
386 };
387 
389  { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
390  { 0 }
391 };
392 
396  { 0 }
397 };
398 
400  { MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} },
401  { 0 }
402 };
403 
405  { MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} },
406  { 0 }
407 };
408 
410  { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
412  { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
415  { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
416  { MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
417  { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
418  { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
419  { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
420  { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
421  { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
422  { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
423  { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
424  { MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } },
425  { MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
426  { MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) },
427  { MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) },
436  { 0 }
437 };
438 
440  { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
441  { 0 }
442 };
443 
445  { MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachment, uid) },
446  { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
447  { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
448  { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
450  { 0 }
451 };
452 
454  { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
455  { 0 }
456 };
457 
459  { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
461  { 0 }
462 };
463 
467  { MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter, uid) },
468  { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
473  { 0 }
474 };
475 
477  { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
482  { 0 }
483 };
484 
486  { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
487  { 0 }
488 };
489 
491  { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
496  { 0 }
497 };
498 
500  { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
501  { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
502  { 0 }
503 };
504 
506  { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
507  { 0 }
508 };
509 
511  { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
512  { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
513  { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
514  { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
515  { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
516  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
517  { 0 }
518 };
519 
522  { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
523  { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
524  { MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
525  { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
526  { 0 }
527 };
528 
530  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
531  { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
532  { 0 }
533 };
534 
536  { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
537  { 0 }
538 };
539 
541  { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
542  { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
543  { 0 }
544 };
545 
547  { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
548  { 0 }
549 };
550 
552  { MATROSKA_ID_INFO, EBML_NEST, 0, 0, { .n = matroska_info } },
553  { MATROSKA_ID_TRACKS, EBML_NEST, 0, 0, { .n = matroska_tracks } },
554  { MATROSKA_ID_ATTACHMENTS, EBML_NEST, 0, 0, { .n = matroska_attachments } },
555  { MATROSKA_ID_CHAPTERS, EBML_NEST, 0, 0, { .n = matroska_chapters } },
556  { MATROSKA_ID_CUES, EBML_NEST, 0, 0, { .n = matroska_index } },
557  { MATROSKA_ID_TAGS, EBML_NEST, 0, 0, { .n = matroska_tags } },
558  { MATROSKA_ID_SEEKHEAD, EBML_NEST, 0, 0, { .n = matroska_seekhead } },
560  { 0 }
561 };
562 
564  { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
565  { 0 }
566 };
567 
569  { MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) },
570  { MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) },
571  { 0 }
572 };
573 
575  { MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} },
576  { 0 }
577 };
578 
580  { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
581  { MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} },
582  { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
584  { MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) },
585  { MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference) },
587  { 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
588  { 0 }
589 };
590 
592  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
593  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
594  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
597  { 0 }
598 };
599 
601  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster } },
606  { 0 }
607 };
608 
610  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
611  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
612  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
620  { 0 }
621 };
622 
624  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
629  { 0 }
630 };
631 
633  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster_incremental } },
638  { 0 }
639 };
640 
641 static const char *const matroska_doctypes[] = { "matroska", "webm" };
642 
643 static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
644 {
645  AVIOContext *pb = matroska->ctx->pb;
646  uint32_t id;
647  matroska->current_id = 0;
648  matroska->num_levels = 0;
649 
650  /* seek to next position to resync from */
651  if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0)
652  goto eof;
653 
654  id = avio_rb32(pb);
655 
656  // try to find a toplevel element
657  while (!avio_feof(pb)) {
658  if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
659  id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
661  id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
662  matroska->current_id = id;
663  return 0;
664  }
665  id = (id << 8) | avio_r8(pb);
666  }
667 
668 eof:
669  matroska->done = 1;
670  return AVERROR_EOF;
671 }
672 
673 /*
674  * Return: Whether we reached the end of a level in the hierarchy or not.
675  */
677 {
678  AVIOContext *pb = matroska->ctx->pb;
679  int64_t pos = avio_tell(pb);
680 
681  if (matroska->num_levels > 0) {
682  MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
683  if (pos - level->start >= level->length || matroska->current_id) {
684  matroska->num_levels--;
685  return 1;
686  }
687  }
688  return 0;
689 }
690 
691 /*
692  * Read: an "EBML number", which is defined as a variable-length
693  * array of bytes. The first byte indicates the length by giving a
694  * number of 0-bits followed by a one. The position of the first
695  * "one" bit inside the first byte indicates the length of this
696  * number.
697  * Returns: number of bytes read, < 0 on error
698  */
700  int max_size, uint64_t *number)
701 {
702  int read = 1, n = 1;
703  uint64_t total = 0;
704 
705  /* The first byte tells us the length in bytes - avio_r8() can normally
706  * return 0, but since that's not a valid first ebmlID byte, we can
707  * use it safely here to catch EOS. */
708  if (!(total = avio_r8(pb))) {
709  /* we might encounter EOS here */
710  if (!avio_feof(pb)) {
711  int64_t pos = avio_tell(pb);
712  av_log(matroska->ctx, AV_LOG_ERROR,
713  "Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
714  pos, pos);
715  return pb->error ? pb->error : AVERROR(EIO);
716  }
717  return AVERROR_EOF;
718  }
719 
720  /* get the length of the EBML number */
721  read = 8 - ff_log2_tab[total];
722  if (read > max_size) {
723  int64_t pos = avio_tell(pb) - 1;
724  av_log(matroska->ctx, AV_LOG_ERROR,
725  "Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
726  (uint8_t) total, pos, pos);
727  return AVERROR_INVALIDDATA;
728  }
729 
730  /* read out length */
731  total ^= 1 << ff_log2_tab[total];
732  while (n++ < read)
733  total = (total << 8) | avio_r8(pb);
734 
735  *number = total;
736 
737  return read;
738 }
739 
740 /**
741  * Read a EBML length value.
742  * This needs special handling for the "unknown length" case which has multiple
743  * encodings.
744  */
746  uint64_t *number)
747 {
748  int res = ebml_read_num(matroska, pb, 8, number);
749  if (res > 0 && *number + 1 == 1ULL << (7 * res))
750  *number = 0xffffffffffffffULL;
751  return res;
752 }
753 
754 /*
755  * Read the next element as an unsigned int.
756  * 0 is success, < 0 is failure.
757  */
758 static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
759 {
760  int n = 0;
761 
762  if (size > 8)
763  return AVERROR_INVALIDDATA;
764 
765  /* big-endian ordering; build up number */
766  *num = 0;
767  while (n++ < size)
768  *num = (*num << 8) | avio_r8(pb);
769 
770  return 0;
771 }
772 
773 /*
774  * Read the next element as a signed int.
775  * 0 is success, < 0 is failure.
776  */
777 static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num)
778 {
779  int n = 1;
780 
781  if (size > 8)
782  return AVERROR_INVALIDDATA;
783 
784  if (size == 0) {
785  *num = 0;
786  } else {
787  *num = sign_extend(avio_r8(pb), 8);
788 
789  /* big-endian ordering; build up number */
790  while (n++ < size)
791  *num = (*num << 8) | avio_r8(pb);
792  }
793 
794  return 0;
795 }
796 
797 /*
798  * Read the next element as a float.
799  * 0 is success, < 0 is failure.
800  */
801 static int ebml_read_float(AVIOContext *pb, int size, double *num)
802 {
803  if (size == 0)
804  *num = 0;
805  else if (size == 4)
806  *num = av_int2float(avio_rb32(pb));
807  else if (size == 8)
808  *num = av_int2double(avio_rb64(pb));
809  else
810  return AVERROR_INVALIDDATA;
811 
812  return 0;
813 }
814 
815 /*
816  * Read the next element as an ASCII string.
817  * 0 is success, < 0 is failure.
818  */
819 static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
820 {
821  char *res;
822 
823  /* EBML strings are usually not 0-terminated, so we allocate one
824  * byte more, read the string and NULL-terminate it ourselves. */
825  if (!(res = av_malloc(size + 1)))
826  return AVERROR(ENOMEM);
827  if (avio_read(pb, (uint8_t *) res, size) != size) {
828  av_free(res);
829  return AVERROR(EIO);
830  }
831  (res)[size] = '\0';
832  av_free(*str);
833  *str = res;
834 
835  return 0;
836 }
837 
838 /*
839  * Read the next element as binary data.
840  * 0 is success, < 0 is failure.
841  */
842 static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
843 {
844  av_fast_padded_malloc(&bin->data, &bin->size, length);
845  if (!bin->data)
846  return AVERROR(ENOMEM);
847 
848  bin->size = length;
849  bin->pos = avio_tell(pb);
850  if (avio_read(pb, bin->data, length) != length) {
851  av_freep(&bin->data);
852  bin->size = 0;
853  return AVERROR(EIO);
854  }
855 
856  return 0;
857 }
858 
859 /*
860  * Read the next element, but only the header. The contents
861  * are supposed to be sub-elements which can be read separately.
862  * 0 is success, < 0 is failure.
863  */
864 static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
865 {
866  AVIOContext *pb = matroska->ctx->pb;
868 
869  if (matroska->num_levels >= EBML_MAX_DEPTH) {
870  av_log(matroska->ctx, AV_LOG_ERROR,
871  "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
872  return AVERROR(ENOSYS);
873  }
874 
875  level = &matroska->levels[matroska->num_levels++];
876  level->start = avio_tell(pb);
877  level->length = length;
878 
879  return 0;
880 }
881 
882 /*
883  * Read signed/unsigned "EBML" numbers.
884  * Return: number of bytes processed, < 0 on error
885  */
887  uint8_t *data, uint32_t size, uint64_t *num)
888 {
889  AVIOContext pb;
890  ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
891  return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
892 }
893 
894 /*
895  * Same as above, but signed.
896  */
898  uint8_t *data, uint32_t size, int64_t *num)
899 {
900  uint64_t unum;
901  int res;
902 
903  /* read as unsigned number first */
904  if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
905  return res;
906 
907  /* make signed (weird way) */
908  *num = unum - ((1LL << (7 * res - 1)) - 1);
909 
910  return res;
911 }
912 
913 static int ebml_parse_elem(MatroskaDemuxContext *matroska,
914  EbmlSyntax *syntax, void *data);
915 
916 static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
917  uint32_t id, void *data)
918 {
919  int i;
920  for (i = 0; syntax[i].id; i++)
921  if (id == syntax[i].id)
922  break;
923  if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
924  matroska->num_levels > 0 &&
925  matroska->levels[matroska->num_levels - 1].length == 0xffffffffffffff)
926  return 0; // we reached the end of an unknown size cluster
927  if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
928  av_log(matroska->ctx, AV_LOG_INFO, "Unknown entry 0x%"PRIX32"\n", id);
929  if (matroska->ctx->error_recognition & AV_EF_EXPLODE)
930  return AVERROR_INVALIDDATA;
931  }
932  return ebml_parse_elem(matroska, &syntax[i], data);
933 }
934 
935 static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
936  void *data)
937 {
938  if (!matroska->current_id) {
939  uint64_t id;
940  int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
941  if (res < 0)
942  return res;
943  matroska->current_id = id | 1 << 7 * res;
944  }
945  return ebml_parse_id(matroska, syntax, matroska->current_id, data);
946 }
947 
948 static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
949  void *data)
950 {
951  int i, res = 0;
952 
953  for (i = 0; syntax[i].id; i++)
954  switch (syntax[i].type) {
955  case EBML_UINT:
956  *(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
957  break;
958  case EBML_FLOAT:
959  *(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
960  break;
961  case EBML_STR:
962  case EBML_UTF8:
963  // the default may be NULL
964  if (syntax[i].def.s) {
965  uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
966  *dst = av_strdup(syntax[i].def.s);
967  if (!*dst)
968  return AVERROR(ENOMEM);
969  }
970  break;
971  }
972 
973  while (!res && !ebml_level_end(matroska))
974  res = ebml_parse(matroska, syntax, data);
975 
976  return res;
977 }
978 
980  EbmlSyntax *syntax, void *data)
981 {
982  static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
983  [EBML_UINT] = 8,
984  [EBML_FLOAT] = 8,
985  // max. 16 MB for strings
986  [EBML_STR] = 0x1000000,
987  [EBML_UTF8] = 0x1000000,
988  // max. 256 MB for binary data
989  [EBML_BIN] = 0x10000000,
990  // no limits for anything else
991  };
992  AVIOContext *pb = matroska->ctx->pb;
993  uint32_t id = syntax->id;
994  uint64_t length;
995  int res;
996  void *newelem;
997 
998  data = (char *) data + syntax->data_offset;
999  if (syntax->list_elem_size) {
1000  EbmlList *list = data;
1001  newelem = av_realloc_array(list->elem, list->nb_elem + 1, syntax->list_elem_size);
1002  if (!newelem)
1003  return AVERROR(ENOMEM);
1004  list->elem = newelem;
1005  data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
1006  memset(data, 0, syntax->list_elem_size);
1007  list->nb_elem++;
1008  }
1009 
1010  if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
1011  matroska->current_id = 0;
1012  if ((res = ebml_read_length(matroska, pb, &length)) < 0)
1013  return res;
1014  if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
1015  av_log(matroska->ctx, AV_LOG_ERROR,
1016  "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
1017  length, max_lengths[syntax->type], syntax->type);
1018  return AVERROR_INVALIDDATA;
1019  }
1020  }
1021 
1022  switch (syntax->type) {
1023  case EBML_UINT:
1024  res = ebml_read_uint(pb, length, data);
1025  break;
1026  case EBML_SINT:
1027  res = ebml_read_sint(pb, length, data);
1028  break;
1029  case EBML_FLOAT:
1030  res = ebml_read_float(pb, length, data);
1031  break;
1032  case EBML_STR:
1033  case EBML_UTF8:
1034  res = ebml_read_ascii(pb, length, data);
1035  break;
1036  case EBML_BIN:
1037  res = ebml_read_binary(pb, length, data);
1038  break;
1039  case EBML_NEST:
1040  if ((res = ebml_read_master(matroska, length)) < 0)
1041  return res;
1042  if (id == MATROSKA_ID_SEGMENT)
1043  matroska->segment_start = avio_tell(matroska->ctx->pb);
1044  return ebml_parse_nest(matroska, syntax->def.n, data);
1045  case EBML_PASS:
1046  return ebml_parse_id(matroska, syntax->def.n, id, data);
1047  case EBML_STOP:
1048  return 1;
1049  default:
1050  if (ffio_limit(pb, length) != length)
1051  return AVERROR(EIO);
1052  return avio_skip(pb, length) < 0 ? AVERROR(EIO) : 0;
1053  }
1054  if (res == AVERROR_INVALIDDATA)
1055  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
1056  else if (res == AVERROR(EIO))
1057  av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
1058  return res;
1059 }
1060 
1061 static void ebml_free(EbmlSyntax *syntax, void *data)
1062 {
1063  int i, j;
1064  for (i = 0; syntax[i].id; i++) {
1065  void *data_off = (char *) data + syntax[i].data_offset;
1066  switch (syntax[i].type) {
1067  case EBML_STR:
1068  case EBML_UTF8:
1069  av_freep(data_off);
1070  break;
1071  case EBML_BIN:
1072  av_freep(&((EbmlBin *) data_off)->data);
1073  break;
1074  case EBML_NEST:
1075  if (syntax[i].list_elem_size) {
1076  EbmlList *list = data_off;
1077  char *ptr = list->elem;
1078  for (j = 0; j < list->nb_elem;
1079  j++, ptr += syntax[i].list_elem_size)
1080  ebml_free(syntax[i].def.n, ptr);
1081  av_free(list->elem);
1082  } else
1083  ebml_free(syntax[i].def.n, data_off);
1084  default:
1085  break;
1086  }
1087  }
1088 }
1089 
1090 /*
1091  * Autodetecting...
1092  */
1094 {
1095  uint64_t total = 0;
1096  int len_mask = 0x80, size = 1, n = 1, i;
1097 
1098  /* EBML header? */
1099  if (AV_RB32(p->buf) != EBML_ID_HEADER)
1100  return 0;
1101 
1102  /* length of header */
1103  total = p->buf[4];
1104  while (size <= 8 && !(total & len_mask)) {
1105  size++;
1106  len_mask >>= 1;
1107  }
1108  if (size > 8)
1109  return 0;
1110  total &= (len_mask - 1);
1111  while (n < size)
1112  total = (total << 8) | p->buf[4 + n++];
1113 
1114  /* Does the probe data contain the whole header? */
1115  if (p->buf_size < 4 + size + total)
1116  return 0;
1117 
1118  /* The header should contain a known document type. For now,
1119  * we don't parse the whole header but simply check for the
1120  * availability of that array of characters inside the header.
1121  * Not fully fool-proof, but good enough. */
1122  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
1123  int probelen = strlen(matroska_doctypes[i]);
1124  if (total < probelen)
1125  continue;
1126  for (n = 4 + size; n <= 4 + size + total - probelen; n++)
1127  if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
1128  return AVPROBE_SCORE_MAX;
1129  }
1130 
1131  // probably valid EBML header but no recognized doctype
1132  return AVPROBE_SCORE_EXTENSION;
1133 }
1134 
1136  int num)
1137 {
1138  MatroskaTrack *tracks = matroska->tracks.elem;
1139  int i;
1140 
1141  for (i = 0; i < matroska->tracks.nb_elem; i++)
1142  if (tracks[i].num == num)
1143  return &tracks[i];
1144 
1145  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
1146  return NULL;
1147 }
1148 
1149 static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
1150  MatroskaTrack *track)
1151 {
1152  MatroskaTrackEncoding *encodings = track->encodings.elem;
1153  uint8_t *data = *buf;
1154  int isize = *buf_size;
1155  uint8_t *pkt_data = NULL;
1156  uint8_t av_unused *newpktdata;
1157  int pkt_size = isize;
1158  int result = 0;
1159  int olen;
1160 
1161  if (pkt_size >= 10000000U)
1162  return AVERROR_INVALIDDATA;
1163 
1164  switch (encodings[0].compression.algo) {
1166  {
1167  int header_size = encodings[0].compression.settings.size;
1168  uint8_t *header = encodings[0].compression.settings.data;
1169 
1170  if (header_size && !header) {
1171  av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
1172  return -1;
1173  }
1174 
1175  if (!header_size)
1176  return 0;
1177 
1178  pkt_size = isize + header_size;
1179  pkt_data = av_malloc(pkt_size);
1180  if (!pkt_data)
1181  return AVERROR(ENOMEM);
1182 
1183  memcpy(pkt_data, header, header_size);
1184  memcpy(pkt_data + header_size, data, isize);
1185  break;
1186  }
1187 #if CONFIG_LZO
1189  do {
1190  olen = pkt_size *= 3;
1191  newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING);
1192  if (!newpktdata) {
1193  result = AVERROR(ENOMEM);
1194  goto failed;
1195  }
1196  pkt_data = newpktdata;
1197  result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
1198  } while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
1199  if (result) {
1200  result = AVERROR_INVALIDDATA;
1201  goto failed;
1202  }
1203  pkt_size -= olen;
1204  break;
1205 #endif
1206 #if CONFIG_ZLIB
1208  {
1209  z_stream zstream = { 0 };
1210  if (inflateInit(&zstream) != Z_OK)
1211  return -1;
1212  zstream.next_in = data;
1213  zstream.avail_in = isize;
1214  do {
1215  pkt_size *= 3;
1216  newpktdata = av_realloc(pkt_data, pkt_size);
1217  if (!newpktdata) {
1218  inflateEnd(&zstream);
1219  goto failed;
1220  }
1221  pkt_data = newpktdata;
1222  zstream.avail_out = pkt_size - zstream.total_out;
1223  zstream.next_out = pkt_data + zstream.total_out;
1224  if (pkt_data) {
1225  result = inflate(&zstream, Z_NO_FLUSH);
1226  } else
1227  result = Z_MEM_ERROR;
1228  } while (result == Z_OK && pkt_size < 10000000);
1229  pkt_size = zstream.total_out;
1230  inflateEnd(&zstream);
1231  if (result != Z_STREAM_END) {
1232  if (result == Z_MEM_ERROR)
1233  result = AVERROR(ENOMEM);
1234  else
1235  result = AVERROR_INVALIDDATA;
1236  goto failed;
1237  }
1238  break;
1239  }
1240 #endif
1241 #if CONFIG_BZLIB
1243  {
1244  bz_stream bzstream = { 0 };
1245  if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
1246  return -1;
1247  bzstream.next_in = data;
1248  bzstream.avail_in = isize;
1249  do {
1250  pkt_size *= 3;
1251  newpktdata = av_realloc(pkt_data, pkt_size);
1252  if (!newpktdata) {
1253  BZ2_bzDecompressEnd(&bzstream);
1254  goto failed;
1255  }
1256  pkt_data = newpktdata;
1257  bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
1258  bzstream.next_out = pkt_data + bzstream.total_out_lo32;
1259  if (pkt_data) {
1260  result = BZ2_bzDecompress(&bzstream);
1261  } else
1262  result = BZ_MEM_ERROR;
1263  } while (result == BZ_OK && pkt_size < 10000000);
1264  pkt_size = bzstream.total_out_lo32;
1265  BZ2_bzDecompressEnd(&bzstream);
1266  if (result != BZ_STREAM_END) {
1267  if (result == BZ_MEM_ERROR)
1268  result = AVERROR(ENOMEM);
1269  else
1270  result = AVERROR_INVALIDDATA;
1271  goto failed;
1272  }
1273  break;
1274  }
1275 #endif
1276  default:
1277  return AVERROR_INVALIDDATA;
1278  }
1279 
1280  *buf = pkt_data;
1281  *buf_size = pkt_size;
1282  return 0;
1283 
1284 failed:
1285  av_free(pkt_data);
1286  return result;
1287 }
1288 
1290  AVDictionary **metadata, char *prefix)
1291 {
1292  MatroskaTag *tags = list->elem;
1293  char key[1024];
1294  int i;
1295 
1296  for (i = 0; i < list->nb_elem; i++) {
1297  const char *lang = tags[i].lang &&
1298  strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
1299 
1300  if (!tags[i].name) {
1301  av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
1302  continue;
1303  }
1304  if (prefix)
1305  snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
1306  else
1307  av_strlcpy(key, tags[i].name, sizeof(key));
1308  if (tags[i].def || !lang) {
1309  av_dict_set(metadata, key, tags[i].string, 0);
1310  if (tags[i].sub.nb_elem)
1311  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1312  }
1313  if (lang) {
1314  av_strlcat(key, "-", sizeof(key));
1315  av_strlcat(key, lang, sizeof(key));
1316  av_dict_set(metadata, key, tags[i].string, 0);
1317  if (tags[i].sub.nb_elem)
1318  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1319  }
1320  }
1321  ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
1322 }
1323 
1325 {
1326  MatroskaDemuxContext *matroska = s->priv_data;
1327  MatroskaTags *tags = matroska->tags.elem;
1328  int i, j;
1329 
1330  for (i = 0; i < matroska->tags.nb_elem; i++) {
1331  if (tags[i].target.attachuid) {
1332  MatroskaAttachment *attachment = matroska->attachments.elem;
1333  for (j = 0; j < matroska->attachments.nb_elem; j++)
1334  if (attachment[j].uid == tags[i].target.attachuid &&
1335  attachment[j].stream)
1336  matroska_convert_tag(s, &tags[i].tag,
1337  &attachment[j].stream->metadata, NULL);
1338  } else if (tags[i].target.chapteruid) {
1339  MatroskaChapter *chapter = matroska->chapters.elem;
1340  for (j = 0; j < matroska->chapters.nb_elem; j++)
1341  if (chapter[j].uid == tags[i].target.chapteruid &&
1342  chapter[j].chapter)
1343  matroska_convert_tag(s, &tags[i].tag,
1344  &chapter[j].chapter->metadata, NULL);
1345  } else if (tags[i].target.trackuid) {
1346  MatroskaTrack *track = matroska->tracks.elem;
1347  for (j = 0; j < matroska->tracks.nb_elem; j++)
1348  if (track[j].uid == tags[i].target.trackuid && track[j].stream)
1349  matroska_convert_tag(s, &tags[i].tag,
1350  &track[j].stream->metadata, NULL);
1351  } else {
1352  matroska_convert_tag(s, &tags[i].tag, &s->metadata,
1353  tags[i].target.type);
1354  }
1355  }
1356 }
1357 
1359  int idx)
1360 {
1361  EbmlList *seekhead_list = &matroska->seekhead;
1362  uint32_t level_up = matroska->level_up;
1363  uint32_t saved_id = matroska->current_id;
1364  MatroskaSeekhead *seekhead = seekhead_list->elem;
1365  int64_t before_pos = avio_tell(matroska->ctx->pb);
1367  int64_t offset;
1368  int ret = 0;
1369 
1370  if (idx >= seekhead_list->nb_elem ||
1371  seekhead[idx].id == MATROSKA_ID_SEEKHEAD ||
1372  seekhead[idx].id == MATROSKA_ID_CLUSTER)
1373  return 0;
1374 
1375  /* seek */
1376  offset = seekhead[idx].pos + matroska->segment_start;
1377  if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
1378  /* We don't want to lose our seekhead level, so we add
1379  * a dummy. This is a crude hack. */
1380  if (matroska->num_levels == EBML_MAX_DEPTH) {
1381  av_log(matroska->ctx, AV_LOG_INFO,
1382  "Max EBML element depth (%d) reached, "
1383  "cannot parse further.\n", EBML_MAX_DEPTH);
1384  ret = AVERROR_INVALIDDATA;
1385  } else {
1386  level.start = 0;
1387  level.length = (uint64_t) -1;
1388  matroska->levels[matroska->num_levels] = level;
1389  matroska->num_levels++;
1390  matroska->current_id = 0;
1391 
1392  ret = ebml_parse(matroska, matroska_segment, matroska);
1393 
1394  /* remove dummy level */
1395  while (matroska->num_levels) {
1396  uint64_t length = matroska->levels[--matroska->num_levels].length;
1397  if (length == (uint64_t) -1)
1398  break;
1399  }
1400  }
1401  }
1402  /* seek back */
1403  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
1404  matroska->level_up = level_up;
1405  matroska->current_id = saved_id;
1406 
1407  return ret;
1408 }
1409 
1411 {
1412  EbmlList *seekhead_list = &matroska->seekhead;
1413  int64_t before_pos = avio_tell(matroska->ctx->pb);
1414  int i;
1415 
1416  // we should not do any seeking in the streaming case
1417  if (!matroska->ctx->pb->seekable ||
1418  (matroska->ctx->flags & AVFMT_FLAG_IGNIDX))
1419  return;
1420 
1421  for (i = 0; i < seekhead_list->nb_elem; i++) {
1422  MatroskaSeekhead *seekhead = seekhead_list->elem;
1423  if (seekhead[i].pos <= before_pos)
1424  continue;
1425 
1426  // defer cues parsing until we actually need cue data.
1427  if (seekhead[i].id == MATROSKA_ID_CUES) {
1428  matroska->cues_parsing_deferred = 1;
1429  continue;
1430  }
1431 
1432  if (matroska_parse_seekhead_entry(matroska, i) < 0) {
1433  // mark index as broken
1434  matroska->cues_parsing_deferred = -1;
1435  break;
1436  }
1437  }
1438 }
1439 
1441 {
1442  EbmlList *index_list;
1444  int index_scale = 1;
1445  int i, j;
1446 
1447  index_list = &matroska->index;
1448  index = index_list->elem;
1449  if (index_list->nb_elem &&
1450  index[0].time > 1E14 / matroska->time_scale) {
1451  av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
1452  index_scale = matroska->time_scale;
1453  }
1454  for (i = 0; i < index_list->nb_elem; i++) {
1455  EbmlList *pos_list = &index[i].pos;
1456  MatroskaIndexPos *pos = pos_list->elem;
1457  for (j = 0; j < pos_list->nb_elem; j++) {
1458  MatroskaTrack *track = matroska_find_track_by_num(matroska,
1459  pos[j].track);
1460  if (track && track->stream)
1461  av_add_index_entry(track->stream,
1462  pos[j].pos + matroska->segment_start,
1463  index[i].time / index_scale, 0, 0,
1465  }
1466  }
1467 }
1468 
1470  EbmlList *seekhead_list = &matroska->seekhead;
1471  MatroskaSeekhead *seekhead = seekhead_list->elem;
1472  int i;
1473 
1474  for (i = 0; i < seekhead_list->nb_elem; i++)
1475  if (seekhead[i].id == MATROSKA_ID_CUES)
1476  break;
1477  av_assert1(i <= seekhead_list->nb_elem);
1478 
1479  if (matroska_parse_seekhead_entry(matroska, i) < 0)
1480  matroska->cues_parsing_deferred = -1;
1481  matroska_add_index_entries(matroska);
1482 }
1483 
1485 {
1486  static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
1487  int profile;
1488 
1489  for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
1490  if (strstr(codec_id, aac_profiles[profile]))
1491  break;
1492  return profile + 1;
1493 }
1494 
1495 static int matroska_aac_sri(int samplerate)
1496 {
1497  int sri;
1498 
1499  for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
1500  if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
1501  break;
1502  return sri;
1503 }
1504 
1505 static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
1506 {
1507  char buffer[32];
1508  /* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
1509  time_t creation_time = date_utc / 1000000000 + 978307200;
1510  struct tm *ptm = gmtime(&creation_time);
1511  if (!ptm) return;
1512  strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", ptm);
1513  av_dict_set(metadata, "creation_time", buffer, 0);
1514 }
1515 
1517  MatroskaTrack *track,
1518  int *offset)
1519 {
1520  AVStream *st = track->stream;
1521  uint8_t *p = track->codec_priv.data;
1522  int size = track->codec_priv.size;
1523 
1524  if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
1525  av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
1526  track->codec_priv.size = 0;
1527  return 0;
1528  }
1529  *offset = 8;
1530  track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
1531 
1532  p += track->codec_priv.size;
1533  size -= track->codec_priv.size;
1534 
1535  /* parse the remaining metadata blocks if present */
1536  while (size >= 4) {
1537  int block_last, block_type, block_size;
1538 
1539  flac_parse_block_header(p, &block_last, &block_type, &block_size);
1540 
1541  p += 4;
1542  size -= 4;
1543  if (block_size > size)
1544  return 0;
1545 
1546  /* check for the channel mask */
1547  if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
1548  AVDictionary *dict = NULL;
1549  AVDictionaryEntry *chmask;
1550 
1551  ff_vorbis_comment(s, &dict, p, block_size, 0);
1552  chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
1553  if (chmask) {
1554  uint64_t mask = strtol(chmask->value, NULL, 0);
1555  if (!mask || mask & ~0x3ffffULL) {
1557  "Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
1558  } else
1559  st->codec->channel_layout = mask;
1560  }
1561  av_dict_free(&dict);
1562  }
1563 
1564  p += block_size;
1565  size -= block_size;
1566  }
1567 
1568  return 0;
1569 }
1570 
1572 {
1573  MatroskaDemuxContext *matroska = s->priv_data;
1574  MatroskaTrack *tracks = matroska->tracks.elem;
1575  AVStream *st;
1576  int i, j, ret;
1577  int k;
1578 
1579  for (i = 0; i < matroska->tracks.nb_elem; i++) {
1580  MatroskaTrack *track = &tracks[i];
1582  EbmlList *encodings_list = &track->encodings;
1583  MatroskaTrackEncoding *encodings = encodings_list->elem;
1584  uint8_t *extradata = NULL;
1585  int extradata_size = 0;
1586  int extradata_offset = 0;
1587  uint32_t fourcc = 0;
1588  AVIOContext b;
1589  char* key_id_base64 = NULL;
1590  int bit_depth = -1;
1591 
1592  /* Apply some sanity checks. */
1593  if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
1594  track->type != MATROSKA_TRACK_TYPE_AUDIO &&
1595  track->type != MATROSKA_TRACK_TYPE_SUBTITLE &&
1596  track->type != MATROSKA_TRACK_TYPE_METADATA) {
1597  av_log(matroska->ctx, AV_LOG_INFO,
1598  "Unknown or unsupported track type %"PRIu64"\n",
1599  track->type);
1600  continue;
1601  }
1602  if (!track->codec_id)
1603  continue;
1604 
1605  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1606  if (!track->default_duration && track->video.frame_rate > 0)
1607  track->default_duration = 1000000000 / track->video.frame_rate;
1608  if (track->video.display_width == -1)
1609  track->video.display_width = track->video.pixel_width;
1610  if (track->video.display_height == -1)
1611  track->video.display_height = track->video.pixel_height;
1612  if (track->video.color_space.size == 4)
1613  fourcc = AV_RL32(track->video.color_space.data);
1614  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
1615  if (!track->audio.out_samplerate)
1616  track->audio.out_samplerate = track->audio.samplerate;
1617  }
1618  if (encodings_list->nb_elem > 1) {
1619  av_log(matroska->ctx, AV_LOG_ERROR,
1620  "Multiple combined encodings not supported");
1621  } else if (encodings_list->nb_elem == 1) {
1622  if (encodings[0].type) {
1623  if (encodings[0].encryption.key_id.size > 0) {
1624  /* Save the encryption key id to be stored later as a
1625  metadata tag. */
1626  const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size);
1627  key_id_base64 = av_malloc(b64_size);
1628  if (key_id_base64 == NULL)
1629  return AVERROR(ENOMEM);
1630 
1631  av_base64_encode(key_id_base64, b64_size,
1632  encodings[0].encryption.key_id.data,
1633  encodings[0].encryption.key_id.size);
1634  } else {
1635  encodings[0].scope = 0;
1636  av_log(matroska->ctx, AV_LOG_ERROR,
1637  "Unsupported encoding type");
1638  }
1639  } else if (
1640 #if CONFIG_ZLIB
1641  encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
1642 #endif
1643 #if CONFIG_BZLIB
1645 #endif
1646 #if CONFIG_LZO
1648 #endif
1650  encodings[0].scope = 0;
1651  av_log(matroska->ctx, AV_LOG_ERROR,
1652  "Unsupported encoding type");
1653  } else if (track->codec_priv.size && encodings[0].scope & 2) {
1654  uint8_t *codec_priv = track->codec_priv.data;
1655  int ret = matroska_decode_buffer(&track->codec_priv.data,
1656  &track->codec_priv.size,
1657  track);
1658  if (ret < 0) {
1659  track->codec_priv.data = NULL;
1660  track->codec_priv.size = 0;
1661  av_log(matroska->ctx, AV_LOG_ERROR,
1662  "Failed to decode codec private data\n");
1663  }
1664 
1665  if (codec_priv != track->codec_priv.data)
1666  av_free(codec_priv);
1667  }
1668  }
1669 
1670  for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
1671  if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
1672  strlen(ff_mkv_codec_tags[j].str))) {
1673  codec_id = ff_mkv_codec_tags[j].id;
1674  break;
1675  }
1676  }
1677 
1678  st = track->stream = avformat_new_stream(s, NULL);
1679  if (!st) {
1680  av_free(key_id_base64);
1681  return AVERROR(ENOMEM);
1682  }
1683 
1684  if (key_id_base64) {
1685  /* export encryption key id as base64 metadata tag */
1686  av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0);
1687  av_freep(&key_id_base64);
1688  }
1689 
1690  if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
1691  track->codec_priv.size >= 40 &&
1692  track->codec_priv.data) {
1693  track->ms_compat = 1;
1694  bit_depth = AV_RL16(track->codec_priv.data + 14);
1695  fourcc = AV_RL32(track->codec_priv.data + 16);
1697  fourcc);
1698  if (!codec_id)
1700  fourcc);
1701  extradata_offset = 40;
1702  } else if (!strcmp(track->codec_id, "A_MS/ACM") &&
1703  track->codec_priv.size >= 14 &&
1704  track->codec_priv.data) {
1705  int ret;
1706  ffio_init_context(&b, track->codec_priv.data,
1707  track->codec_priv.size,
1708  0, NULL, NULL, NULL, NULL);
1709  ret = ff_get_wav_header(&b, st->codec, track->codec_priv.size);
1710  if (ret < 0)
1711  return ret;
1712  codec_id = st->codec->codec_id;
1713  extradata_offset = FFMIN(track->codec_priv.size, 18);
1714  } else if (!strcmp(track->codec_id, "A_QUICKTIME")
1715  && (track->codec_priv.size >= 86)
1716  && (track->codec_priv.data)) {
1717  fourcc = AV_RL32(track->codec_priv.data + 4);
1718  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1720  fourcc = AV_RL32(track->codec_priv.data);
1721  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1722  }
1723  } else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
1724  (track->codec_priv.size >= 21) &&
1725  (track->codec_priv.data)) {
1726  fourcc = AV_RL32(track->codec_priv.data + 4);
1727  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1729  fourcc = AV_RL32(track->codec_priv.data);
1730  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1731  }
1732  if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI "))
1733  codec_id = AV_CODEC_ID_SVQ3;
1734  } else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
1735  switch (track->audio.bitdepth) {
1736  case 8:
1737  codec_id = AV_CODEC_ID_PCM_U8;
1738  break;
1739  case 24:
1740  codec_id = AV_CODEC_ID_PCM_S24BE;
1741  break;
1742  case 32:
1743  codec_id = AV_CODEC_ID_PCM_S32BE;
1744  break;
1745  }
1746  } else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
1747  switch (track->audio.bitdepth) {
1748  case 8:
1749  codec_id = AV_CODEC_ID_PCM_U8;
1750  break;
1751  case 24:
1752  codec_id = AV_CODEC_ID_PCM_S24LE;
1753  break;
1754  case 32:
1755  codec_id = AV_CODEC_ID_PCM_S32LE;
1756  break;
1757  }
1758  } else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
1759  track->audio.bitdepth == 64) {
1760  codec_id = AV_CODEC_ID_PCM_F64LE;
1761  } else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
1762  int profile = matroska_aac_profile(track->codec_id);
1763  int sri = matroska_aac_sri(track->audio.samplerate);
1764  extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
1765  if (!extradata)
1766  return AVERROR(ENOMEM);
1767  extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
1768  extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
1769  if (strstr(track->codec_id, "SBR")) {
1770  sri = matroska_aac_sri(track->audio.out_samplerate);
1771  extradata[2] = 0x56;
1772  extradata[3] = 0xE5;
1773  extradata[4] = 0x80 | (sri << 3);
1774  extradata_size = 5;
1775  } else
1776  extradata_size = 2;
1777  } else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - FF_INPUT_BUFFER_PADDING_SIZE) {
1778  /* Only ALAC's magic cookie is stored in Matroska's track headers.
1779  * Create the "atom size", "tag", and "tag version" fields the
1780  * decoder expects manually. */
1781  extradata_size = 12 + track->codec_priv.size;
1782  extradata = av_mallocz(extradata_size +
1784  if (!extradata)
1785  return AVERROR(ENOMEM);
1786  AV_WB32(extradata, extradata_size);
1787  memcpy(&extradata[4], "alac", 4);
1788  AV_WB32(&extradata[8], 0);
1789  memcpy(&extradata[12], track->codec_priv.data,
1790  track->codec_priv.size);
1791  } else if (codec_id == AV_CODEC_ID_TTA) {
1792  extradata_size = 30;
1793  extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
1794  if (!extradata)
1795  return AVERROR(ENOMEM);
1796  ffio_init_context(&b, extradata, extradata_size, 1,
1797  NULL, NULL, NULL, NULL);
1798  avio_write(&b, "TTA1", 4);
1799  avio_wl16(&b, 1);
1800  avio_wl16(&b, track->audio.channels);
1801  avio_wl16(&b, track->audio.bitdepth);
1802  if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX)
1803  return AVERROR_INVALIDDATA;
1804  avio_wl32(&b, track->audio.out_samplerate);
1805  avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale),
1806  track->audio.out_samplerate,
1807  AV_TIME_BASE * 1000));
1808  } else if (codec_id == AV_CODEC_ID_RV10 ||
1809  codec_id == AV_CODEC_ID_RV20 ||
1810  codec_id == AV_CODEC_ID_RV30 ||
1811  codec_id == AV_CODEC_ID_RV40) {
1812  extradata_offset = 26;
1813  } else if (codec_id == AV_CODEC_ID_RA_144) {
1814  track->audio.out_samplerate = 8000;
1815  track->audio.channels = 1;
1816  } else if ((codec_id == AV_CODEC_ID_RA_288 ||
1817  codec_id == AV_CODEC_ID_COOK ||
1818  codec_id == AV_CODEC_ID_ATRAC3 ||
1819  codec_id == AV_CODEC_ID_SIPR)
1820  && track->codec_priv.data) {
1821  int flavor;
1822 
1823  ffio_init_context(&b, track->codec_priv.data,
1824  track->codec_priv.size,
1825  0, NULL, NULL, NULL, NULL);
1826  avio_skip(&b, 22);
1827  flavor = avio_rb16(&b);
1828  track->audio.coded_framesize = avio_rb32(&b);
1829  avio_skip(&b, 12);
1830  track->audio.sub_packet_h = avio_rb16(&b);
1831  track->audio.frame_size = avio_rb16(&b);
1832  track->audio.sub_packet_size = avio_rb16(&b);
1833  if (flavor < 0 ||
1834  track->audio.coded_framesize <= 0 ||
1835  track->audio.sub_packet_h <= 0 ||
1836  track->audio.frame_size <= 0 ||
1837  track->audio.sub_packet_size <= 0)
1838  return AVERROR_INVALIDDATA;
1839  track->audio.buf = av_malloc_array(track->audio.sub_packet_h,
1840  track->audio.frame_size);
1841  if (!track->audio.buf)
1842  return AVERROR(ENOMEM);
1843  if (codec_id == AV_CODEC_ID_RA_288) {
1844  st->codec->block_align = track->audio.coded_framesize;
1845  track->codec_priv.size = 0;
1846  } else {
1847  if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
1848  static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
1849  track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
1850  st->codec->bit_rate = sipr_bit_rate[flavor];
1851  }
1852  st->codec->block_align = track->audio.sub_packet_size;
1853  extradata_offset = 78;
1854  }
1855  } else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
1856  ret = matroska_parse_flac(s, track, &extradata_offset);
1857  if (ret < 0)
1858  return ret;
1859  } else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) {
1860  fourcc = AV_RL32(track->codec_priv.data);
1861  }
1862  track->codec_priv.size -= extradata_offset;
1863 
1864  if (codec_id == AV_CODEC_ID_NONE)
1865  av_log(matroska->ctx, AV_LOG_INFO,
1866  "Unknown/unsupported AVCodecID %s.\n", track->codec_id);
1867 
1868  if (track->time_scale < 0.01)
1869  track->time_scale = 1.0;
1870  avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
1871  1000 * 1000 * 1000); /* 64 bit pts in ns */
1872 
1873  /* convert the delay from ns to the track timebase */
1874  track->codec_delay = av_rescale_q(track->codec_delay,
1875  (AVRational){ 1, 1000000000 },
1876  st->time_base);
1877 
1878  st->codec->codec_id = codec_id;
1879 
1880  if (strcmp(track->language, "und"))
1881  av_dict_set(&st->metadata, "language", track->language, 0);
1882  av_dict_set(&st->metadata, "title", track->name, 0);
1883 
1884  if (track->flag_default)
1886  if (track->flag_forced)
1888 
1889  if (!st->codec->extradata) {
1890  if (extradata) {
1891  st->codec->extradata = extradata;
1892  st->codec->extradata_size = extradata_size;
1893  } else if (track->codec_priv.data && track->codec_priv.size > 0) {
1894  if (ff_alloc_extradata(st->codec, track->codec_priv.size))
1895  return AVERROR(ENOMEM);
1896  memcpy(st->codec->extradata,
1897  track->codec_priv.data + extradata_offset,
1898  track->codec_priv.size);
1899  }
1900  }
1901 
1902  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1903  MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
1904 
1906  st->codec->codec_tag = fourcc;
1907  if (bit_depth >= 0)
1908  st->codec->bits_per_coded_sample = bit_depth;
1909  st->codec->width = track->video.pixel_width;
1910  st->codec->height = track->video.pixel_height;
1912  &st->sample_aspect_ratio.den,
1913  st->codec->height * track->video.display_width,
1914  st->codec->width * track->video.display_height,
1915  255);
1916  if (st->codec->codec_id != AV_CODEC_ID_HEVC)
1918 
1919  if (track->default_duration) {
1921  1000000000, track->default_duration, 30000);
1922 #if FF_API_R_FRAME_RATE
1923  if ( st->avg_frame_rate.num < st->avg_frame_rate.den * 1000L
1924  && st->avg_frame_rate.num > st->avg_frame_rate.den * 5L)
1925  st->r_frame_rate = st->avg_frame_rate;
1926 #endif
1927  }
1928 
1929  /* export stereo mode flag as metadata tag */
1930  if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
1931  av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0);
1932 
1933  /* export alpha mode flag as metadata tag */
1934  if (track->video.alpha_mode)
1935  av_dict_set(&st->metadata, "alpha_mode", "1", 0);
1936 
1937  /* if we have virtual track, mark the real tracks */
1938  for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
1939  char buf[32];
1940  if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
1941  continue;
1942  snprintf(buf, sizeof(buf), "%s_%d",
1943  ff_matroska_video_stereo_plane[planes[j].type], i);
1944  for (k=0; k < matroska->tracks.nb_elem; k++)
1945  if (planes[j].uid == tracks[k].uid) {
1946  av_dict_set(&s->streams[k]->metadata,
1947  "stereo_mode", buf, 0);
1948  break;
1949  }
1950  }
1951  // add stream level stereo3d side data if it is a supported format
1952  if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB &&
1953  track->video.stereo_mode != 10 && track->video.stereo_mode != 12) {
1954  int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode);
1955  if (ret < 0)
1956  return ret;
1957  }
1958  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
1960  st->codec->sample_rate = track->audio.out_samplerate;
1961  st->codec->channels = track->audio.channels;
1962  if (!st->codec->bits_per_coded_sample)
1963  st->codec->bits_per_coded_sample = track->audio.bitdepth;
1964  if (st->codec->codec_id != AV_CODEC_ID_AAC)
1966  if (track->codec_delay > 0) {
1967  st->codec->delay = av_rescale_q(track->codec_delay,
1968  st->time_base,
1969  (AVRational){1, st->codec->sample_rate});
1970  }
1971  if (track->seek_preroll > 0) {
1973  av_rescale_q(track->seek_preroll,
1974  (AVRational){1, 1000000000},
1975  (AVRational){1, st->codec->sample_rate}));
1976  }
1977  } else if (codec_id == AV_CODEC_ID_WEBVTT) {
1978  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
1979 
1980  if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) {
1981  st->disposition |= AV_DISPOSITION_CAPTIONS;
1982  } else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) {
1983  st->disposition |= AV_DISPOSITION_DESCRIPTIONS;
1984  } else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) {
1985  st->disposition |= AV_DISPOSITION_METADATA;
1986  }
1987  } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
1988  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
1989  if (st->codec->codec_id == AV_CODEC_ID_ASS)
1990  matroska->contains_ssa = 1;
1991  }
1992  }
1993 
1994  return 0;
1995 }
1996 
1998 {
1999  MatroskaDemuxContext *matroska = s->priv_data;
2000  EbmlList *attachments_list = &matroska->attachments;
2001  EbmlList *chapters_list = &matroska->chapters;
2002  MatroskaAttachment *attachments;
2003  MatroskaChapter *chapters;
2004  uint64_t max_start = 0;
2005  int64_t pos;
2006  Ebml ebml = { 0 };
2007  int i, j, res;
2008 
2009  matroska->ctx = s;
2010 
2011  /* First read the EBML header. */
2012  if (ebml_parse(matroska, ebml_syntax, &ebml) ||
2013  ebml.version > EBML_VERSION ||
2014  ebml.max_size > sizeof(uint64_t) ||
2015  ebml.id_length > sizeof(uint32_t) ||
2016  ebml.doctype_version > 3 ||
2017  !ebml.doctype) {
2018  av_log(matroska->ctx, AV_LOG_ERROR,
2019  "EBML header using unsupported features\n"
2020  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2021  ebml.version, ebml.doctype, ebml.doctype_version);
2022  ebml_free(ebml_syntax, &ebml);
2023  return AVERROR_PATCHWELCOME;
2024  } else if (ebml.doctype_version == 3) {
2025  av_log(matroska->ctx, AV_LOG_WARNING,
2026  "EBML header using unsupported features\n"
2027  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2028  ebml.version, ebml.doctype, ebml.doctype_version);
2029  }
2030  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
2031  if (!strcmp(ebml.doctype, matroska_doctypes[i]))
2032  break;
2033  if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
2034  av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
2035  if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
2036  ebml_free(ebml_syntax, &ebml);
2037  return AVERROR_INVALIDDATA;
2038  }
2039  }
2040  ebml_free(ebml_syntax, &ebml);
2041 
2042  /* The next thing is a segment. */
2043  pos = avio_tell(matroska->ctx->pb);
2044  res = ebml_parse(matroska, matroska_segments, matroska);
2045  // try resyncing until we find a EBML_STOP type element.
2046  while (res != 1) {
2047  res = matroska_resync(matroska, pos);
2048  if (res < 0)
2049  return res;
2050  pos = avio_tell(matroska->ctx->pb);
2051  res = ebml_parse(matroska, matroska_segment, matroska);
2052  }
2053  matroska_execute_seekhead(matroska);
2054 
2055  if (!matroska->time_scale)
2056  matroska->time_scale = 1000000;
2057  if (matroska->duration)
2058  matroska->ctx->duration = matroska->duration * matroska->time_scale *
2059  1000 / AV_TIME_BASE;
2060  av_dict_set(&s->metadata, "title", matroska->title, 0);
2061  av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0);
2062 
2063  if (matroska->date_utc.size == 8)
2065 
2066  res = matroska_parse_tracks(s);
2067  if (res < 0)
2068  return res;
2069 
2070  attachments = attachments_list->elem;
2071  for (j = 0; j < attachments_list->nb_elem; j++) {
2072  if (!(attachments[j].filename && attachments[j].mime &&
2073  attachments[j].bin.data && attachments[j].bin.size > 0)) {
2074  av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
2075  } else {
2076  AVStream *st = avformat_new_stream(s, NULL);
2077  if (!st)
2078  break;
2079  av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
2080  av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
2083  if (ff_alloc_extradata(st->codec, attachments[j].bin.size))
2084  break;
2085  memcpy(st->codec->extradata, attachments[j].bin.data,
2086  attachments[j].bin.size);
2087 
2088  for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
2089  if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
2090  strlen(ff_mkv_mime_tags[i].str))) {
2091  st->codec->codec_id = ff_mkv_mime_tags[i].id;
2092  break;
2093  }
2094  }
2095  attachments[j].stream = st;
2096  }
2097  }
2098 
2099  chapters = chapters_list->elem;
2100  for (i = 0; i < chapters_list->nb_elem; i++)
2101  if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
2102  (max_start == 0 || chapters[i].start > max_start)) {
2103  chapters[i].chapter =
2104  avpriv_new_chapter(s, chapters[i].uid,
2105  (AVRational) { 1, 1000000000 },
2106  chapters[i].start, chapters[i].end,
2107  chapters[i].title);
2108  if (chapters[i].chapter) {
2109  av_dict_set(&chapters[i].chapter->metadata,
2110  "title", chapters[i].title, 0);
2111  }
2112  max_start = chapters[i].start;
2113  }
2114 
2115  matroska_add_index_entries(matroska);
2116 
2118 
2119  return 0;
2120 }
2121 
2122 /*
2123  * Put one packet in an application-supplied AVPacket struct.
2124  * Returns 0 on success or -1 on failure.
2125  */
2127  AVPacket *pkt)
2128 {
2129  if (matroska->num_packets > 0) {
2130  memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
2131  av_free(matroska->packets[0]);
2132  if (matroska->num_packets > 1) {
2133  void *newpackets;
2134  memmove(&matroska->packets[0], &matroska->packets[1],
2135  (matroska->num_packets - 1) * sizeof(AVPacket *));
2136  newpackets = av_realloc(matroska->packets,
2137  (matroska->num_packets - 1) *
2138  sizeof(AVPacket *));
2139  if (newpackets)
2140  matroska->packets = newpackets;
2141  } else {
2142  av_freep(&matroska->packets);
2143  matroska->prev_pkt = NULL;
2144  }
2145  matroska->num_packets--;
2146  return 0;
2147  }
2148 
2149  return -1;
2150 }
2151 
2152 /*
2153  * Free all packets in our internal queue.
2154  */
2156 {
2157  matroska->prev_pkt = NULL;
2158  if (matroska->packets) {
2159  int n;
2160  for (n = 0; n < matroska->num_packets; n++) {
2161  av_free_packet(matroska->packets[n]);
2162  av_free(matroska->packets[n]);
2163  }
2164  av_freep(&matroska->packets);
2165  matroska->num_packets = 0;
2166  }
2167 }
2168 
2170  int *buf_size, int type,
2171  uint32_t **lace_buf, int *laces)
2172 {
2173  int res = 0, n, size = *buf_size;
2174  uint8_t *data = *buf;
2175  uint32_t *lace_size;
2176 
2177  if (!type) {
2178  *laces = 1;
2179  *lace_buf = av_mallocz(sizeof(int));
2180  if (!*lace_buf)
2181  return AVERROR(ENOMEM);
2182 
2183  *lace_buf[0] = size;
2184  return 0;
2185  }
2186 
2187  av_assert0(size > 0);
2188  *laces = *data + 1;
2189  data += 1;
2190  size -= 1;
2191  lace_size = av_mallocz(*laces * sizeof(int));
2192  if (!lace_size)
2193  return AVERROR(ENOMEM);
2194 
2195  switch (type) {
2196  case 0x1: /* Xiph lacing */
2197  {
2198  uint8_t temp;
2199  uint32_t total = 0;
2200  for (n = 0; res == 0 && n < *laces - 1; n++) {
2201  while (1) {
2202  if (size <= total) {
2203  res = AVERROR_INVALIDDATA;
2204  break;
2205  }
2206  temp = *data;
2207  total += temp;
2208  lace_size[n] += temp;
2209  data += 1;
2210  size -= 1;
2211  if (temp != 0xff)
2212  break;
2213  }
2214  }
2215  if (size <= total) {
2216  res = AVERROR_INVALIDDATA;
2217  break;
2218  }
2219 
2220  lace_size[n] = size - total;
2221  break;
2222  }
2223 
2224  case 0x2: /* fixed-size lacing */
2225  if (size % (*laces)) {
2226  res = AVERROR_INVALIDDATA;
2227  break;
2228  }
2229  for (n = 0; n < *laces; n++)
2230  lace_size[n] = size / *laces;
2231  break;
2232 
2233  case 0x3: /* EBML lacing */
2234  {
2235  uint64_t num;
2236  uint64_t total;
2237  n = matroska_ebmlnum_uint(matroska, data, size, &num);
2238  if (n < 0 || num > INT_MAX) {
2239  av_log(matroska->ctx, AV_LOG_INFO,
2240  "EBML block data error\n");
2241  res = n<0 ? n : AVERROR_INVALIDDATA;
2242  break;
2243  }
2244  data += n;
2245  size -= n;
2246  total = lace_size[0] = num;
2247  for (n = 1; res == 0 && n < *laces - 1; n++) {
2248  int64_t snum;
2249  int r;
2250  r = matroska_ebmlnum_sint(matroska, data, size, &snum);
2251  if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) {
2252  av_log(matroska->ctx, AV_LOG_INFO,
2253  "EBML block data error\n");
2254  res = r<0 ? r : AVERROR_INVALIDDATA;
2255  break;
2256  }
2257  data += r;
2258  size -= r;
2259  lace_size[n] = lace_size[n - 1] + snum;
2260  total += lace_size[n];
2261  }
2262  if (size <= total) {
2263  res = AVERROR_INVALIDDATA;
2264  break;
2265  }
2266  lace_size[*laces - 1] = size - total;
2267  break;
2268  }
2269  }
2270 
2271  *buf = data;
2272  *lace_buf = lace_size;
2273  *buf_size = size;
2274 
2275  return res;
2276 }
2277 
2279  MatroskaTrack *track, AVStream *st,
2280  uint8_t *data, int size, uint64_t timecode,
2281  int64_t pos)
2282 {
2283  int a = st->codec->block_align;
2284  int sps = track->audio.sub_packet_size;
2285  int cfs = track->audio.coded_framesize;
2286  int h = track->audio.sub_packet_h;
2287  int y = track->audio.sub_packet_cnt;
2288  int w = track->audio.frame_size;
2289  int x;
2290 
2291  if (!track->audio.pkt_cnt) {
2292  if (track->audio.sub_packet_cnt == 0)
2293  track->audio.buf_timecode = timecode;
2294  if (st->codec->codec_id == AV_CODEC_ID_RA_288) {
2295  if (size < cfs * h / 2) {
2296  av_log(matroska->ctx, AV_LOG_ERROR,
2297  "Corrupt int4 RM-style audio packet size\n");
2298  return AVERROR_INVALIDDATA;
2299  }
2300  for (x = 0; x < h / 2; x++)
2301  memcpy(track->audio.buf + x * 2 * w + y * cfs,
2302  data + x * cfs, cfs);
2303  } else if (st->codec->codec_id == AV_CODEC_ID_SIPR) {
2304  if (size < w) {
2305  av_log(matroska->ctx, AV_LOG_ERROR,
2306  "Corrupt sipr RM-style audio packet size\n");
2307  return AVERROR_INVALIDDATA;
2308  }
2309  memcpy(track->audio.buf + y * w, data, w);
2310  } else {
2311  if (size < sps * w / sps || h<=0 || w%sps) {
2312  av_log(matroska->ctx, AV_LOG_ERROR,
2313  "Corrupt generic RM-style audio packet size\n");
2314  return AVERROR_INVALIDDATA;
2315  }
2316  for (x = 0; x < w / sps; x++)
2317  memcpy(track->audio.buf +
2318  sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
2319  data + x * sps, sps);
2320  }
2321 
2322  if (++track->audio.sub_packet_cnt >= h) {
2323  if (st->codec->codec_id == AV_CODEC_ID_SIPR)
2324  ff_rm_reorder_sipr_data(track->audio.buf, h, w);
2325  track->audio.sub_packet_cnt = 0;
2326  track->audio.pkt_cnt = h * w / a;
2327  }
2328  }
2329 
2330  while (track->audio.pkt_cnt) {
2331  AVPacket *pkt = NULL;
2332  if (!(pkt = av_mallocz(sizeof(AVPacket))) || av_new_packet(pkt, a) < 0) {
2333  av_free(pkt);
2334  return AVERROR(ENOMEM);
2335  }
2336  memcpy(pkt->data,
2337  track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
2338  a);
2339  pkt->pts = track->audio.buf_timecode;
2341  pkt->pos = pos;
2342  pkt->stream_index = st->index;
2343  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2344  }
2345 
2346  return 0;
2347 }
2348 
2349 /* reconstruct full wavpack blocks from mangled matroska ones */
2351  uint8_t **pdst, int *size)
2352 {
2353  uint8_t *dst = NULL;
2354  int dstlen = 0;
2355  int srclen = *size;
2356  uint32_t samples;
2357  uint16_t ver;
2358  int ret, offset = 0;
2359 
2360  if (srclen < 12 || track->stream->codec->extradata_size < 2)
2361  return AVERROR_INVALIDDATA;
2362 
2363  ver = AV_RL16(track->stream->codec->extradata);
2364 
2365  samples = AV_RL32(src);
2366  src += 4;
2367  srclen -= 4;
2368 
2369  while (srclen >= 8) {
2370  int multiblock;
2371  uint32_t blocksize;
2372  uint8_t *tmp;
2373 
2374  uint32_t flags = AV_RL32(src);
2375  uint32_t crc = AV_RL32(src + 4);
2376  src += 8;
2377  srclen -= 8;
2378 
2379  multiblock = (flags & 0x1800) != 0x1800;
2380  if (multiblock) {
2381  if (srclen < 4) {
2382  ret = AVERROR_INVALIDDATA;
2383  goto fail;
2384  }
2385  blocksize = AV_RL32(src);
2386  src += 4;
2387  srclen -= 4;
2388  } else
2389  blocksize = srclen;
2390 
2391  if (blocksize > srclen) {
2392  ret = AVERROR_INVALIDDATA;
2393  goto fail;
2394  }
2395 
2396  tmp = av_realloc(dst, dstlen + blocksize + 32);
2397  if (!tmp) {
2398  ret = AVERROR(ENOMEM);
2399  goto fail;
2400  }
2401  dst = tmp;
2402  dstlen += blocksize + 32;
2403 
2404  AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
2405  AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
2406  AV_WL16(dst + offset + 8, ver); // version
2407  AV_WL16(dst + offset + 10, 0); // track/index_no
2408  AV_WL32(dst + offset + 12, 0); // total samples
2409  AV_WL32(dst + offset + 16, 0); // block index
2410  AV_WL32(dst + offset + 20, samples); // number of samples
2411  AV_WL32(dst + offset + 24, flags); // flags
2412  AV_WL32(dst + offset + 28, crc); // crc
2413  memcpy(dst + offset + 32, src, blocksize); // block data
2414 
2415  src += blocksize;
2416  srclen -= blocksize;
2417  offset += blocksize + 32;
2418  }
2419 
2420  *pdst = dst;
2421  *size = dstlen;
2422 
2423  return 0;
2424 
2425 fail:
2426  av_freep(&dst);
2427  return ret;
2428 }
2429 
2431  MatroskaTrack *track,
2432  AVStream *st,
2433  uint8_t *data, int data_len,
2434  uint64_t timecode,
2435  uint64_t duration,
2436  int64_t pos)
2437 {
2438  AVPacket *pkt;
2439  uint8_t *id, *settings, *text, *buf;
2440  int id_len, settings_len, text_len;
2441  uint8_t *p, *q;
2442  int err;
2443 
2444  if (data_len <= 0)
2445  return AVERROR_INVALIDDATA;
2446 
2447  p = data;
2448  q = data + data_len;
2449 
2450  id = p;
2451  id_len = -1;
2452  while (p < q) {
2453  if (*p == '\r' || *p == '\n') {
2454  id_len = p - id;
2455  if (*p == '\r')
2456  p++;
2457  break;
2458  }
2459  p++;
2460  }
2461 
2462  if (p >= q || *p != '\n')
2463  return AVERROR_INVALIDDATA;
2464  p++;
2465 
2466  settings = p;
2467  settings_len = -1;
2468  while (p < q) {
2469  if (*p == '\r' || *p == '\n') {
2470  settings_len = p - settings;
2471  if (*p == '\r')
2472  p++;
2473  break;
2474  }
2475  p++;
2476  }
2477 
2478  if (p >= q || *p != '\n')
2479  return AVERROR_INVALIDDATA;
2480  p++;
2481 
2482  text = p;
2483  text_len = q - p;
2484  while (text_len > 0) {
2485  const int len = text_len - 1;
2486  const uint8_t c = p[len];
2487  if (c != '\r' && c != '\n')
2488  break;
2489  text_len = len;
2490  }
2491 
2492  if (text_len <= 0)
2493  return AVERROR_INVALIDDATA;
2494 
2495  pkt = av_mallocz(sizeof(*pkt));
2496  err = av_new_packet(pkt, text_len);
2497  if (err < 0) {
2498  av_free(pkt);
2499  return AVERROR(err);
2500  }
2501 
2502  memcpy(pkt->data, text, text_len);
2503 
2504  if (id_len > 0) {
2505  buf = av_packet_new_side_data(pkt,
2507  id_len);
2508  if (!buf) {
2509  av_free(pkt);
2510  return AVERROR(ENOMEM);
2511  }
2512  memcpy(buf, id, id_len);
2513  }
2514 
2515  if (settings_len > 0) {
2516  buf = av_packet_new_side_data(pkt,
2518  settings_len);
2519  if (!buf) {
2520  av_free(pkt);
2521  return AVERROR(ENOMEM);
2522  }
2523  memcpy(buf, settings, settings_len);
2524  }
2525 
2526  // Do we need this for subtitles?
2527  // pkt->flags = AV_PKT_FLAG_KEY;
2528 
2529  pkt->stream_index = st->index;
2530  pkt->pts = timecode;
2531 
2532  // Do we need this for subtitles?
2533  // pkt->dts = timecode;
2534 
2535  pkt->duration = duration;
2536  pkt->pos = pos;
2537 
2538  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2539  matroska->prev_pkt = pkt;
2540 
2541  return 0;
2542 }
2543 
2545  MatroskaTrack *track, AVStream *st,
2546  uint8_t *data, int pkt_size,
2547  uint64_t timecode, uint64_t lace_duration,
2548  int64_t pos, int is_keyframe,
2549  uint8_t *additional, uint64_t additional_id, int additional_size,
2550  int64_t discard_padding)
2551 {
2552  MatroskaTrackEncoding *encodings = track->encodings.elem;
2553  uint8_t *pkt_data = data;
2554  int offset = 0, res;
2555  AVPacket *pkt;
2556 
2557  if (encodings && !encodings->type && encodings->scope & 1) {
2558  res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
2559  if (res < 0)
2560  return res;
2561  }
2562 
2563  if (st->codec->codec_id == AV_CODEC_ID_WAVPACK) {
2564  uint8_t *wv_data;
2565  res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
2566  if (res < 0) {
2567  av_log(matroska->ctx, AV_LOG_ERROR,
2568  "Error parsing a wavpack block.\n");
2569  goto fail;
2570  }
2571  if (pkt_data != data)
2572  av_freep(&pkt_data);
2573  pkt_data = wv_data;
2574  }
2575 
2576  if (st->codec->codec_id == AV_CODEC_ID_PRORES &&
2577  AV_RB32(&data[4]) != MKBETAG('i', 'c', 'p', 'f'))
2578  offset = 8;
2579 
2580  pkt = av_mallocz(sizeof(AVPacket));
2581  /* XXX: prevent data copy... */
2582  if (av_new_packet(pkt, pkt_size + offset) < 0) {
2583  av_free(pkt);
2584  res = AVERROR(ENOMEM);
2585  goto fail;
2586  }
2587 
2588  if (st->codec->codec_id == AV_CODEC_ID_PRORES && offset == 8) {
2589  uint8_t *buf = pkt->data;
2590  bytestream_put_be32(&buf, pkt_size);
2591  bytestream_put_be32(&buf, MKBETAG('i', 'c', 'p', 'f'));
2592  }
2593 
2594  memcpy(pkt->data + offset, pkt_data, pkt_size);
2595 
2596  if (pkt_data != data)
2597  av_freep(&pkt_data);
2598 
2599  pkt->flags = is_keyframe;
2600  pkt->stream_index = st->index;
2601 
2602  if (additional_size > 0) {
2603  uint8_t *side_data = av_packet_new_side_data(pkt,
2605  additional_size + 8);
2606  if (!side_data) {
2607  av_free_packet(pkt);
2608  av_free(pkt);
2609  return AVERROR(ENOMEM);
2610  }
2611  AV_WB64(side_data, additional_id);
2612  memcpy(side_data + 8, additional, additional_size);
2613  }
2614 
2615  if (discard_padding) {
2616  uint8_t *side_data = av_packet_new_side_data(pkt,
2618  10);
2619  if (!side_data) {
2620  av_free_packet(pkt);
2621  av_free(pkt);
2622  return AVERROR(ENOMEM);
2623  }
2624  AV_WL32(side_data, 0);
2625  AV_WL32(side_data + 4, av_rescale_q(discard_padding,
2626  (AVRational){1, 1000000000},
2627  (AVRational){1, st->codec->sample_rate}));
2628  }
2629 
2630  if (track->ms_compat)
2631  pkt->dts = timecode;
2632  else
2633  pkt->pts = timecode;
2634  pkt->pos = pos;
2635  if (st->codec->codec_id == AV_CODEC_ID_SUBRIP) {
2636  /*
2637  * For backward compatibility.
2638  * Historically, we have put subtitle duration
2639  * in convergence_duration, on the off chance
2640  * that the time_scale is less than 1us, which
2641  * could result in a 32bit overflow on the
2642  * normal duration field.
2643  */
2644  pkt->convergence_duration = lace_duration;
2645  }
2646 
2647  if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE ||
2648  lace_duration <= INT_MAX) {
2649  /*
2650  * For non subtitle tracks, just store the duration
2651  * as normal.
2652  *
2653  * If it's a subtitle track and duration value does
2654  * not overflow a uint32, then also store it normally.
2655  */
2656  pkt->duration = lace_duration;
2657  }
2658 
2659  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2660  matroska->prev_pkt = pkt;
2661 
2662  return 0;
2663 
2664 fail:
2665  if (pkt_data != data)
2666  av_freep(&pkt_data);
2667  return res;
2668 }
2669 
2671  int size, int64_t pos, uint64_t cluster_time,
2672  uint64_t block_duration, int is_keyframe,
2673  uint8_t *additional, uint64_t additional_id, int additional_size,
2674  int64_t cluster_pos, int64_t discard_padding)
2675 {
2676  uint64_t timecode = AV_NOPTS_VALUE;
2677  MatroskaTrack *track;
2678  int res = 0;
2679  AVStream *st;
2680  int16_t block_time;
2681  uint32_t *lace_size = NULL;
2682  int n, flags, laces = 0;
2683  uint64_t num;
2684  int trust_default_duration = 1;
2685 
2686  if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
2687  av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
2688  return n;
2689  }
2690  data += n;
2691  size -= n;
2692 
2693  track = matroska_find_track_by_num(matroska, num);
2694  if (!track || !track->stream) {
2695  av_log(matroska->ctx, AV_LOG_INFO,
2696  "Invalid stream %"PRIu64" or size %u\n", num, size);
2697  return AVERROR_INVALIDDATA;
2698  } else if (size <= 3)
2699  return 0;
2700  st = track->stream;
2701  if (st->discard >= AVDISCARD_ALL)
2702  return res;
2703  av_assert1(block_duration != AV_NOPTS_VALUE);
2704 
2705  block_time = sign_extend(AV_RB16(data), 16);
2706  data += 2;
2707  flags = *data++;
2708  size -= 3;
2709  if (is_keyframe == -1)
2710  is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
2711 
2712  if (cluster_time != (uint64_t) -1 &&
2713  (block_time >= 0 || cluster_time >= -block_time)) {
2714  timecode = cluster_time + block_time - track->codec_delay;
2715  if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
2716  timecode < track->end_timecode)
2717  is_keyframe = 0; /* overlapping subtitles are not key frame */
2718  if (is_keyframe)
2719  av_add_index_entry(st, cluster_pos, timecode, 0, 0,
2721  }
2722 
2723  if (matroska->skip_to_keyframe &&
2724  track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
2725  if (timecode < matroska->skip_to_timecode)
2726  return res;
2727  if (is_keyframe)
2728  matroska->skip_to_keyframe = 0;
2729  else if (!st->skip_to_keyframe) {
2730  av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
2731  matroska->skip_to_keyframe = 0;
2732  }
2733  }
2734 
2735  res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
2736  &lace_size, &laces);
2737 
2738  if (res)
2739  goto end;
2740 
2741  if (track->audio.samplerate == 8000) {
2742  // If this is needed for more codecs, then add them here
2743  if (st->codec->codec_id == AV_CODEC_ID_AC3) {
2744  if (track->audio.samplerate != st->codec->sample_rate || !st->codec->frame_size)
2745  trust_default_duration = 0;
2746  }
2747  }
2748 
2749  if (!block_duration && trust_default_duration)
2750  block_duration = track->default_duration * laces / matroska->time_scale;
2751 
2752  if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time))
2753  track->end_timecode =
2754  FFMAX(track->end_timecode, timecode + block_duration);
2755 
2756  for (n = 0; n < laces; n++) {
2757  int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces;
2758 
2759  if (lace_size[n] > size) {
2760  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
2761  break;
2762  }
2763 
2764  if ((st->codec->codec_id == AV_CODEC_ID_RA_288 ||
2765  st->codec->codec_id == AV_CODEC_ID_COOK ||
2766  st->codec->codec_id == AV_CODEC_ID_SIPR ||
2767  st->codec->codec_id == AV_CODEC_ID_ATRAC3) &&
2768  st->codec->block_align && track->audio.sub_packet_size) {
2769  res = matroska_parse_rm_audio(matroska, track, st, data,
2770  lace_size[n],
2771  timecode, pos);
2772  if (res)
2773  goto end;
2774 
2775  } else if (st->codec->codec_id == AV_CODEC_ID_WEBVTT) {
2776  res = matroska_parse_webvtt(matroska, track, st,
2777  data, lace_size[n],
2778  timecode, lace_duration,
2779  pos);
2780  if (res)
2781  goto end;
2782  } else {
2783  res = matroska_parse_frame(matroska, track, st, data, lace_size[n],
2784  timecode, lace_duration, pos,
2785  !n ? is_keyframe : 0,
2786  additional, additional_id, additional_size,
2787  discard_padding);
2788  if (res)
2789  goto end;
2790  }
2791 
2792  if (timecode != AV_NOPTS_VALUE)
2793  timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE;
2794  data += lace_size[n];
2795  size -= lace_size[n];
2796  }
2797 
2798 end:
2799  av_free(lace_size);
2800  return res;
2801 }
2802 
2804 {
2805  EbmlList *blocks_list;
2806  MatroskaBlock *blocks;
2807  int i, res;
2808  res = ebml_parse(matroska,
2809  matroska_cluster_incremental_parsing,
2810  &matroska->current_cluster);
2811  if (res == 1) {
2812  /* New Cluster */
2813  if (matroska->current_cluster_pos)
2814  ebml_level_end(matroska);
2815  ebml_free(matroska_cluster, &matroska->current_cluster);
2816  memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
2817  matroska->current_cluster_num_blocks = 0;
2818  matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
2819  matroska->prev_pkt = NULL;
2820  /* sizeof the ID which was already read */
2821  if (matroska->current_id)
2822  matroska->current_cluster_pos -= 4;
2823  res = ebml_parse(matroska,
2824  matroska_clusters_incremental,
2825  &matroska->current_cluster);
2826  /* Try parsing the block again. */
2827  if (res == 1)
2828  res = ebml_parse(matroska,
2829  matroska_cluster_incremental_parsing,
2830  &matroska->current_cluster);
2831  }
2832 
2833  if (!res &&
2834  matroska->current_cluster_num_blocks <
2835  matroska->current_cluster.blocks.nb_elem) {
2836  blocks_list = &matroska->current_cluster.blocks;
2837  blocks = blocks_list->elem;
2838 
2839  matroska->current_cluster_num_blocks = blocks_list->nb_elem;
2840  i = blocks_list->nb_elem - 1;
2841  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2842  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2843  uint8_t* additional = blocks[i].additional.size > 0 ?
2844  blocks[i].additional.data : NULL;
2845  if (!blocks[i].non_simple)
2846  blocks[i].duration = 0;
2847  res = matroska_parse_block(matroska, blocks[i].bin.data,
2848  blocks[i].bin.size, blocks[i].bin.pos,
2849  matroska->current_cluster.timecode,
2850  blocks[i].duration, is_keyframe,
2851  additional, blocks[i].additional_id,
2852  blocks[i].additional.size,
2853  matroska->current_cluster_pos,
2854  blocks[i].discard_padding);
2855  }
2856  }
2857 
2858  return res;
2859 }
2860 
2862 {
2863  MatroskaCluster cluster = { 0 };
2864  EbmlList *blocks_list;
2865  MatroskaBlock *blocks;
2866  int i, res;
2867  int64_t pos;
2868 
2869  if (!matroska->contains_ssa)
2870  return matroska_parse_cluster_incremental(matroska);
2871  pos = avio_tell(matroska->ctx->pb);
2872  matroska->prev_pkt = NULL;
2873  if (matroska->current_id)
2874  pos -= 4; /* sizeof the ID which was already read */
2875  res = ebml_parse(matroska, matroska_clusters, &cluster);
2876  blocks_list = &cluster.blocks;
2877  blocks = blocks_list->elem;
2878  for (i = 0; i < blocks_list->nb_elem; i++)
2879  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2880  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2881  res = matroska_parse_block(matroska, blocks[i].bin.data,
2882  blocks[i].bin.size, blocks[i].bin.pos,
2883  cluster.timecode, blocks[i].duration,
2884  is_keyframe, NULL, 0, 0, pos,
2885  blocks[i].discard_padding);
2886  }
2887  ebml_free(matroska_cluster, &cluster);
2888  return res;
2889 }
2890 
2892 {
2893  MatroskaDemuxContext *matroska = s->priv_data;
2894 
2895  while (matroska_deliver_packet(matroska, pkt)) {
2896  int64_t pos = avio_tell(matroska->ctx->pb);
2897  if (matroska->done)
2898  return AVERROR_EOF;
2899  if (matroska_parse_cluster(matroska) < 0)
2900  matroska_resync(matroska, pos);
2901  }
2902 
2903  return 0;
2904 }
2905 
2906 static int matroska_read_seek(AVFormatContext *s, int stream_index,
2907  int64_t timestamp, int flags)
2908 {
2909  MatroskaDemuxContext *matroska = s->priv_data;
2910  MatroskaTrack *tracks = matroska->tracks.elem;
2911  AVStream *st = s->streams[stream_index];
2912  int i, index, index_sub, index_min;
2913 
2914  /* Parse the CUES now since we need the index data to seek. */
2915  if (matroska->cues_parsing_deferred > 0) {
2916  matroska->cues_parsing_deferred = 0;
2917  matroska_parse_cues(matroska);
2918  }
2919 
2920  if (!st->nb_index_entries)
2921  goto err;
2922  timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
2923 
2924  if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
2925  avio_seek(s->pb, st->index_entries[st->nb_index_entries - 1].pos,
2926  SEEK_SET);
2927  matroska->current_id = 0;
2928  while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
2929  matroska_clear_queue(matroska);
2930  if (matroska_parse_cluster(matroska) < 0)
2931  break;
2932  }
2933  }
2934 
2935  matroska_clear_queue(matroska);
2936  if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
2937  goto err;
2938 
2939  index_min = index;
2940  for (i = 0; i < matroska->tracks.nb_elem; i++) {
2941  tracks[i].audio.pkt_cnt = 0;
2942  tracks[i].audio.sub_packet_cnt = 0;
2943  tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
2944  tracks[i].end_timecode = 0;
2945  if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE &&
2946  tracks[i].stream->discard != AVDISCARD_ALL) {
2947  index_sub = av_index_search_timestamp(
2948  tracks[i].stream, st->index_entries[index].timestamp,
2950  while (index_sub >= 0 &&
2951  index_min > 0 &&
2952  tracks[i].stream->index_entries[index_sub].pos < st->index_entries[index_min].pos &&
2953  st->index_entries[index].timestamp - tracks[i].stream->index_entries[index_sub].timestamp < 30000000000 / matroska->time_scale)
2954  index_min--;
2955  }
2956  }
2957 
2958  avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
2959  matroska->current_id = 0;
2960  if (flags & AVSEEK_FLAG_ANY) {
2961  st->skip_to_keyframe = 0;
2962  matroska->skip_to_timecode = timestamp;
2963  } else {
2964  st->skip_to_keyframe = 1;
2965  matroska->skip_to_timecode = st->index_entries[index].timestamp;
2966  }
2967  matroska->skip_to_keyframe = 1;
2968  matroska->done = 0;
2969  matroska->num_levels = 0;
2970  ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
2971  return 0;
2972 err:
2973  // slightly hackish but allows proper fallback to
2974  // the generic seeking code.
2975  matroska_clear_queue(matroska);
2976  matroska->current_id = 0;
2977  st->skip_to_keyframe =
2978  matroska->skip_to_keyframe = 0;
2979  matroska->done = 0;
2980  matroska->num_levels = 0;
2981  return -1;
2982 }
2983 
2985 {
2986  MatroskaDemuxContext *matroska = s->priv_data;
2987  MatroskaTrack *tracks = matroska->tracks.elem;
2988  int n;
2989 
2990  matroska_clear_queue(matroska);
2991 
2992  for (n = 0; n < matroska->tracks.nb_elem; n++)
2993  if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
2994  av_free(tracks[n].audio.buf);
2995  ebml_free(matroska_cluster, &matroska->current_cluster);
2996  ebml_free(matroska_segment, matroska);
2997 
2998  return 0;
2999 }
3000 
3001 typedef struct {
3002  int64_t start_time_ns;
3003  int64_t end_time_ns;
3004  int64_t start_offset;
3005  int64_t end_offset;
3006 } CueDesc;
3007 
3008 /* This function searches all the Cues and returns the CueDesc corresponding the
3009  * the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts <
3010  * end_time_ns. All 4 fields will be set to -1 if ts >= file's duration.
3011  */
3012 static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) {
3013  MatroskaDemuxContext *matroska = s->priv_data;
3014  CueDesc cue_desc;
3015  int i;
3016  int nb_index_entries = s->streams[0]->nb_index_entries;
3017  AVIndexEntry *index_entries = s->streams[0]->index_entries;
3018  if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1};
3019  for (i = 1; i < nb_index_entries; i++) {
3020  if (index_entries[i - 1].timestamp * matroska->time_scale <= ts &&
3021  index_entries[i].timestamp * matroska->time_scale > ts) {
3022  break;
3023  }
3024  }
3025  --i;
3026  cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale;
3027  cue_desc.start_offset = index_entries[i].pos - matroska->segment_start;
3028  if (i != nb_index_entries - 1) {
3029  cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale;
3030  cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start;
3031  } else {
3032  cue_desc.end_time_ns = matroska->duration * matroska->time_scale;
3033  // FIXME: this needs special handling for files where Cues appear
3034  // before Clusters. the current logic assumes Cues appear after
3035  // Clusters.
3036  cue_desc.end_offset = cues_start - matroska->segment_start;
3037  }
3038  return cue_desc;
3039 }
3040 
3042 {
3043  MatroskaDemuxContext *matroska = s->priv_data;
3044  int64_t cluster_pos, before_pos;
3045  int index, rv = 1;
3046  if (s->streams[0]->nb_index_entries <= 0) return 0;
3047  // seek to the first cluster using cues.
3048  index = av_index_search_timestamp(s->streams[0], 0, 0);
3049  if (index < 0) return 0;
3050  cluster_pos = s->streams[0]->index_entries[index].pos;
3051  before_pos = avio_tell(s->pb);
3052  while (1) {
3053  int64_t cluster_id = 0, cluster_length = 0;
3054  AVPacket *pkt;
3055  avio_seek(s->pb, cluster_pos, SEEK_SET);
3056  // read cluster id and length
3057  ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id);
3058  ebml_read_length(matroska, matroska->ctx->pb, &cluster_length);
3059  if (cluster_id != 0xF43B675) { // done with all clusters
3060  break;
3061  }
3062  avio_seek(s->pb, cluster_pos, SEEK_SET);
3063  matroska->current_id = 0;
3064  matroska_clear_queue(matroska);
3065  if (matroska_parse_cluster(matroska) < 0 ||
3066  matroska->num_packets <= 0) {
3067  break;
3068  }
3069  pkt = matroska->packets[0];
3070  cluster_pos += cluster_length + 12; // 12 is the offset of the cluster id and length.
3071  if (!(pkt->flags & AV_PKT_FLAG_KEY)) {
3072  rv = 0;
3073  break;
3074  }
3075  }
3076  avio_seek(s->pb, before_pos, SEEK_SET);
3077  return rv;
3078 }
3079 
3080 static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps,
3081  double min_buffer, double* buffer,
3082  double* sec_to_download, AVFormatContext *s,
3083  int64_t cues_start)
3084 {
3085  double nano_seconds_per_second = 1000000000.0;
3086  double time_sec = time_ns / nano_seconds_per_second;
3087  int rv = 0;
3088  int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second);
3089  int64_t end_time_ns = time_ns + time_to_search_ns;
3090  double sec_downloaded = 0.0;
3091  CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start);
3092  if (desc_curr.start_time_ns == -1)
3093  return -1;
3094  *sec_to_download = 0.0;
3095 
3096  // Check for non cue start time.
3097  if (time_ns > desc_curr.start_time_ns) {
3098  int64_t cue_nano = desc_curr.end_time_ns - time_ns;
3099  double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns);
3100  double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent;
3101  double timeToDownload = (cueBytes * 8.0) / bps;
3102 
3103  sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload;
3104  *sec_to_download += timeToDownload;
3105 
3106  // Check if the search ends within the first cue.
3107  if (desc_curr.end_time_ns >= end_time_ns) {
3108  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3109  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3110  sec_downloaded = percent_to_sub * sec_downloaded;
3111  *sec_to_download = percent_to_sub * *sec_to_download;
3112  }
3113 
3114  if ((sec_downloaded + *buffer) <= min_buffer) {
3115  return 1;
3116  }
3117 
3118  // Get the next Cue.
3119  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3120  }
3121 
3122  while (desc_curr.start_time_ns != -1) {
3123  int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset;
3124  int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns;
3125  double desc_sec = desc_ns / nano_seconds_per_second;
3126  double bits = (desc_bytes * 8.0);
3127  double time_to_download = bits / bps;
3128 
3129  sec_downloaded += desc_sec - time_to_download;
3130  *sec_to_download += time_to_download;
3131 
3132  if (desc_curr.end_time_ns >= end_time_ns) {
3133  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3134  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3135  sec_downloaded = percent_to_sub * sec_downloaded;
3136  *sec_to_download = percent_to_sub * *sec_to_download;
3137 
3138  if ((sec_downloaded + *buffer) <= min_buffer)
3139  rv = 1;
3140  break;
3141  }
3142 
3143  if ((sec_downloaded + *buffer) <= min_buffer) {
3144  rv = 1;
3145  break;
3146  }
3147 
3148  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3149  }
3150  *buffer = *buffer + sec_downloaded;
3151  return rv;
3152 }
3153 
3154 /* This function computes the bandwidth of the WebM file with the help of
3155  * buffer_size_after_time_downloaded() function. Both of these functions are
3156  * adapted from WebM Tools project and are adapted to work with FFmpeg's
3157  * Matroska parsing mechanism.
3158  *
3159  * Returns the bandwidth of the file on success; -1 on error.
3160  * */
3161 static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start)
3162 {
3163  MatroskaDemuxContext *matroska = s->priv_data;
3164  AVStream *st = s->streams[0];
3165  double bandwidth = 0.0;
3166  int i;
3167 
3168  for (i = 0; i < st->nb_index_entries; i++) {
3169  int64_t prebuffer_ns = 1000000000;
3170  int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale;
3171  double nano_seconds_per_second = 1000000000.0;
3172  int64_t prebuffered_ns = time_ns + prebuffer_ns;
3173  double prebuffer_bytes = 0.0;
3174  int64_t temp_prebuffer_ns = prebuffer_ns;
3175  int64_t pre_bytes, pre_ns;
3176  double pre_sec, prebuffer, bits_per_second;
3177  CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start);
3178 
3179  // Start with the first Cue.
3180  CueDesc desc_end = desc_beg;
3181 
3182  // Figure out how much data we have downloaded for the prebuffer. This will
3183  // be used later to adjust the bits per sample to try.
3184  while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) {
3185  // Prebuffered the entire Cue.
3186  prebuffer_bytes += desc_end.end_offset - desc_end.start_offset;
3187  temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns;
3188  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3189  }
3190  if (desc_end.start_time_ns == -1) {
3191  // The prebuffer is larger than the duration.
3192  if (matroska->duration * matroska->time_scale >= prebuffered_ns)
3193  return -1;
3194  bits_per_second = 0.0;
3195  } else {
3196  // The prebuffer ends in the last Cue. Estimate how much data was
3197  // prebuffered.
3198  pre_bytes = desc_end.end_offset - desc_end.start_offset;
3199  pre_ns = desc_end.end_time_ns - desc_end.start_time_ns;
3200  pre_sec = pre_ns / nano_seconds_per_second;
3201  prebuffer_bytes +=
3202  pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec);
3203 
3204  prebuffer = prebuffer_ns / nano_seconds_per_second;
3205 
3206  // Set this to 0.0 in case our prebuffer buffers the entire video.
3207  bits_per_second = 0.0;
3208  do {
3209  int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset;
3210  int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns;
3211  double desc_sec = desc_ns / nano_seconds_per_second;
3212  double calc_bits_per_second = (desc_bytes * 8) / desc_sec;
3213 
3214  // Drop the bps by the percentage of bytes buffered.
3215  double percent = (desc_bytes - prebuffer_bytes) / desc_bytes;
3216  double mod_bits_per_second = calc_bits_per_second * percent;
3217 
3218  if (prebuffer < desc_sec) {
3219  double search_sec =
3220  (double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second;
3221 
3222  // Add 1 so the bits per second should be a little bit greater than file
3223  // datarate.
3224  int64_t bps = (int64_t)(mod_bits_per_second) + 1;
3225  const double min_buffer = 0.0;
3226  double buffer = prebuffer;
3227  double sec_to_download = 0.0;
3228 
3229  int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps,
3230  min_buffer, &buffer, &sec_to_download,
3231  s, cues_start);
3232  if (rv < 0) {
3233  return -1;
3234  } else if (rv == 0) {
3235  bits_per_second = (double)(bps);
3236  break;
3237  }
3238  }
3239 
3240  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3241  } while (desc_end.start_time_ns != -1);
3242  }
3243  if (bandwidth < bits_per_second) bandwidth = bits_per_second;
3244  }
3245  return (int64_t)bandwidth;
3246 }
3247 
3249 {
3250  MatroskaDemuxContext *matroska = s->priv_data;
3251  EbmlList *seekhead_list = &matroska->seekhead;
3252  MatroskaSeekhead *seekhead = seekhead_list->elem;
3253  char *buf;
3254  int64_t cues_start = -1, cues_end = -1, before_pos, bandwidth;
3255  int i;
3256 
3257  // determine cues start and end positions
3258  for (i = 0; i < seekhead_list->nb_elem; i++)
3259  if (seekhead[i].id == MATROSKA_ID_CUES)
3260  break;
3261 
3262  if (i >= seekhead_list->nb_elem) return -1;
3263 
3264  before_pos = avio_tell(matroska->ctx->pb);
3265  cues_start = seekhead[i].pos + matroska->segment_start;
3266  if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) {
3267  // cues_end is computed as cues_start + cues_length + length of the
3268  // Cues element ID + EBML length of the Cues element. cues_end is
3269  // inclusive and the above sum is reduced by 1.
3270  uint64_t cues_length = 0, cues_id = 0, bytes_read = 0;
3271  bytes_read += ebml_read_num(matroska, matroska->ctx->pb, 4, &cues_id);
3272  bytes_read += ebml_read_length(matroska, matroska->ctx->pb, &cues_length);
3273  cues_end = cues_start + cues_length + bytes_read - 1;
3274  }
3275  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
3276  if (cues_start == -1 || cues_end == -1) return -1;
3277 
3278  // parse the cues
3279  matroska_parse_cues(matroska);
3280 
3281  // cues start
3282  av_dict_set_int(&s->streams[0]->metadata, CUES_START, cues_start, 0);
3283 
3284  // cues end
3285  av_dict_set_int(&s->streams[0]->metadata, CUES_END, cues_end, 0);
3286 
3287  // bandwidth
3288  bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start);
3289  if (bandwidth < 0) return -1;
3290  av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, bandwidth, 0);
3291 
3292  // check if all clusters start with key frames
3294 
3295  // store cue point timestamps as a comma separated list for checking subsegment alignment in
3296  // the muxer. assumes that each timestamp cannot be more than 20 characters long.
3297  buf = av_malloc(s->streams[0]->nb_index_entries * 20 * sizeof(char));
3298  if (!buf) return -1;
3299  strcpy(buf, "");
3300  for (i = 0; i < s->streams[0]->nb_index_entries; i++) {
3301  snprintf(buf, (i + 1) * 20 * sizeof(char),
3302  "%s%" PRId64, buf, s->streams[0]->index_entries[i].timestamp);
3303  if (i != s->streams[0]->nb_index_entries - 1)
3304  strncat(buf, ",", sizeof(char));
3305  }
3306  av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0);
3307  av_free(buf);
3308 
3309  return 0;
3310 }
3311 
3313 {
3314  char *buf;
3315  int ret = matroska_read_header(s);
3316  MatroskaTrack *tracks;
3317  MatroskaDemuxContext *matroska = s->priv_data;
3318  if (ret) {
3319  av_log(s, AV_LOG_ERROR, "Failed to read file headers\n");
3320  return -1;
3321  }
3322 
3323  // initialization range
3324  // 5 is the offset of Cluster ID.
3326 
3327  // basename of the file
3328  buf = strrchr(s->filename, '/');
3329  av_dict_set(&s->streams[0]->metadata, FILENAME, buf ? ++buf : s->filename, 0);
3330 
3331  // duration
3332  buf = av_asprintf("%g", matroska->duration);
3333  if (!buf) return AVERROR(ENOMEM);
3334  av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0);
3335  av_free(buf);
3336 
3337  // track number
3338  tracks = matroska->tracks.elem;
3339  av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0);
3340 
3341  // parse the cues and populate Cue related fields
3342  return webm_dash_manifest_cues(s);
3343 }
3344 
3346 {
3347  return AVERROR_EOF;
3348 }
3349 
3351  .name = "matroska,webm",
3352  .long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
3353  .extensions = "mkv,mk3d,mka,mks",
3354  .priv_data_size = sizeof(MatroskaDemuxContext),
3360  .mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska"
3361 };
3362 
3364  .name = "webm_dash_manifest",
3365  .long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"),
3366  .priv_data_size = sizeof(MatroskaDemuxContext),
3370 };