FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
matroskadec.c
Go to the documentation of this file.
1 /*
2  * Matroska file demuxer
3  * Copyright (c) 2003-2008 The FFmpeg Project
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Matroska file demuxer
25  * @author Ronald Bultje <rbultje@ronald.bitfreak.net>
26  * @author with a little help from Moritz Bunkus <moritz@bunkus.org>
27  * @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
28  * @see specs available on the Matroska project page: http://www.matroska.org/
29  */
30 
31 #include "config.h"
32 
33 #include <inttypes.h>
34 #include <stdio.h>
35 
36 #include "libavutil/avstring.h"
37 #include "libavutil/base64.h"
38 #include "libavutil/dict.h"
39 #include "libavutil/intfloat.h"
40 #include "libavutil/intreadwrite.h"
41 #include "libavutil/lzo.h"
42 #include "libavutil/mathematics.h"
44 
45 #include "libavcodec/bytestream.h"
46 #include "libavcodec/flac.h"
47 #include "libavcodec/mpeg4audio.h"
48 
49 #include "avformat.h"
50 #include "avio_internal.h"
51 #include "internal.h"
52 #include "isom.h"
53 #include "matroska.h"
54 #include "oggdec.h"
55 /* For ff_codec_get_id(). */
56 #include "riff.h"
57 #include "rmsipr.h"
58 
59 #if CONFIG_BZLIB
60 #include <bzlib.h>
61 #endif
62 #if CONFIG_ZLIB
63 #include <zlib.h>
64 #endif
65 
66 typedef enum {
78 } EbmlType;
79 
80 typedef const struct EbmlSyntax {
81  uint32_t id;
85  union {
86  uint64_t u;
87  double f;
88  const char *s;
89  const struct EbmlSyntax *n;
90  } def;
91 } EbmlSyntax;
92 
93 typedef struct {
94  int nb_elem;
95  void *elem;
96 } EbmlList;
97 
98 typedef struct {
99  int size;
101  int64_t pos;
102 } EbmlBin;
103 
104 typedef struct {
105  uint64_t version;
106  uint64_t max_size;
107  uint64_t id_length;
108  char *doctype;
109  uint64_t doctype_version;
110 } Ebml;
111 
112 typedef struct {
113  uint64_t algo;
116 
117 typedef struct {
118  uint64_t algo;
121 
122 typedef struct {
123  uint64_t scope;
124  uint64_t type;
128 
129 typedef struct {
130  double frame_rate;
131  uint64_t display_width;
132  uint64_t display_height;
133  uint64_t pixel_width;
134  uint64_t pixel_height;
136  uint64_t stereo_mode;
137  uint64_t alpha_mode;
139 
140 typedef struct {
141  double samplerate;
143  uint64_t bitdepth;
144  uint64_t channels;
145 
146  /* real audio header (extracted from extradata) */
152  int pkt_cnt;
153  uint64_t buf_timecode;
156 
157 typedef struct {
158  uint64_t uid;
159  uint64_t type;
161 
162 typedef struct {
165 
166 typedef struct {
167  uint64_t num;
168  uint64_t uid;
169  uint64_t type;
170  char *name;
171  char *codec_id;
173  char *language;
174  double time_scale;
176  uint64_t flag_default;
177  uint64_t flag_forced;
178  uint64_t seek_preroll;
183  uint64_t codec_delay;
184 
186  int64_t end_timecode;
189 } MatroskaTrack;
190 
191 typedef struct {
192  uint64_t uid;
193  char *filename;
194  char *mime;
196 
199 
200 typedef struct {
201  uint64_t start;
202  uint64_t end;
203  uint64_t uid;
204  char *title;
205 
208 
209 typedef struct {
210  uint64_t track;
211  uint64_t pos;
213 
214 typedef struct {
215  uint64_t time;
217 } MatroskaIndex;
218 
219 typedef struct {
220  char *name;
221  char *string;
222  char *lang;
223  uint64_t def;
225 } MatroskaTag;
226 
227 typedef struct {
228  char *type;
229  uint64_t typevalue;
230  uint64_t trackuid;
231  uint64_t chapteruid;
232  uint64_t attachuid;
234 
235 typedef struct {
238 } MatroskaTags;
239 
240 typedef struct {
241  uint64_t id;
242  uint64_t pos;
244 
245 typedef struct {
246  uint64_t start;
247  uint64_t length;
248 } MatroskaLevel;
249 
250 typedef struct {
251  uint64_t timecode;
254 
255 typedef struct {
257 
258  /* EBML stuff */
261  int level_up;
262  uint32_t current_id;
263 
264  uint64_t time_scale;
265  double duration;
266  char *title;
267  char *muxingapp;
275 
276  /* byte position of the segment inside the stream */
277  int64_t segment_start;
278 
279  /* the packet queue */
283 
284  int done;
285 
286  /* What to skip before effectively reading a packet. */
289 
290  /* File has a CUES element, but we defer parsing until it is needed. */
292 
296 
297  /* File has SSA subtitles which prevent incremental cluster parsing. */
300 
301 typedef struct {
302  uint64_t duration;
303  int64_t reference;
304  uint64_t non_simple;
306  uint64_t additional_id;
309 } MatroskaBlock;
310 
312  { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
313  { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
314  { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
315  { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
316  { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
319  { 0 }
320 };
321 
323  { EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
324  { 0 }
325 };
326 
328  { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
330  { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
332  { MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) },
333  { MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) },
335  { 0 }
336 };
337 
339  { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
340  { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } },
341  { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } },
342  { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
343  { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
344  { MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) },
345  { MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) },
354  { 0 }
355 };
356 
358  { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
359  { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
361  { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
362  { 0 }
363 };
364 
368  { 0 }
369 };
370 
379  { 0 }
380 };
382  { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
383  { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
384  { MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
385  { MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } },
387  { 0 }
388 };
389 
391  { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
392  { 0 }
393 };
394 
398  { 0 }
399 };
400 
402  { MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} },
403  { 0 }
404 };
405 
407  { MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} },
408  { 0 }
409 };
410 
412  { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
414  { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
417  { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
418  { MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
419  { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
420  { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
421  { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
422  { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
423  { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
424  { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
425  { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
426  { MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } },
427  { MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
428  { MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) },
429  { MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) },
438  { 0 }
439 };
440 
442  { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
443  { 0 }
444 };
445 
448  { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
449  { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
450  { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
452  { 0 }
453 };
454 
456  { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
457  { 0 }
458 };
459 
461  { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
463  { 0 }
464 };
465 
470  { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
475  { 0 }
476 };
477 
479  { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
484  { 0 }
485 };
486 
488  { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
489  { 0 }
490 };
491 
493  { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
498  { 0 }
499 };
500 
502  { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
503  { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
504  { 0 }
505 };
506 
508  { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
509  { 0 }
510 };
511 
513  { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
514  { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
515  { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
516  { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
517  { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
518  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
519  { 0 }
520 };
521 
524  { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
525  { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
526  { MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
527  { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
528  { 0 }
529 };
530 
532  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
533  { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
534  { 0 }
535 };
536 
538  { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
539  { 0 }
540 };
541 
543  { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
544  { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
545  { 0 }
546 };
547 
549  { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
550  { 0 }
551 };
552 
554  { MATROSKA_ID_INFO, EBML_NEST, 0, 0, { .n = matroska_info } },
555  { MATROSKA_ID_TRACKS, EBML_NEST, 0, 0, { .n = matroska_tracks } },
556  { MATROSKA_ID_ATTACHMENTS, EBML_NEST, 0, 0, { .n = matroska_attachments } },
557  { MATROSKA_ID_CHAPTERS, EBML_NEST, 0, 0, { .n = matroska_chapters } },
558  { MATROSKA_ID_CUES, EBML_NEST, 0, 0, { .n = matroska_index } },
559  { MATROSKA_ID_TAGS, EBML_NEST, 0, 0, { .n = matroska_tags } },
560  { MATROSKA_ID_SEEKHEAD, EBML_NEST, 0, 0, { .n = matroska_seekhead } },
562  { 0 }
563 };
564 
566  { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
567  { 0 }
568 };
569 
571  { MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) },
572  { MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) },
573  { 0 }
574 };
575 
577  { MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} },
578  { 0 }
579 };
580 
582  { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
583  { MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} },
584  { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
586  { MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) },
587  { MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference) },
589  { 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
590  { 0 }
591 };
592 
594  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
595  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
596  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
599  { 0 }
600 };
601 
603  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster } },
608  { 0 }
609 };
610 
612  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
613  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
614  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
622  { 0 }
623 };
624 
626  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
631  { 0 }
632 };
633 
635  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster_incremental } },
640  { 0 }
641 };
642 
643 static const char *const matroska_doctypes[] = { "matroska", "webm" };
644 
645 static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
646 {
647  AVIOContext *pb = matroska->ctx->pb;
648  uint32_t id;
649  matroska->current_id = 0;
650  matroska->num_levels = 0;
651 
652  /* seek to next position to resync from */
653  if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0)
654  goto eof;
655 
656  id = avio_rb32(pb);
657 
658  // try to find a toplevel element
659  while (!avio_feof(pb)) {
660  if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
661  id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
663  id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
664  matroska->current_id = id;
665  return 0;
666  }
667  id = (id << 8) | avio_r8(pb);
668  }
669 
670 eof:
671  matroska->done = 1;
672  return AVERROR_EOF;
673 }
674 
675 /*
676  * Return: Whether we reached the end of a level in the hierarchy or not.
677  */
679 {
680  AVIOContext *pb = matroska->ctx->pb;
681  int64_t pos = avio_tell(pb);
682 
683  if (matroska->num_levels > 0) {
684  MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
685  if (pos - level->start >= level->length || matroska->current_id) {
686  matroska->num_levels--;
687  return 1;
688  }
689  }
690  return 0;
691 }
692 
693 /*
694  * Read: an "EBML number", which is defined as a variable-length
695  * array of bytes. The first byte indicates the length by giving a
696  * number of 0-bits followed by a one. The position of the first
697  * "one" bit inside the first byte indicates the length of this
698  * number.
699  * Returns: number of bytes read, < 0 on error
700  */
702  int max_size, uint64_t *number)
703 {
704  int read = 1, n = 1;
705  uint64_t total = 0;
706 
707  /* The first byte tells us the length in bytes - avio_r8() can normally
708  * return 0, but since that's not a valid first ebmlID byte, we can
709  * use it safely here to catch EOS. */
710  if (!(total = avio_r8(pb))) {
711  /* we might encounter EOS here */
712  if (!avio_feof(pb)) {
713  int64_t pos = avio_tell(pb);
714  av_log(matroska->ctx, AV_LOG_ERROR,
715  "Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
716  pos, pos);
717  return pb->error ? pb->error : AVERROR(EIO);
718  }
719  return AVERROR_EOF;
720  }
721 
722  /* get the length of the EBML number */
723  read = 8 - ff_log2_tab[total];
724  if (read > max_size) {
725  int64_t pos = avio_tell(pb) - 1;
726  av_log(matroska->ctx, AV_LOG_ERROR,
727  "Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
728  (uint8_t) total, pos, pos);
729  return AVERROR_INVALIDDATA;
730  }
731 
732  /* read out length */
733  total ^= 1 << ff_log2_tab[total];
734  while (n++ < read)
735  total = (total << 8) | avio_r8(pb);
736 
737  *number = total;
738 
739  return read;
740 }
741 
742 /**
743  * Read a EBML length value.
744  * This needs special handling for the "unknown length" case which has multiple
745  * encodings.
746  */
748  uint64_t *number)
749 {
750  int res = ebml_read_num(matroska, pb, 8, number);
751  if (res > 0 && *number + 1 == 1ULL << (7 * res))
752  *number = 0xffffffffffffffULL;
753  return res;
754 }
755 
756 /*
757  * Read the next element as an unsigned int.
758  * 0 is success, < 0 is failure.
759  */
760 static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
761 {
762  int n = 0;
763 
764  if (size > 8)
765  return AVERROR_INVALIDDATA;
766 
767  /* big-endian ordering; build up number */
768  *num = 0;
769  while (n++ < size)
770  *num = (*num << 8) | avio_r8(pb);
771 
772  return 0;
773 }
774 
775 /*
776  * Read the next element as a signed int.
777  * 0 is success, < 0 is failure.
778  */
779 static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num)
780 {
781  int n = 1;
782 
783  if (size > 8)
784  return AVERROR_INVALIDDATA;
785 
786  if (size == 0) {
787  *num = 0;
788  } else {
789  *num = sign_extend(avio_r8(pb), 8);
790 
791  /* big-endian ordering; build up number */
792  while (n++ < size)
793  *num = (*num << 8) | avio_r8(pb);
794  }
795 
796  return 0;
797 }
798 
799 /*
800  * Read the next element as a float.
801  * 0 is success, < 0 is failure.
802  */
803 static int ebml_read_float(AVIOContext *pb, int size, double *num)
804 {
805  if (size == 0)
806  *num = 0;
807  else if (size == 4)
808  *num = av_int2float(avio_rb32(pb));
809  else if (size == 8)
810  *num = av_int2double(avio_rb64(pb));
811  else
812  return AVERROR_INVALIDDATA;
813 
814  return 0;
815 }
816 
817 /*
818  * Read the next element as an ASCII string.
819  * 0 is success, < 0 is failure.
820  */
821 static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
822 {
823  char *res;
824 
825  /* EBML strings are usually not 0-terminated, so we allocate one
826  * byte more, read the string and NULL-terminate it ourselves. */
827  if (!(res = av_malloc(size + 1)))
828  return AVERROR(ENOMEM);
829  if (avio_read(pb, (uint8_t *) res, size) != size) {
830  av_free(res);
831  return AVERROR(EIO);
832  }
833  (res)[size] = '\0';
834  av_free(*str);
835  *str = res;
836 
837  return 0;
838 }
839 
840 /*
841  * Read the next element as binary data.
842  * 0 is success, < 0 is failure.
843  */
844 static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
845 {
846  av_fast_padded_malloc(&bin->data, &bin->size, length);
847  if (!bin->data)
848  return AVERROR(ENOMEM);
849 
850  bin->size = length;
851  bin->pos = avio_tell(pb);
852  if (avio_read(pb, bin->data, length) != length) {
853  av_freep(&bin->data);
854  bin->size = 0;
855  return AVERROR(EIO);
856  }
857 
858  return 0;
859 }
860 
861 /*
862  * Read the next element, but only the header. The contents
863  * are supposed to be sub-elements which can be read separately.
864  * 0 is success, < 0 is failure.
865  */
866 static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
867 {
868  AVIOContext *pb = matroska->ctx->pb;
870 
871  if (matroska->num_levels >= EBML_MAX_DEPTH) {
872  av_log(matroska->ctx, AV_LOG_ERROR,
873  "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
874  return AVERROR(ENOSYS);
875  }
876 
877  level = &matroska->levels[matroska->num_levels++];
878  level->start = avio_tell(pb);
879  level->length = length;
880 
881  return 0;
882 }
883 
884 /*
885  * Read signed/unsigned "EBML" numbers.
886  * Return: number of bytes processed, < 0 on error
887  */
889  uint8_t *data, uint32_t size, uint64_t *num)
890 {
891  AVIOContext pb;
892  ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
893  return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
894 }
895 
896 /*
897  * Same as above, but signed.
898  */
900  uint8_t *data, uint32_t size, int64_t *num)
901 {
902  uint64_t unum;
903  int res;
904 
905  /* read as unsigned number first */
906  if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
907  return res;
908 
909  /* make signed (weird way) */
910  *num = unum - ((1LL << (7 * res - 1)) - 1);
911 
912  return res;
913 }
914 
915 static int ebml_parse_elem(MatroskaDemuxContext *matroska,
916  EbmlSyntax *syntax, void *data);
917 
918 static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
919  uint32_t id, void *data)
920 {
921  int i;
922  for (i = 0; syntax[i].id; i++)
923  if (id == syntax[i].id)
924  break;
925  if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
926  matroska->num_levels > 0 &&
927  matroska->levels[matroska->num_levels - 1].length == 0xffffffffffffff)
928  return 0; // we reached the end of an unknown size cluster
929  if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
930  av_log(matroska->ctx, AV_LOG_INFO, "Unknown entry 0x%"PRIX32"\n", id);
931  if (matroska->ctx->error_recognition & AV_EF_EXPLODE)
932  return AVERROR_INVALIDDATA;
933  }
934  return ebml_parse_elem(matroska, &syntax[i], data);
935 }
936 
937 static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
938  void *data)
939 {
940  if (!matroska->current_id) {
941  uint64_t id;
942  int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
943  if (res < 0)
944  return res;
945  matroska->current_id = id | 1 << 7 * res;
946  }
947  return ebml_parse_id(matroska, syntax, matroska->current_id, data);
948 }
949 
950 static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
951  void *data)
952 {
953  int i, res = 0;
954 
955  for (i = 0; syntax[i].id; i++)
956  switch (syntax[i].type) {
957  case EBML_UINT:
958  *(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
959  break;
960  case EBML_FLOAT:
961  *(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
962  break;
963  case EBML_STR:
964  case EBML_UTF8:
965  // the default may be NULL
966  if (syntax[i].def.s) {
967  uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
968  *dst = av_strdup(syntax[i].def.s);
969  if (!*dst)
970  return AVERROR(ENOMEM);
971  }
972  break;
973  }
974 
975  while (!res && !ebml_level_end(matroska))
976  res = ebml_parse(matroska, syntax, data);
977 
978  return res;
979 }
980 
982  EbmlSyntax *syntax, void *data)
983 {
984  static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
985  [EBML_UINT] = 8,
986  [EBML_FLOAT] = 8,
987  // max. 16 MB for strings
988  [EBML_STR] = 0x1000000,
989  [EBML_UTF8] = 0x1000000,
990  // max. 256 MB for binary data
991  [EBML_BIN] = 0x10000000,
992  // no limits for anything else
993  };
994  AVIOContext *pb = matroska->ctx->pb;
995  uint32_t id = syntax->id;
996  uint64_t length;
997  int res;
998  void *newelem;
999 
1000  data = (char *) data + syntax->data_offset;
1001  if (syntax->list_elem_size) {
1002  EbmlList *list = data;
1003  newelem = av_realloc_array(list->elem, list->nb_elem + 1, syntax->list_elem_size);
1004  if (!newelem)
1005  return AVERROR(ENOMEM);
1006  list->elem = newelem;
1007  data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
1008  memset(data, 0, syntax->list_elem_size);
1009  list->nb_elem++;
1010  }
1011 
1012  if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
1013  matroska->current_id = 0;
1014  if ((res = ebml_read_length(matroska, pb, &length)) < 0)
1015  return res;
1016  if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
1017  av_log(matroska->ctx, AV_LOG_ERROR,
1018  "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
1019  length, max_lengths[syntax->type], syntax->type);
1020  return AVERROR_INVALIDDATA;
1021  }
1022  }
1023 
1024  switch (syntax->type) {
1025  case EBML_UINT:
1026  res = ebml_read_uint(pb, length, data);
1027  break;
1028  case EBML_SINT:
1029  res = ebml_read_sint(pb, length, data);
1030  break;
1031  case EBML_FLOAT:
1032  res = ebml_read_float(pb, length, data);
1033  break;
1034  case EBML_STR:
1035  case EBML_UTF8:
1036  res = ebml_read_ascii(pb, length, data);
1037  break;
1038  case EBML_BIN:
1039  res = ebml_read_binary(pb, length, data);
1040  break;
1041  case EBML_NEST:
1042  if ((res = ebml_read_master(matroska, length)) < 0)
1043  return res;
1044  if (id == MATROSKA_ID_SEGMENT)
1045  matroska->segment_start = avio_tell(matroska->ctx->pb);
1046  return ebml_parse_nest(matroska, syntax->def.n, data);
1047  case EBML_PASS:
1048  return ebml_parse_id(matroska, syntax->def.n, id, data);
1049  case EBML_STOP:
1050  return 1;
1051  default:
1052  if (ffio_limit(pb, length) != length)
1053  return AVERROR(EIO);
1054  return avio_skip(pb, length) < 0 ? AVERROR(EIO) : 0;
1055  }
1056  if (res == AVERROR_INVALIDDATA)
1057  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
1058  else if (res == AVERROR(EIO))
1059  av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
1060  return res;
1061 }
1062 
1063 static void ebml_free(EbmlSyntax *syntax, void *data)
1064 {
1065  int i, j;
1066  for (i = 0; syntax[i].id; i++) {
1067  void *data_off = (char *) data + syntax[i].data_offset;
1068  switch (syntax[i].type) {
1069  case EBML_STR:
1070  case EBML_UTF8:
1071  av_freep(data_off);
1072  break;
1073  case EBML_BIN:
1074  av_freep(&((EbmlBin *) data_off)->data);
1075  break;
1076  case EBML_NEST:
1077  if (syntax[i].list_elem_size) {
1078  EbmlList *list = data_off;
1079  char *ptr = list->elem;
1080  for (j = 0; j < list->nb_elem;
1081  j++, ptr += syntax[i].list_elem_size)
1082  ebml_free(syntax[i].def.n, ptr);
1083  av_free(list->elem);
1084  } else
1085  ebml_free(syntax[i].def.n, data_off);
1086  default:
1087  break;
1088  }
1089  }
1090 }
1091 
1092 /*
1093  * Autodetecting...
1094  */
1096 {
1097  uint64_t total = 0;
1098  int len_mask = 0x80, size = 1, n = 1, i;
1099 
1100  /* EBML header? */
1101  if (AV_RB32(p->buf) != EBML_ID_HEADER)
1102  return 0;
1103 
1104  /* length of header */
1105  total = p->buf[4];
1106  while (size <= 8 && !(total & len_mask)) {
1107  size++;
1108  len_mask >>= 1;
1109  }
1110  if (size > 8)
1111  return 0;
1112  total &= (len_mask - 1);
1113  while (n < size)
1114  total = (total << 8) | p->buf[4 + n++];
1115 
1116  /* Does the probe data contain the whole header? */
1117  if (p->buf_size < 4 + size + total)
1118  return 0;
1119 
1120  /* The header should contain a known document type. For now,
1121  * we don't parse the whole header but simply check for the
1122  * availability of that array of characters inside the header.
1123  * Not fully fool-proof, but good enough. */
1124  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
1125  int probelen = strlen(matroska_doctypes[i]);
1126  if (total < probelen)
1127  continue;
1128  for (n = 4 + size; n <= 4 + size + total - probelen; n++)
1129  if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
1130  return AVPROBE_SCORE_MAX;
1131  }
1132 
1133  // probably valid EBML header but no recognized doctype
1134  return AVPROBE_SCORE_EXTENSION;
1135 }
1136 
1138  int num)
1139 {
1140  MatroskaTrack *tracks = matroska->tracks.elem;
1141  int i;
1142 
1143  for (i = 0; i < matroska->tracks.nb_elem; i++)
1144  if (tracks[i].num == num)
1145  return &tracks[i];
1146 
1147  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
1148  return NULL;
1149 }
1150 
1151 static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
1152  MatroskaTrack *track)
1153 {
1154  MatroskaTrackEncoding *encodings = track->encodings.elem;
1155  uint8_t *data = *buf;
1156  int isize = *buf_size;
1157  uint8_t *pkt_data = NULL;
1158  uint8_t av_unused *newpktdata;
1159  int pkt_size = isize;
1160  int result = 0;
1161  int olen;
1162 
1163  if (pkt_size >= 10000000U)
1164  return AVERROR_INVALIDDATA;
1165 
1166  switch (encodings[0].compression.algo) {
1168  {
1169  int header_size = encodings[0].compression.settings.size;
1170  uint8_t *header = encodings[0].compression.settings.data;
1171 
1172  if (header_size && !header) {
1173  av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
1174  return -1;
1175  }
1176 
1177  if (!header_size)
1178  return 0;
1179 
1180  pkt_size = isize + header_size;
1181  pkt_data = av_malloc(pkt_size);
1182  if (!pkt_data)
1183  return AVERROR(ENOMEM);
1184 
1185  memcpy(pkt_data, header, header_size);
1186  memcpy(pkt_data + header_size, data, isize);
1187  break;
1188  }
1189 #if CONFIG_LZO
1191  do {
1192  olen = pkt_size *= 3;
1193  newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING);
1194  if (!newpktdata) {
1195  result = AVERROR(ENOMEM);
1196  goto failed;
1197  }
1198  pkt_data = newpktdata;
1199  result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
1200  } while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
1201  if (result) {
1202  result = AVERROR_INVALIDDATA;
1203  goto failed;
1204  }
1205  pkt_size -= olen;
1206  break;
1207 #endif
1208 #if CONFIG_ZLIB
1210  {
1211  z_stream zstream = { 0 };
1212  if (inflateInit(&zstream) != Z_OK)
1213  return -1;
1214  zstream.next_in = data;
1215  zstream.avail_in = isize;
1216  do {
1217  pkt_size *= 3;
1218  newpktdata = av_realloc(pkt_data, pkt_size);
1219  if (!newpktdata) {
1220  inflateEnd(&zstream);
1221  goto failed;
1222  }
1223  pkt_data = newpktdata;
1224  zstream.avail_out = pkt_size - zstream.total_out;
1225  zstream.next_out = pkt_data + zstream.total_out;
1226  if (pkt_data) {
1227  result = inflate(&zstream, Z_NO_FLUSH);
1228  } else
1229  result = Z_MEM_ERROR;
1230  } while (result == Z_OK && pkt_size < 10000000);
1231  pkt_size = zstream.total_out;
1232  inflateEnd(&zstream);
1233  if (result != Z_STREAM_END) {
1234  if (result == Z_MEM_ERROR)
1235  result = AVERROR(ENOMEM);
1236  else
1237  result = AVERROR_INVALIDDATA;
1238  goto failed;
1239  }
1240  break;
1241  }
1242 #endif
1243 #if CONFIG_BZLIB
1245  {
1246  bz_stream bzstream = { 0 };
1247  if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
1248  return -1;
1249  bzstream.next_in = data;
1250  bzstream.avail_in = isize;
1251  do {
1252  pkt_size *= 3;
1253  newpktdata = av_realloc(pkt_data, pkt_size);
1254  if (!newpktdata) {
1255  BZ2_bzDecompressEnd(&bzstream);
1256  goto failed;
1257  }
1258  pkt_data = newpktdata;
1259  bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
1260  bzstream.next_out = pkt_data + bzstream.total_out_lo32;
1261  if (pkt_data) {
1262  result = BZ2_bzDecompress(&bzstream);
1263  } else
1264  result = BZ_MEM_ERROR;
1265  } while (result == BZ_OK && pkt_size < 10000000);
1266  pkt_size = bzstream.total_out_lo32;
1267  BZ2_bzDecompressEnd(&bzstream);
1268  if (result != BZ_STREAM_END) {
1269  if (result == BZ_MEM_ERROR)
1270  result = AVERROR(ENOMEM);
1271  else
1272  result = AVERROR_INVALIDDATA;
1273  goto failed;
1274  }
1275  break;
1276  }
1277 #endif
1278  default:
1279  return AVERROR_INVALIDDATA;
1280  }
1281 
1282  *buf = pkt_data;
1283  *buf_size = pkt_size;
1284  return 0;
1285 
1286 failed:
1287  av_free(pkt_data);
1288  return result;
1289 }
1290 
1292  AVDictionary **metadata, char *prefix)
1293 {
1294  MatroskaTag *tags = list->elem;
1295  char key[1024];
1296  int i;
1297 
1298  for (i = 0; i < list->nb_elem; i++) {
1299  const char *lang = tags[i].lang &&
1300  strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
1301 
1302  if (!tags[i].name) {
1303  av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
1304  continue;
1305  }
1306  if (prefix)
1307  snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
1308  else
1309  av_strlcpy(key, tags[i].name, sizeof(key));
1310  if (tags[i].def || !lang) {
1311  av_dict_set(metadata, key, tags[i].string, 0);
1312  if (tags[i].sub.nb_elem)
1313  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1314  }
1315  if (lang) {
1316  av_strlcat(key, "-", sizeof(key));
1317  av_strlcat(key, lang, sizeof(key));
1318  av_dict_set(metadata, key, tags[i].string, 0);
1319  if (tags[i].sub.nb_elem)
1320  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1321  }
1322  }
1323  ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
1324 }
1325 
1327 {
1328  MatroskaDemuxContext *matroska = s->priv_data;
1329  MatroskaTags *tags = matroska->tags.elem;
1330  int i, j;
1331 
1332  for (i = 0; i < matroska->tags.nb_elem; i++) {
1333  if (tags[i].target.attachuid) {
1334  MatroskaAttachment *attachment = matroska->attachments.elem;
1335  for (j = 0; j < matroska->attachments.nb_elem; j++)
1336  if (attachment[j].uid == tags[i].target.attachuid &&
1337  attachment[j].stream)
1338  matroska_convert_tag(s, &tags[i].tag,
1339  &attachment[j].stream->metadata, NULL);
1340  } else if (tags[i].target.chapteruid) {
1341  MatroskaChapter *chapter = matroska->chapters.elem;
1342  for (j = 0; j < matroska->chapters.nb_elem; j++)
1343  if (chapter[j].uid == tags[i].target.chapteruid &&
1344  chapter[j].chapter)
1345  matroska_convert_tag(s, &tags[i].tag,
1346  &chapter[j].chapter->metadata, NULL);
1347  } else if (tags[i].target.trackuid) {
1348  MatroskaTrack *track = matroska->tracks.elem;
1349  for (j = 0; j < matroska->tracks.nb_elem; j++)
1350  if (track[j].uid == tags[i].target.trackuid && track[j].stream)
1351  matroska_convert_tag(s, &tags[i].tag,
1352  &track[j].stream->metadata, NULL);
1353  } else {
1354  matroska_convert_tag(s, &tags[i].tag, &s->metadata,
1355  tags[i].target.type);
1356  }
1357  }
1358 }
1359 
1361  int idx)
1362 {
1363  EbmlList *seekhead_list = &matroska->seekhead;
1364  uint32_t level_up = matroska->level_up;
1365  uint32_t saved_id = matroska->current_id;
1366  MatroskaSeekhead *seekhead = seekhead_list->elem;
1367  int64_t before_pos = avio_tell(matroska->ctx->pb);
1369  int64_t offset;
1370  int ret = 0;
1371 
1372  if (idx >= seekhead_list->nb_elem ||
1373  seekhead[idx].id == MATROSKA_ID_SEEKHEAD ||
1374  seekhead[idx].id == MATROSKA_ID_CLUSTER)
1375  return 0;
1376 
1377  /* seek */
1378  offset = seekhead[idx].pos + matroska->segment_start;
1379  if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
1380  /* We don't want to lose our seekhead level, so we add
1381  * a dummy. This is a crude hack. */
1382  if (matroska->num_levels == EBML_MAX_DEPTH) {
1383  av_log(matroska->ctx, AV_LOG_INFO,
1384  "Max EBML element depth (%d) reached, "
1385  "cannot parse further.\n", EBML_MAX_DEPTH);
1386  ret = AVERROR_INVALIDDATA;
1387  } else {
1388  level.start = 0;
1389  level.length = (uint64_t) -1;
1390  matroska->levels[matroska->num_levels] = level;
1391  matroska->num_levels++;
1392  matroska->current_id = 0;
1393 
1394  ret = ebml_parse(matroska, matroska_segment, matroska);
1395 
1396  /* remove dummy level */
1397  while (matroska->num_levels) {
1398  uint64_t length = matroska->levels[--matroska->num_levels].length;
1399  if (length == (uint64_t) -1)
1400  break;
1401  }
1402  }
1403  }
1404  /* seek back */
1405  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
1406  matroska->level_up = level_up;
1407  matroska->current_id = saved_id;
1408 
1409  return ret;
1410 }
1411 
1413 {
1414  EbmlList *seekhead_list = &matroska->seekhead;
1415  int64_t before_pos = avio_tell(matroska->ctx->pb);
1416  int i;
1417  int nb_elem;
1418 
1419  // we should not do any seeking in the streaming case
1420  if (!matroska->ctx->pb->seekable ||
1421  (matroska->ctx->flags & AVFMT_FLAG_IGNIDX))
1422  return;
1423 
1424  // do not read entries that are added while parsing seekhead entries
1425  nb_elem = seekhead_list->nb_elem;
1426 
1427  for (i = 0; i < nb_elem; i++) {
1428  MatroskaSeekhead *seekhead = seekhead_list->elem;
1429  if (seekhead[i].pos <= before_pos)
1430  continue;
1431 
1432  // defer cues parsing until we actually need cue data.
1433  if (seekhead[i].id == MATROSKA_ID_CUES) {
1434  matroska->cues_parsing_deferred = 1;
1435  continue;
1436  }
1437 
1438  if (matroska_parse_seekhead_entry(matroska, i) < 0) {
1439  // mark index as broken
1440  matroska->cues_parsing_deferred = -1;
1441  break;
1442  }
1443  }
1444  if (nb_elem != seekhead_list->nb_elem) {
1445  avpriv_request_sample(matroska->ctx, "recursive SeekHead elements");
1446  }
1447 }
1448 
1450 {
1451  EbmlList *index_list;
1453  int index_scale = 1;
1454  int i, j;
1455 
1456  index_list = &matroska->index;
1457  index = index_list->elem;
1458  if (index_list->nb_elem &&
1459  index[0].time > 1E14 / matroska->time_scale) {
1460  av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
1461  index_scale = matroska->time_scale;
1462  }
1463  for (i = 0; i < index_list->nb_elem; i++) {
1464  EbmlList *pos_list = &index[i].pos;
1465  MatroskaIndexPos *pos = pos_list->elem;
1466  for (j = 0; j < pos_list->nb_elem; j++) {
1467  MatroskaTrack *track = matroska_find_track_by_num(matroska,
1468  pos[j].track);
1469  if (track && track->stream)
1470  av_add_index_entry(track->stream,
1471  pos[j].pos + matroska->segment_start,
1472  index[i].time / index_scale, 0, 0,
1474  }
1475  }
1476 }
1477 
1479  EbmlList *seekhead_list = &matroska->seekhead;
1480  MatroskaSeekhead *seekhead = seekhead_list->elem;
1481  int i;
1482 
1483  for (i = 0; i < seekhead_list->nb_elem; i++)
1484  if (seekhead[i].id == MATROSKA_ID_CUES)
1485  break;
1486  av_assert1(i <= seekhead_list->nb_elem);
1487 
1488  if (matroska_parse_seekhead_entry(matroska, i) < 0)
1489  matroska->cues_parsing_deferred = -1;
1490  matroska_add_index_entries(matroska);
1491 }
1492 
1494 {
1495  static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
1496  int profile;
1497 
1498  for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
1499  if (strstr(codec_id, aac_profiles[profile]))
1500  break;
1501  return profile + 1;
1502 }
1503 
1504 static int matroska_aac_sri(int samplerate)
1505 {
1506  int sri;
1507 
1508  for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
1509  if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
1510  break;
1511  return sri;
1512 }
1513 
1514 static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
1515 {
1516  char buffer[32];
1517  /* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
1518  time_t creation_time = date_utc / 1000000000 + 978307200;
1519  struct tm tmpbuf, *ptm = gmtime_r(&creation_time, &tmpbuf);
1520  if (!ptm) return;
1521  if (strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", ptm))
1522  av_dict_set(metadata, "creation_time", buffer, 0);
1523 }
1524 
1526  MatroskaTrack *track,
1527  int *offset)
1528 {
1529  AVStream *st = track->stream;
1530  uint8_t *p = track->codec_priv.data;
1531  int size = track->codec_priv.size;
1532 
1533  if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
1534  av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
1535  track->codec_priv.size = 0;
1536  return 0;
1537  }
1538  *offset = 8;
1539  track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
1540 
1541  p += track->codec_priv.size;
1542  size -= track->codec_priv.size;
1543 
1544  /* parse the remaining metadata blocks if present */
1545  while (size >= 4) {
1546  int block_last, block_type, block_size;
1547 
1548  flac_parse_block_header(p, &block_last, &block_type, &block_size);
1549 
1550  p += 4;
1551  size -= 4;
1552  if (block_size > size)
1553  return 0;
1554 
1555  /* check for the channel mask */
1556  if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
1557  AVDictionary *dict = NULL;
1558  AVDictionaryEntry *chmask;
1559 
1560  ff_vorbis_comment(s, &dict, p, block_size, 0);
1561  chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
1562  if (chmask) {
1563  uint64_t mask = strtol(chmask->value, NULL, 0);
1564  if (!mask || mask & ~0x3ffffULL) {
1566  "Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
1567  } else
1568  st->codec->channel_layout = mask;
1569  }
1570  av_dict_free(&dict);
1571  }
1572 
1573  p += block_size;
1574  size -= block_size;
1575  }
1576 
1577  return 0;
1578 }
1579 
1581 {
1582  MatroskaDemuxContext *matroska = s->priv_data;
1583  MatroskaTrack *tracks = matroska->tracks.elem;
1584  AVStream *st;
1585  int i, j, ret;
1586  int k;
1587 
1588  for (i = 0; i < matroska->tracks.nb_elem; i++) {
1589  MatroskaTrack *track = &tracks[i];
1591  EbmlList *encodings_list = &track->encodings;
1592  MatroskaTrackEncoding *encodings = encodings_list->elem;
1593  uint8_t *extradata = NULL;
1594  int extradata_size = 0;
1595  int extradata_offset = 0;
1596  uint32_t fourcc = 0;
1597  AVIOContext b;
1598  char* key_id_base64 = NULL;
1599  int bit_depth = -1;
1600 
1601  /* Apply some sanity checks. */
1602  if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
1603  track->type != MATROSKA_TRACK_TYPE_AUDIO &&
1604  track->type != MATROSKA_TRACK_TYPE_SUBTITLE &&
1605  track->type != MATROSKA_TRACK_TYPE_METADATA) {
1606  av_log(matroska->ctx, AV_LOG_INFO,
1607  "Unknown or unsupported track type %"PRIu64"\n",
1608  track->type);
1609  continue;
1610  }
1611  if (!track->codec_id)
1612  continue;
1613 
1614  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1615  if (!track->default_duration && track->video.frame_rate > 0)
1616  track->default_duration = 1000000000 / track->video.frame_rate;
1617  if (track->video.display_width == -1)
1618  track->video.display_width = track->video.pixel_width;
1619  if (track->video.display_height == -1)
1620  track->video.display_height = track->video.pixel_height;
1621  if (track->video.color_space.size == 4)
1622  fourcc = AV_RL32(track->video.color_space.data);
1623  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
1624  if (!track->audio.out_samplerate)
1625  track->audio.out_samplerate = track->audio.samplerate;
1626  }
1627  if (encodings_list->nb_elem > 1) {
1628  av_log(matroska->ctx, AV_LOG_ERROR,
1629  "Multiple combined encodings not supported");
1630  } else if (encodings_list->nb_elem == 1) {
1631  if (encodings[0].type) {
1632  if (encodings[0].encryption.key_id.size > 0) {
1633  /* Save the encryption key id to be stored later as a
1634  metadata tag. */
1635  const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size);
1636  key_id_base64 = av_malloc(b64_size);
1637  if (key_id_base64 == NULL)
1638  return AVERROR(ENOMEM);
1639 
1640  av_base64_encode(key_id_base64, b64_size,
1641  encodings[0].encryption.key_id.data,
1642  encodings[0].encryption.key_id.size);
1643  } else {
1644  encodings[0].scope = 0;
1645  av_log(matroska->ctx, AV_LOG_ERROR,
1646  "Unsupported encoding type");
1647  }
1648  } else if (
1649 #if CONFIG_ZLIB
1650  encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
1651 #endif
1652 #if CONFIG_BZLIB
1654 #endif
1655 #if CONFIG_LZO
1657 #endif
1659  encodings[0].scope = 0;
1660  av_log(matroska->ctx, AV_LOG_ERROR,
1661  "Unsupported encoding type");
1662  } else if (track->codec_priv.size && encodings[0].scope & 2) {
1663  uint8_t *codec_priv = track->codec_priv.data;
1664  int ret = matroska_decode_buffer(&track->codec_priv.data,
1665  &track->codec_priv.size,
1666  track);
1667  if (ret < 0) {
1668  track->codec_priv.data = NULL;
1669  track->codec_priv.size = 0;
1670  av_log(matroska->ctx, AV_LOG_ERROR,
1671  "Failed to decode codec private data\n");
1672  }
1673 
1674  if (codec_priv != track->codec_priv.data)
1675  av_free(codec_priv);
1676  }
1677  }
1678 
1679  for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
1680  if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
1681  strlen(ff_mkv_codec_tags[j].str))) {
1682  codec_id = ff_mkv_codec_tags[j].id;
1683  break;
1684  }
1685  }
1686 
1687  st = track->stream = avformat_new_stream(s, NULL);
1688  if (!st) {
1689  av_free(key_id_base64);
1690  return AVERROR(ENOMEM);
1691  }
1692 
1693  if (key_id_base64) {
1694  /* export encryption key id as base64 metadata tag */
1695  av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0);
1696  av_freep(&key_id_base64);
1697  }
1698 
1699  if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
1700  track->codec_priv.size >= 40 &&
1701  track->codec_priv.data) {
1702  track->ms_compat = 1;
1703  bit_depth = AV_RL16(track->codec_priv.data + 14);
1704  fourcc = AV_RL32(track->codec_priv.data + 16);
1706  fourcc);
1707  if (!codec_id)
1709  fourcc);
1710  extradata_offset = 40;
1711  } else if (!strcmp(track->codec_id, "A_MS/ACM") &&
1712  track->codec_priv.size >= 14 &&
1713  track->codec_priv.data) {
1714  int ret;
1715  ffio_init_context(&b, track->codec_priv.data,
1716  track->codec_priv.size,
1717  0, NULL, NULL, NULL, NULL);
1718  ret = ff_get_wav_header(&b, st->codec, track->codec_priv.size, 0);
1719  if (ret < 0)
1720  return ret;
1721  codec_id = st->codec->codec_id;
1722  extradata_offset = FFMIN(track->codec_priv.size, 18);
1723  } else if (!strcmp(track->codec_id, "A_QUICKTIME")
1724  && (track->codec_priv.size >= 86)
1725  && (track->codec_priv.data)) {
1726  fourcc = AV_RL32(track->codec_priv.data + 4);
1727  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1729  fourcc = AV_RL32(track->codec_priv.data);
1730  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1731  }
1732  } else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
1733  (track->codec_priv.size >= 21) &&
1734  (track->codec_priv.data)) {
1735  fourcc = AV_RL32(track->codec_priv.data + 4);
1736  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1738  fourcc = AV_RL32(track->codec_priv.data);
1739  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1740  }
1741  if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI "))
1742  codec_id = AV_CODEC_ID_SVQ3;
1743  } else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
1744  switch (track->audio.bitdepth) {
1745  case 8:
1746  codec_id = AV_CODEC_ID_PCM_U8;
1747  break;
1748  case 24:
1749  codec_id = AV_CODEC_ID_PCM_S24BE;
1750  break;
1751  case 32:
1752  codec_id = AV_CODEC_ID_PCM_S32BE;
1753  break;
1754  }
1755  } else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
1756  switch (track->audio.bitdepth) {
1757  case 8:
1758  codec_id = AV_CODEC_ID_PCM_U8;
1759  break;
1760  case 24:
1761  codec_id = AV_CODEC_ID_PCM_S24LE;
1762  break;
1763  case 32:
1764  codec_id = AV_CODEC_ID_PCM_S32LE;
1765  break;
1766  }
1767  } else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
1768  track->audio.bitdepth == 64) {
1769  codec_id = AV_CODEC_ID_PCM_F64LE;
1770  } else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
1771  int profile = matroska_aac_profile(track->codec_id);
1772  int sri = matroska_aac_sri(track->audio.samplerate);
1773  extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
1774  if (!extradata)
1775  return AVERROR(ENOMEM);
1776  extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
1777  extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
1778  if (strstr(track->codec_id, "SBR")) {
1779  sri = matroska_aac_sri(track->audio.out_samplerate);
1780  extradata[2] = 0x56;
1781  extradata[3] = 0xE5;
1782  extradata[4] = 0x80 | (sri << 3);
1783  extradata_size = 5;
1784  } else
1785  extradata_size = 2;
1786  } else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - FF_INPUT_BUFFER_PADDING_SIZE) {
1787  /* Only ALAC's magic cookie is stored in Matroska's track headers.
1788  * Create the "atom size", "tag", and "tag version" fields the
1789  * decoder expects manually. */
1790  extradata_size = 12 + track->codec_priv.size;
1791  extradata = av_mallocz(extradata_size +
1793  if (!extradata)
1794  return AVERROR(ENOMEM);
1795  AV_WB32(extradata, extradata_size);
1796  memcpy(&extradata[4], "alac", 4);
1797  AV_WB32(&extradata[8], 0);
1798  memcpy(&extradata[12], track->codec_priv.data,
1799  track->codec_priv.size);
1800  } else if (codec_id == AV_CODEC_ID_TTA) {
1801  extradata_size = 30;
1802  extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
1803  if (!extradata)
1804  return AVERROR(ENOMEM);
1805  ffio_init_context(&b, extradata, extradata_size, 1,
1806  NULL, NULL, NULL, NULL);
1807  avio_write(&b, "TTA1", 4);
1808  avio_wl16(&b, 1);
1809  avio_wl16(&b, track->audio.channels);
1810  avio_wl16(&b, track->audio.bitdepth);
1811  if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX)
1812  return AVERROR_INVALIDDATA;
1813  avio_wl32(&b, track->audio.out_samplerate);
1814  avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale),
1815  track->audio.out_samplerate,
1816  AV_TIME_BASE * 1000));
1817  } else if (codec_id == AV_CODEC_ID_RV10 ||
1818  codec_id == AV_CODEC_ID_RV20 ||
1819  codec_id == AV_CODEC_ID_RV30 ||
1820  codec_id == AV_CODEC_ID_RV40) {
1821  extradata_offset = 26;
1822  } else if (codec_id == AV_CODEC_ID_RA_144) {
1823  track->audio.out_samplerate = 8000;
1824  track->audio.channels = 1;
1825  } else if ((codec_id == AV_CODEC_ID_RA_288 ||
1826  codec_id == AV_CODEC_ID_COOK ||
1827  codec_id == AV_CODEC_ID_ATRAC3 ||
1828  codec_id == AV_CODEC_ID_SIPR)
1829  && track->codec_priv.data) {
1830  int flavor;
1831 
1832  ffio_init_context(&b, track->codec_priv.data,
1833  track->codec_priv.size,
1834  0, NULL, NULL, NULL, NULL);
1835  avio_skip(&b, 22);
1836  flavor = avio_rb16(&b);
1837  track->audio.coded_framesize = avio_rb32(&b);
1838  avio_skip(&b, 12);
1839  track->audio.sub_packet_h = avio_rb16(&b);
1840  track->audio.frame_size = avio_rb16(&b);
1841  track->audio.sub_packet_size = avio_rb16(&b);
1842  if (flavor < 0 ||
1843  track->audio.coded_framesize <= 0 ||
1844  track->audio.sub_packet_h <= 0 ||
1845  track->audio.frame_size <= 0 ||
1846  track->audio.sub_packet_size <= 0)
1847  return AVERROR_INVALIDDATA;
1848  track->audio.buf = av_malloc_array(track->audio.sub_packet_h,
1849  track->audio.frame_size);
1850  if (!track->audio.buf)
1851  return AVERROR(ENOMEM);
1852  if (codec_id == AV_CODEC_ID_RA_288) {
1853  st->codec->block_align = track->audio.coded_framesize;
1854  track->codec_priv.size = 0;
1855  } else {
1856  if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
1857  static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
1858  track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
1859  st->codec->bit_rate = sipr_bit_rate[flavor];
1860  }
1861  st->codec->block_align = track->audio.sub_packet_size;
1862  extradata_offset = 78;
1863  }
1864  } else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
1865  ret = matroska_parse_flac(s, track, &extradata_offset);
1866  if (ret < 0)
1867  return ret;
1868  } else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) {
1869  fourcc = AV_RL32(track->codec_priv.data);
1870  }
1871  track->codec_priv.size -= extradata_offset;
1872 
1873  if (codec_id == AV_CODEC_ID_NONE)
1874  av_log(matroska->ctx, AV_LOG_INFO,
1875  "Unknown/unsupported AVCodecID %s.\n", track->codec_id);
1876 
1877  if (track->time_scale < 0.01)
1878  track->time_scale = 1.0;
1879  avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
1880  1000 * 1000 * 1000); /* 64 bit pts in ns */
1881 
1882  /* convert the delay from ns to the track timebase */
1883  track->codec_delay = av_rescale_q(track->codec_delay,
1884  (AVRational){ 1, 1000000000 },
1885  st->time_base);
1886 
1887  st->codec->codec_id = codec_id;
1888 
1889  if (strcmp(track->language, "und"))
1890  av_dict_set(&st->metadata, "language", track->language, 0);
1891  av_dict_set(&st->metadata, "title", track->name, 0);
1892 
1893  if (track->flag_default)
1895  if (track->flag_forced)
1897 
1898  if (!st->codec->extradata) {
1899  if (extradata) {
1900  st->codec->extradata = extradata;
1901  st->codec->extradata_size = extradata_size;
1902  } else if (track->codec_priv.data && track->codec_priv.size > 0) {
1903  if (ff_alloc_extradata(st->codec, track->codec_priv.size))
1904  return AVERROR(ENOMEM);
1905  memcpy(st->codec->extradata,
1906  track->codec_priv.data + extradata_offset,
1907  track->codec_priv.size);
1908  }
1909  }
1910 
1911  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1912  MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
1913 
1915  st->codec->codec_tag = fourcc;
1916  if (bit_depth >= 0)
1917  st->codec->bits_per_coded_sample = bit_depth;
1918  st->codec->width = track->video.pixel_width;
1919  st->codec->height = track->video.pixel_height;
1921  &st->sample_aspect_ratio.den,
1922  st->codec->height * track->video.display_width,
1923  st->codec->width * track->video.display_height,
1924  255);
1925  if (st->codec->codec_id != AV_CODEC_ID_HEVC)
1927 
1928  if (track->default_duration) {
1930  1000000000, track->default_duration, 30000);
1931 #if FF_API_R_FRAME_RATE
1932  if ( st->avg_frame_rate.num < st->avg_frame_rate.den * 1000L
1933  && st->avg_frame_rate.num > st->avg_frame_rate.den * 5L)
1934  st->r_frame_rate = st->avg_frame_rate;
1935 #endif
1936  }
1937 
1938  /* export stereo mode flag as metadata tag */
1939  if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
1940  av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0);
1941 
1942  /* export alpha mode flag as metadata tag */
1943  if (track->video.alpha_mode)
1944  av_dict_set(&st->metadata, "alpha_mode", "1", 0);
1945 
1946  /* if we have virtual track, mark the real tracks */
1947  for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
1948  char buf[32];
1949  if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
1950  continue;
1951  snprintf(buf, sizeof(buf), "%s_%d",
1952  ff_matroska_video_stereo_plane[planes[j].type], i);
1953  for (k=0; k < matroska->tracks.nb_elem; k++)
1954  if (planes[j].uid == tracks[k].uid) {
1955  av_dict_set(&s->streams[k]->metadata,
1956  "stereo_mode", buf, 0);
1957  break;
1958  }
1959  }
1960  // add stream level stereo3d side data if it is a supported format
1961  if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB &&
1962  track->video.stereo_mode != 10 && track->video.stereo_mode != 12) {
1963  int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode);
1964  if (ret < 0)
1965  return ret;
1966  }
1967  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
1969  st->codec->sample_rate = track->audio.out_samplerate;
1970  st->codec->channels = track->audio.channels;
1971  if (!st->codec->bits_per_coded_sample)
1972  st->codec->bits_per_coded_sample = track->audio.bitdepth;
1973  if (st->codec->codec_id != AV_CODEC_ID_AAC)
1975  if (track->codec_delay > 0) {
1976  st->codec->delay = av_rescale_q(track->codec_delay,
1977  st->time_base,
1978  (AVRational){1, st->codec->sample_rate});
1979  }
1980  if (track->seek_preroll > 0) {
1982  av_rescale_q(track->seek_preroll,
1983  (AVRational){1, 1000000000},
1984  (AVRational){1, st->codec->sample_rate}));
1985  }
1986  } else if (codec_id == AV_CODEC_ID_WEBVTT) {
1987  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
1988 
1989  if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) {
1990  st->disposition |= AV_DISPOSITION_CAPTIONS;
1991  } else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) {
1992  st->disposition |= AV_DISPOSITION_DESCRIPTIONS;
1993  } else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) {
1994  st->disposition |= AV_DISPOSITION_METADATA;
1995  }
1996  } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
1997  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
1998  if (st->codec->codec_id == AV_CODEC_ID_ASS)
1999  matroska->contains_ssa = 1;
2000  }
2001  }
2002 
2003  return 0;
2004 }
2005 
2007 {
2008  MatroskaDemuxContext *matroska = s->priv_data;
2009  EbmlList *attachments_list = &matroska->attachments;
2010  EbmlList *chapters_list = &matroska->chapters;
2011  MatroskaAttachment *attachments;
2012  MatroskaChapter *chapters;
2013  uint64_t max_start = 0;
2014  int64_t pos;
2015  Ebml ebml = { 0 };
2016  int i, j, res;
2017 
2018  matroska->ctx = s;
2019 
2020  /* First read the EBML header. */
2021  if (ebml_parse(matroska, ebml_syntax, &ebml) ||
2022  ebml.version > EBML_VERSION ||
2023  ebml.max_size > sizeof(uint64_t) ||
2024  ebml.id_length > sizeof(uint32_t) ||
2025  ebml.doctype_version > 3 ||
2026  !ebml.doctype) {
2027  av_log(matroska->ctx, AV_LOG_ERROR,
2028  "EBML header using unsupported features\n"
2029  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2030  ebml.version, ebml.doctype, ebml.doctype_version);
2031  ebml_free(ebml_syntax, &ebml);
2032  return AVERROR_PATCHWELCOME;
2033  } else if (ebml.doctype_version == 3) {
2034  av_log(matroska->ctx, AV_LOG_WARNING,
2035  "EBML header using unsupported features\n"
2036  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2037  ebml.version, ebml.doctype, ebml.doctype_version);
2038  }
2039  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
2040  if (!strcmp(ebml.doctype, matroska_doctypes[i]))
2041  break;
2042  if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
2043  av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
2044  if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
2045  ebml_free(ebml_syntax, &ebml);
2046  return AVERROR_INVALIDDATA;
2047  }
2048  }
2049  ebml_free(ebml_syntax, &ebml);
2050 
2051  /* The next thing is a segment. */
2052  pos = avio_tell(matroska->ctx->pb);
2053  res = ebml_parse(matroska, matroska_segments, matroska);
2054  // try resyncing until we find a EBML_STOP type element.
2055  while (res != 1) {
2056  res = matroska_resync(matroska, pos);
2057  if (res < 0)
2058  return res;
2059  pos = avio_tell(matroska->ctx->pb);
2060  res = ebml_parse(matroska, matroska_segment, matroska);
2061  }
2062  matroska_execute_seekhead(matroska);
2063 
2064  if (!matroska->time_scale)
2065  matroska->time_scale = 1000000;
2066  if (matroska->duration)
2067  matroska->ctx->duration = matroska->duration * matroska->time_scale *
2068  1000 / AV_TIME_BASE;
2069  av_dict_set(&s->metadata, "title", matroska->title, 0);
2070  av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0);
2071 
2072  if (matroska->date_utc.size == 8)
2074 
2075  res = matroska_parse_tracks(s);
2076  if (res < 0)
2077  return res;
2078 
2079  attachments = attachments_list->elem;
2080  for (j = 0; j < attachments_list->nb_elem; j++) {
2081  if (!(attachments[j].filename && attachments[j].mime &&
2082  attachments[j].bin.data && attachments[j].bin.size > 0)) {
2083  av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
2084  } else {
2085  AVStream *st = avformat_new_stream(s, NULL);
2086  if (!st)
2087  break;
2088  av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
2089  av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
2092  if (ff_alloc_extradata(st->codec, attachments[j].bin.size))
2093  break;
2094  memcpy(st->codec->extradata, attachments[j].bin.data,
2095  attachments[j].bin.size);
2096 
2097  for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
2098  if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
2099  strlen(ff_mkv_mime_tags[i].str))) {
2100  st->codec->codec_id = ff_mkv_mime_tags[i].id;
2101  break;
2102  }
2103  }
2104  attachments[j].stream = st;
2105  }
2106  }
2107 
2108  chapters = chapters_list->elem;
2109  for (i = 0; i < chapters_list->nb_elem; i++)
2110  if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
2111  (max_start == 0 || chapters[i].start > max_start)) {
2112  chapters[i].chapter =
2113  avpriv_new_chapter(s, chapters[i].uid,
2114  (AVRational) { 1, 1000000000 },
2115  chapters[i].start, chapters[i].end,
2116  chapters[i].title);
2117  if (chapters[i].chapter) {
2118  av_dict_set(&chapters[i].chapter->metadata,
2119  "title", chapters[i].title, 0);
2120  }
2121  max_start = chapters[i].start;
2122  }
2123 
2124  matroska_add_index_entries(matroska);
2125 
2127 
2128  return 0;
2129 }
2130 
2131 /*
2132  * Put one packet in an application-supplied AVPacket struct.
2133  * Returns 0 on success or -1 on failure.
2134  */
2136  AVPacket *pkt)
2137 {
2138  if (matroska->num_packets > 0) {
2139  memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
2140  av_free(matroska->packets[0]);
2141  if (matroska->num_packets > 1) {
2142  void *newpackets;
2143  memmove(&matroska->packets[0], &matroska->packets[1],
2144  (matroska->num_packets - 1) * sizeof(AVPacket *));
2145  newpackets = av_realloc(matroska->packets,
2146  (matroska->num_packets - 1) *
2147  sizeof(AVPacket *));
2148  if (newpackets)
2149  matroska->packets = newpackets;
2150  } else {
2151  av_freep(&matroska->packets);
2152  matroska->prev_pkt = NULL;
2153  }
2154  matroska->num_packets--;
2155  return 0;
2156  }
2157 
2158  return -1;
2159 }
2160 
2161 /*
2162  * Free all packets in our internal queue.
2163  */
2165 {
2166  matroska->prev_pkt = NULL;
2167  if (matroska->packets) {
2168  int n;
2169  for (n = 0; n < matroska->num_packets; n++) {
2170  av_free_packet(matroska->packets[n]);
2171  av_free(matroska->packets[n]);
2172  }
2173  av_freep(&matroska->packets);
2174  matroska->num_packets = 0;
2175  }
2176 }
2177 
2179  int *buf_size, int type,
2180  uint32_t **lace_buf, int *laces)
2181 {
2182  int res = 0, n, size = *buf_size;
2183  uint8_t *data = *buf;
2184  uint32_t *lace_size;
2185 
2186  if (!type) {
2187  *laces = 1;
2188  *lace_buf = av_mallocz(sizeof(int));
2189  if (!*lace_buf)
2190  return AVERROR(ENOMEM);
2191 
2192  *lace_buf[0] = size;
2193  return 0;
2194  }
2195 
2196  av_assert0(size > 0);
2197  *laces = *data + 1;
2198  data += 1;
2199  size -= 1;
2200  lace_size = av_mallocz(*laces * sizeof(int));
2201  if (!lace_size)
2202  return AVERROR(ENOMEM);
2203 
2204  switch (type) {
2205  case 0x1: /* Xiph lacing */
2206  {
2207  uint8_t temp;
2208  uint32_t total = 0;
2209  for (n = 0; res == 0 && n < *laces - 1; n++) {
2210  while (1) {
2211  if (size <= total) {
2212  res = AVERROR_INVALIDDATA;
2213  break;
2214  }
2215  temp = *data;
2216  total += temp;
2217  lace_size[n] += temp;
2218  data += 1;
2219  size -= 1;
2220  if (temp != 0xff)
2221  break;
2222  }
2223  }
2224  if (size <= total) {
2225  res = AVERROR_INVALIDDATA;
2226  break;
2227  }
2228 
2229  lace_size[n] = size - total;
2230  break;
2231  }
2232 
2233  case 0x2: /* fixed-size lacing */
2234  if (size % (*laces)) {
2235  res = AVERROR_INVALIDDATA;
2236  break;
2237  }
2238  for (n = 0; n < *laces; n++)
2239  lace_size[n] = size / *laces;
2240  break;
2241 
2242  case 0x3: /* EBML lacing */
2243  {
2244  uint64_t num;
2245  uint64_t total;
2246  n = matroska_ebmlnum_uint(matroska, data, size, &num);
2247  if (n < 0 || num > INT_MAX) {
2248  av_log(matroska->ctx, AV_LOG_INFO,
2249  "EBML block data error\n");
2250  res = n<0 ? n : AVERROR_INVALIDDATA;
2251  break;
2252  }
2253  data += n;
2254  size -= n;
2255  total = lace_size[0] = num;
2256  for (n = 1; res == 0 && n < *laces - 1; n++) {
2257  int64_t snum;
2258  int r;
2259  r = matroska_ebmlnum_sint(matroska, data, size, &snum);
2260  if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) {
2261  av_log(matroska->ctx, AV_LOG_INFO,
2262  "EBML block data error\n");
2263  res = r<0 ? r : AVERROR_INVALIDDATA;
2264  break;
2265  }
2266  data += r;
2267  size -= r;
2268  lace_size[n] = lace_size[n - 1] + snum;
2269  total += lace_size[n];
2270  }
2271  if (size <= total) {
2272  res = AVERROR_INVALIDDATA;
2273  break;
2274  }
2275  lace_size[*laces - 1] = size - total;
2276  break;
2277  }
2278  }
2279 
2280  *buf = data;
2281  *lace_buf = lace_size;
2282  *buf_size = size;
2283 
2284  return res;
2285 }
2286 
2288  MatroskaTrack *track, AVStream *st,
2289  uint8_t *data, int size, uint64_t timecode,
2290  int64_t pos)
2291 {
2292  int a = st->codec->block_align;
2293  int sps = track->audio.sub_packet_size;
2294  int cfs = track->audio.coded_framesize;
2295  int h = track->audio.sub_packet_h;
2296  int y = track->audio.sub_packet_cnt;
2297  int w = track->audio.frame_size;
2298  int x;
2299 
2300  if (!track->audio.pkt_cnt) {
2301  if (track->audio.sub_packet_cnt == 0)
2302  track->audio.buf_timecode = timecode;
2303  if (st->codec->codec_id == AV_CODEC_ID_RA_288) {
2304  if (size < cfs * h / 2) {
2305  av_log(matroska->ctx, AV_LOG_ERROR,
2306  "Corrupt int4 RM-style audio packet size\n");
2307  return AVERROR_INVALIDDATA;
2308  }
2309  for (x = 0; x < h / 2; x++)
2310  memcpy(track->audio.buf + x * 2 * w + y * cfs,
2311  data + x * cfs, cfs);
2312  } else if (st->codec->codec_id == AV_CODEC_ID_SIPR) {
2313  if (size < w) {
2314  av_log(matroska->ctx, AV_LOG_ERROR,
2315  "Corrupt sipr RM-style audio packet size\n");
2316  return AVERROR_INVALIDDATA;
2317  }
2318  memcpy(track->audio.buf + y * w, data, w);
2319  } else {
2320  if (size < sps * w / sps || h<=0 || w%sps) {
2321  av_log(matroska->ctx, AV_LOG_ERROR,
2322  "Corrupt generic RM-style audio packet size\n");
2323  return AVERROR_INVALIDDATA;
2324  }
2325  for (x = 0; x < w / sps; x++)
2326  memcpy(track->audio.buf +
2327  sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
2328  data + x * sps, sps);
2329  }
2330 
2331  if (++track->audio.sub_packet_cnt >= h) {
2332  if (st->codec->codec_id == AV_CODEC_ID_SIPR)
2333  ff_rm_reorder_sipr_data(track->audio.buf, h, w);
2334  track->audio.sub_packet_cnt = 0;
2335  track->audio.pkt_cnt = h * w / a;
2336  }
2337  }
2338 
2339  while (track->audio.pkt_cnt) {
2340  int ret;
2341  AVPacket *pkt = av_mallocz(sizeof(AVPacket));
2342  if (!pkt)
2343  return AVERROR(ENOMEM);
2344 
2345  ret = av_new_packet(pkt, a);
2346  if (ret < 0) {
2347  av_free(pkt);
2348  return ret;
2349  }
2350  memcpy(pkt->data,
2351  track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
2352  a);
2353  pkt->pts = track->audio.buf_timecode;
2355  pkt->pos = pos;
2356  pkt->stream_index = st->index;
2357  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2358  }
2359 
2360  return 0;
2361 }
2362 
2363 /* reconstruct full wavpack blocks from mangled matroska ones */
2365  uint8_t **pdst, int *size)
2366 {
2367  uint8_t *dst = NULL;
2368  int dstlen = 0;
2369  int srclen = *size;
2370  uint32_t samples;
2371  uint16_t ver;
2372  int ret, offset = 0;
2373 
2374  if (srclen < 12 || track->stream->codec->extradata_size < 2)
2375  return AVERROR_INVALIDDATA;
2376 
2377  ver = AV_RL16(track->stream->codec->extradata);
2378 
2379  samples = AV_RL32(src);
2380  src += 4;
2381  srclen -= 4;
2382 
2383  while (srclen >= 8) {
2384  int multiblock;
2385  uint32_t blocksize;
2386  uint8_t *tmp;
2387 
2388  uint32_t flags = AV_RL32(src);
2389  uint32_t crc = AV_RL32(src + 4);
2390  src += 8;
2391  srclen -= 8;
2392 
2393  multiblock = (flags & 0x1800) != 0x1800;
2394  if (multiblock) {
2395  if (srclen < 4) {
2396  ret = AVERROR_INVALIDDATA;
2397  goto fail;
2398  }
2399  blocksize = AV_RL32(src);
2400  src += 4;
2401  srclen -= 4;
2402  } else
2403  blocksize = srclen;
2404 
2405  if (blocksize > srclen) {
2406  ret = AVERROR_INVALIDDATA;
2407  goto fail;
2408  }
2409 
2410  tmp = av_realloc(dst, dstlen + blocksize + 32);
2411  if (!tmp) {
2412  ret = AVERROR(ENOMEM);
2413  goto fail;
2414  }
2415  dst = tmp;
2416  dstlen += blocksize + 32;
2417 
2418  AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
2419  AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
2420  AV_WL16(dst + offset + 8, ver); // version
2421  AV_WL16(dst + offset + 10, 0); // track/index_no
2422  AV_WL32(dst + offset + 12, 0); // total samples
2423  AV_WL32(dst + offset + 16, 0); // block index
2424  AV_WL32(dst + offset + 20, samples); // number of samples
2425  AV_WL32(dst + offset + 24, flags); // flags
2426  AV_WL32(dst + offset + 28, crc); // crc
2427  memcpy(dst + offset + 32, src, blocksize); // block data
2428 
2429  src += blocksize;
2430  srclen -= blocksize;
2431  offset += blocksize + 32;
2432  }
2433 
2434  *pdst = dst;
2435  *size = dstlen;
2436 
2437  return 0;
2438 
2439 fail:
2440  av_freep(&dst);
2441  return ret;
2442 }
2443 
2445  MatroskaTrack *track,
2446  AVStream *st,
2447  uint8_t *data, int data_len,
2448  uint64_t timecode,
2449  uint64_t duration,
2450  int64_t pos)
2451 {
2452  AVPacket *pkt;
2453  uint8_t *id, *settings, *text, *buf;
2454  int id_len, settings_len, text_len;
2455  uint8_t *p, *q;
2456  int err;
2457 
2458  if (data_len <= 0)
2459  return AVERROR_INVALIDDATA;
2460 
2461  p = data;
2462  q = data + data_len;
2463 
2464  id = p;
2465  id_len = -1;
2466  while (p < q) {
2467  if (*p == '\r' || *p == '\n') {
2468  id_len = p - id;
2469  if (*p == '\r')
2470  p++;
2471  break;
2472  }
2473  p++;
2474  }
2475 
2476  if (p >= q || *p != '\n')
2477  return AVERROR_INVALIDDATA;
2478  p++;
2479 
2480  settings = p;
2481  settings_len = -1;
2482  while (p < q) {
2483  if (*p == '\r' || *p == '\n') {
2484  settings_len = p - settings;
2485  if (*p == '\r')
2486  p++;
2487  break;
2488  }
2489  p++;
2490  }
2491 
2492  if (p >= q || *p != '\n')
2493  return AVERROR_INVALIDDATA;
2494  p++;
2495 
2496  text = p;
2497  text_len = q - p;
2498  while (text_len > 0) {
2499  const int len = text_len - 1;
2500  const uint8_t c = p[len];
2501  if (c != '\r' && c != '\n')
2502  break;
2503  text_len = len;
2504  }
2505 
2506  if (text_len <= 0)
2507  return AVERROR_INVALIDDATA;
2508 
2509  pkt = av_mallocz(sizeof(*pkt));
2510  err = av_new_packet(pkt, text_len);
2511  if (err < 0) {
2512  av_free(pkt);
2513  return AVERROR(err);
2514  }
2515 
2516  memcpy(pkt->data, text, text_len);
2517 
2518  if (id_len > 0) {
2519  buf = av_packet_new_side_data(pkt,
2521  id_len);
2522  if (!buf) {
2523  av_free(pkt);
2524  return AVERROR(ENOMEM);
2525  }
2526  memcpy(buf, id, id_len);
2527  }
2528 
2529  if (settings_len > 0) {
2530  buf = av_packet_new_side_data(pkt,
2532  settings_len);
2533  if (!buf) {
2534  av_free(pkt);
2535  return AVERROR(ENOMEM);
2536  }
2537  memcpy(buf, settings, settings_len);
2538  }
2539 
2540  // Do we need this for subtitles?
2541  // pkt->flags = AV_PKT_FLAG_KEY;
2542 
2543  pkt->stream_index = st->index;
2544  pkt->pts = timecode;
2545 
2546  // Do we need this for subtitles?
2547  // pkt->dts = timecode;
2548 
2549  pkt->duration = duration;
2550  pkt->pos = pos;
2551 
2552  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2553  matroska->prev_pkt = pkt;
2554 
2555  return 0;
2556 }
2557 
2559  MatroskaTrack *track, AVStream *st,
2560  uint8_t *data, int pkt_size,
2561  uint64_t timecode, uint64_t lace_duration,
2562  int64_t pos, int is_keyframe,
2563  uint8_t *additional, uint64_t additional_id, int additional_size,
2564  int64_t discard_padding)
2565 {
2566  MatroskaTrackEncoding *encodings = track->encodings.elem;
2567  uint8_t *pkt_data = data;
2568  int offset = 0, res;
2569  AVPacket *pkt;
2570 
2571  if (encodings && !encodings->type && encodings->scope & 1) {
2572  res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
2573  if (res < 0)
2574  return res;
2575  }
2576 
2577  if (st->codec->codec_id == AV_CODEC_ID_WAVPACK) {
2578  uint8_t *wv_data;
2579  res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
2580  if (res < 0) {
2581  av_log(matroska->ctx, AV_LOG_ERROR,
2582  "Error parsing a wavpack block.\n");
2583  goto fail;
2584  }
2585  if (pkt_data != data)
2586  av_freep(&pkt_data);
2587  pkt_data = wv_data;
2588  }
2589 
2590  if (st->codec->codec_id == AV_CODEC_ID_PRORES &&
2591  AV_RB32(&data[4]) != MKBETAG('i', 'c', 'p', 'f'))
2592  offset = 8;
2593 
2594  pkt = av_mallocz(sizeof(AVPacket));
2595  /* XXX: prevent data copy... */
2596  if (av_new_packet(pkt, pkt_size + offset) < 0) {
2597  av_free(pkt);
2598  res = AVERROR(ENOMEM);
2599  goto fail;
2600  }
2601 
2602  if (st->codec->codec_id == AV_CODEC_ID_PRORES && offset == 8) {
2603  uint8_t *buf = pkt->data;
2604  bytestream_put_be32(&buf, pkt_size);
2605  bytestream_put_be32(&buf, MKBETAG('i', 'c', 'p', 'f'));
2606  }
2607 
2608  memcpy(pkt->data + offset, pkt_data, pkt_size);
2609 
2610  if (pkt_data != data)
2611  av_freep(&pkt_data);
2612 
2613  pkt->flags = is_keyframe;
2614  pkt->stream_index = st->index;
2615 
2616  if (additional_size > 0) {
2617  uint8_t *side_data = av_packet_new_side_data(pkt,
2619  additional_size + 8);
2620  if (!side_data) {
2621  av_free_packet(pkt);
2622  av_free(pkt);
2623  return AVERROR(ENOMEM);
2624  }
2625  AV_WB64(side_data, additional_id);
2626  memcpy(side_data + 8, additional, additional_size);
2627  }
2628 
2629  if (discard_padding) {
2630  uint8_t *side_data = av_packet_new_side_data(pkt,
2632  10);
2633  if (!side_data) {
2634  av_free_packet(pkt);
2635  av_free(pkt);
2636  return AVERROR(ENOMEM);
2637  }
2638  AV_WL32(side_data, 0);
2639  AV_WL32(side_data + 4, av_rescale_q(discard_padding,
2640  (AVRational){1, 1000000000},
2641  (AVRational){1, st->codec->sample_rate}));
2642  }
2643 
2644  if (track->ms_compat)
2645  pkt->dts = timecode;
2646  else
2647  pkt->pts = timecode;
2648  pkt->pos = pos;
2649  if (st->codec->codec_id == AV_CODEC_ID_SUBRIP) {
2650  /*
2651  * For backward compatibility.
2652  * Historically, we have put subtitle duration
2653  * in convergence_duration, on the off chance
2654  * that the time_scale is less than 1us, which
2655  * could result in a 32bit overflow on the
2656  * normal duration field.
2657  */
2658  pkt->convergence_duration = lace_duration;
2659  }
2660 
2661  if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE ||
2662  lace_duration <= INT_MAX) {
2663  /*
2664  * For non subtitle tracks, just store the duration
2665  * as normal.
2666  *
2667  * If it's a subtitle track and duration value does
2668  * not overflow a uint32, then also store it normally.
2669  */
2670  pkt->duration = lace_duration;
2671  }
2672 
2673  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2674  matroska->prev_pkt = pkt;
2675 
2676  return 0;
2677 
2678 fail:
2679  if (pkt_data != data)
2680  av_freep(&pkt_data);
2681  return res;
2682 }
2683 
2685  int size, int64_t pos, uint64_t cluster_time,
2686  uint64_t block_duration, int is_keyframe,
2687  uint8_t *additional, uint64_t additional_id, int additional_size,
2688  int64_t cluster_pos, int64_t discard_padding)
2689 {
2690  uint64_t timecode = AV_NOPTS_VALUE;
2691  MatroskaTrack *track;
2692  int res = 0;
2693  AVStream *st;
2694  int16_t block_time;
2695  uint32_t *lace_size = NULL;
2696  int n, flags, laces = 0;
2697  uint64_t num;
2698  int trust_default_duration = 1;
2699 
2700  if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
2701  av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
2702  return n;
2703  }
2704  data += n;
2705  size -= n;
2706 
2707  track = matroska_find_track_by_num(matroska, num);
2708  if (!track || !track->stream) {
2709  av_log(matroska->ctx, AV_LOG_INFO,
2710  "Invalid stream %"PRIu64" or size %u\n", num, size);
2711  return AVERROR_INVALIDDATA;
2712  } else if (size <= 3)
2713  return 0;
2714  st = track->stream;
2715  if (st->discard >= AVDISCARD_ALL)
2716  return res;
2717  av_assert1(block_duration != AV_NOPTS_VALUE);
2718 
2719  block_time = sign_extend(AV_RB16(data), 16);
2720  data += 2;
2721  flags = *data++;
2722  size -= 3;
2723  if (is_keyframe == -1)
2724  is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
2725 
2726  if (cluster_time != (uint64_t) -1 &&
2727  (block_time >= 0 || cluster_time >= -block_time)) {
2728  timecode = cluster_time + block_time - track->codec_delay;
2729  if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
2730  timecode < track->end_timecode)
2731  is_keyframe = 0; /* overlapping subtitles are not key frame */
2732  if (is_keyframe)
2733  av_add_index_entry(st, cluster_pos, timecode, 0, 0,
2735  }
2736 
2737  if (matroska->skip_to_keyframe &&
2738  track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
2739  if (timecode < matroska->skip_to_timecode)
2740  return res;
2741  if (is_keyframe)
2742  matroska->skip_to_keyframe = 0;
2743  else if (!st->skip_to_keyframe) {
2744  av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
2745  matroska->skip_to_keyframe = 0;
2746  }
2747  }
2748 
2749  res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
2750  &lace_size, &laces);
2751 
2752  if (res)
2753  goto end;
2754 
2755  if (track->audio.samplerate == 8000) {
2756  // If this is needed for more codecs, then add them here
2757  if (st->codec->codec_id == AV_CODEC_ID_AC3) {
2758  if (track->audio.samplerate != st->codec->sample_rate || !st->codec->frame_size)
2759  trust_default_duration = 0;
2760  }
2761  }
2762 
2763  if (!block_duration && trust_default_duration)
2764  block_duration = track->default_duration * laces / matroska->time_scale;
2765 
2766  if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time))
2767  track->end_timecode =
2768  FFMAX(track->end_timecode, timecode + block_duration);
2769 
2770  for (n = 0; n < laces; n++) {
2771  int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces;
2772 
2773  if (lace_size[n] > size) {
2774  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
2775  break;
2776  }
2777 
2778  if ((st->codec->codec_id == AV_CODEC_ID_RA_288 ||
2779  st->codec->codec_id == AV_CODEC_ID_COOK ||
2780  st->codec->codec_id == AV_CODEC_ID_SIPR ||
2781  st->codec->codec_id == AV_CODEC_ID_ATRAC3) &&
2782  st->codec->block_align && track->audio.sub_packet_size) {
2783  res = matroska_parse_rm_audio(matroska, track, st, data,
2784  lace_size[n],
2785  timecode, pos);
2786  if (res)
2787  goto end;
2788 
2789  } else if (st->codec->codec_id == AV_CODEC_ID_WEBVTT) {
2790  res = matroska_parse_webvtt(matroska, track, st,
2791  data, lace_size[n],
2792  timecode, lace_duration,
2793  pos);
2794  if (res)
2795  goto end;
2796  } else {
2797  res = matroska_parse_frame(matroska, track, st, data, lace_size[n],
2798  timecode, lace_duration, pos,
2799  !n ? is_keyframe : 0,
2800  additional, additional_id, additional_size,
2801  discard_padding);
2802  if (res)
2803  goto end;
2804  }
2805 
2806  if (timecode != AV_NOPTS_VALUE)
2807  timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE;
2808  data += lace_size[n];
2809  size -= lace_size[n];
2810  }
2811 
2812 end:
2813  av_free(lace_size);
2814  return res;
2815 }
2816 
2818 {
2819  EbmlList *blocks_list;
2820  MatroskaBlock *blocks;
2821  int i, res;
2822  res = ebml_parse(matroska,
2823  matroska_cluster_incremental_parsing,
2824  &matroska->current_cluster);
2825  if (res == 1) {
2826  /* New Cluster */
2827  if (matroska->current_cluster_pos)
2828  ebml_level_end(matroska);
2829  ebml_free(matroska_cluster, &matroska->current_cluster);
2830  memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
2831  matroska->current_cluster_num_blocks = 0;
2832  matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
2833  matroska->prev_pkt = NULL;
2834  /* sizeof the ID which was already read */
2835  if (matroska->current_id)
2836  matroska->current_cluster_pos -= 4;
2837  res = ebml_parse(matroska,
2838  matroska_clusters_incremental,
2839  &matroska->current_cluster);
2840  /* Try parsing the block again. */
2841  if (res == 1)
2842  res = ebml_parse(matroska,
2843  matroska_cluster_incremental_parsing,
2844  &matroska->current_cluster);
2845  }
2846 
2847  if (!res &&
2848  matroska->current_cluster_num_blocks <
2849  matroska->current_cluster.blocks.nb_elem) {
2850  blocks_list = &matroska->current_cluster.blocks;
2851  blocks = blocks_list->elem;
2852 
2853  matroska->current_cluster_num_blocks = blocks_list->nb_elem;
2854  i = blocks_list->nb_elem - 1;
2855  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2856  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2857  uint8_t* additional = blocks[i].additional.size > 0 ?
2858  blocks[i].additional.data : NULL;
2859  if (!blocks[i].non_simple)
2860  blocks[i].duration = 0;
2861  res = matroska_parse_block(matroska, blocks[i].bin.data,
2862  blocks[i].bin.size, blocks[i].bin.pos,
2863  matroska->current_cluster.timecode,
2864  blocks[i].duration, is_keyframe,
2865  additional, blocks[i].additional_id,
2866  blocks[i].additional.size,
2867  matroska->current_cluster_pos,
2868  blocks[i].discard_padding);
2869  }
2870  }
2871 
2872  return res;
2873 }
2874 
2876 {
2877  MatroskaCluster cluster = { 0 };
2878  EbmlList *blocks_list;
2879  MatroskaBlock *blocks;
2880  int i, res;
2881  int64_t pos;
2882 
2883  if (!matroska->contains_ssa)
2884  return matroska_parse_cluster_incremental(matroska);
2885  pos = avio_tell(matroska->ctx->pb);
2886  matroska->prev_pkt = NULL;
2887  if (matroska->current_id)
2888  pos -= 4; /* sizeof the ID which was already read */
2889  res = ebml_parse(matroska, matroska_clusters, &cluster);
2890  blocks_list = &cluster.blocks;
2891  blocks = blocks_list->elem;
2892  for (i = 0; i < blocks_list->nb_elem; i++)
2893  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2894  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2895  res = matroska_parse_block(matroska, blocks[i].bin.data,
2896  blocks[i].bin.size, blocks[i].bin.pos,
2897  cluster.timecode, blocks[i].duration,
2898  is_keyframe, NULL, 0, 0, pos,
2899  blocks[i].discard_padding);
2900  }
2901  ebml_free(matroska_cluster, &cluster);
2902  return res;
2903 }
2904 
2906 {
2907  MatroskaDemuxContext *matroska = s->priv_data;
2908 
2909  while (matroska_deliver_packet(matroska, pkt)) {
2910  int64_t pos = avio_tell(matroska->ctx->pb);
2911  if (matroska->done)
2912  return AVERROR_EOF;
2913  if (matroska_parse_cluster(matroska) < 0)
2914  matroska_resync(matroska, pos);
2915  }
2916 
2917  return 0;
2918 }
2919 
2920 static int matroska_read_seek(AVFormatContext *s, int stream_index,
2921  int64_t timestamp, int flags)
2922 {
2923  MatroskaDemuxContext *matroska = s->priv_data;
2924  MatroskaTrack *tracks = NULL;
2925  AVStream *st = s->streams[stream_index];
2926  int i, index, index_sub, index_min;
2927 
2928  /* Parse the CUES now since we need the index data to seek. */
2929  if (matroska->cues_parsing_deferred > 0) {
2930  matroska->cues_parsing_deferred = 0;
2931  matroska_parse_cues(matroska);
2932  }
2933 
2934  if (!st->nb_index_entries)
2935  goto err;
2936  timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
2937 
2938  if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
2939  avio_seek(s->pb, st->index_entries[st->nb_index_entries - 1].pos,
2940  SEEK_SET);
2941  matroska->current_id = 0;
2942  while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
2943  matroska_clear_queue(matroska);
2944  if (matroska_parse_cluster(matroska) < 0)
2945  break;
2946  }
2947  }
2948 
2949  matroska_clear_queue(matroska);
2950  if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
2951  goto err;
2952 
2953  index_min = index;
2954  tracks = matroska->tracks.elem;
2955  for (i = 0; i < matroska->tracks.nb_elem; i++) {
2956  tracks[i].audio.pkt_cnt = 0;
2957  tracks[i].audio.sub_packet_cnt = 0;
2958  tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
2959  tracks[i].end_timecode = 0;
2960  if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE &&
2961  tracks[i].stream->discard != AVDISCARD_ALL) {
2962  index_sub = av_index_search_timestamp(
2963  tracks[i].stream, st->index_entries[index].timestamp,
2965  while (index_sub >= 0 &&
2966  index_min > 0 &&
2967  tracks[i].stream->index_entries[index_sub].pos < st->index_entries[index_min].pos &&
2968  st->index_entries[index].timestamp - tracks[i].stream->index_entries[index_sub].timestamp < 30000000000 / matroska->time_scale)
2969  index_min--;
2970  }
2971  }
2972 
2973  avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
2974  matroska->current_id = 0;
2975  if (flags & AVSEEK_FLAG_ANY) {
2976  st->skip_to_keyframe = 0;
2977  matroska->skip_to_timecode = timestamp;
2978  } else {
2979  st->skip_to_keyframe = 1;
2980  matroska->skip_to_timecode = st->index_entries[index].timestamp;
2981  }
2982  matroska->skip_to_keyframe = 1;
2983  matroska->done = 0;
2984  matroska->num_levels = 0;
2985  ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
2986  return 0;
2987 err:
2988  // slightly hackish but allows proper fallback to
2989  // the generic seeking code.
2990  matroska_clear_queue(matroska);
2991  matroska->current_id = 0;
2992  st->skip_to_keyframe =
2993  matroska->skip_to_keyframe = 0;
2994  matroska->done = 0;
2995  matroska->num_levels = 0;
2996  return -1;
2997 }
2998 
3000 {
3001  MatroskaDemuxContext *matroska = s->priv_data;
3002  MatroskaTrack *tracks = matroska->tracks.elem;
3003  int n;
3004 
3005  matroska_clear_queue(matroska);
3006 
3007  for (n = 0; n < matroska->tracks.nb_elem; n++)
3008  if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
3009  av_free(tracks[n].audio.buf);
3010  ebml_free(matroska_cluster, &matroska->current_cluster);
3011  ebml_free(matroska_segment, matroska);
3012 
3013  return 0;
3014 }
3015 
3016 typedef struct {
3017  int64_t start_time_ns;
3018  int64_t end_time_ns;
3019  int64_t start_offset;
3020  int64_t end_offset;
3021 } CueDesc;
3022 
3023 /* This function searches all the Cues and returns the CueDesc corresponding the
3024  * the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts <
3025  * end_time_ns. All 4 fields will be set to -1 if ts >= file's duration.
3026  */
3027 static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) {
3028  MatroskaDemuxContext *matroska = s->priv_data;
3029  CueDesc cue_desc;
3030  int i;
3031  int nb_index_entries = s->streams[0]->nb_index_entries;
3032  AVIndexEntry *index_entries = s->streams[0]->index_entries;
3033  if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1};
3034  for (i = 1; i < nb_index_entries; i++) {
3035  if (index_entries[i - 1].timestamp * matroska->time_scale <= ts &&
3036  index_entries[i].timestamp * matroska->time_scale > ts) {
3037  break;
3038  }
3039  }
3040  --i;
3041  cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale;
3042  cue_desc.start_offset = index_entries[i].pos - matroska->segment_start;
3043  if (i != nb_index_entries - 1) {
3044  cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale;
3045  cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start;
3046  } else {
3047  cue_desc.end_time_ns = matroska->duration * matroska->time_scale;
3048  // FIXME: this needs special handling for files where Cues appear
3049  // before Clusters. the current logic assumes Cues appear after
3050  // Clusters.
3051  cue_desc.end_offset = cues_start - matroska->segment_start;
3052  }
3053  return cue_desc;
3054 }
3055 
3057 {
3058  MatroskaDemuxContext *matroska = s->priv_data;
3059  int64_t cluster_pos, before_pos;
3060  int index, rv = 1;
3061  if (s->streams[0]->nb_index_entries <= 0) return 0;
3062  // seek to the first cluster using cues.
3063  index = av_index_search_timestamp(s->streams[0], 0, 0);
3064  if (index < 0) return 0;
3065  cluster_pos = s->streams[0]->index_entries[index].pos;
3066  before_pos = avio_tell(s->pb);
3067  while (1) {
3068  int64_t cluster_id = 0, cluster_length = 0;
3069  AVPacket *pkt;
3070  avio_seek(s->pb, cluster_pos, SEEK_SET);
3071  // read cluster id and length
3072  ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id);
3073  ebml_read_length(matroska, matroska->ctx->pb, &cluster_length);
3074  if (cluster_id != 0xF43B675) { // done with all clusters
3075  break;
3076  }
3077  avio_seek(s->pb, cluster_pos, SEEK_SET);
3078  matroska->current_id = 0;
3079  matroska_clear_queue(matroska);
3080  if (matroska_parse_cluster(matroska) < 0 ||
3081  matroska->num_packets <= 0) {
3082  break;
3083  }
3084  pkt = matroska->packets[0];
3085  cluster_pos += cluster_length + 12; // 12 is the offset of the cluster id and length.
3086  if (!(pkt->flags & AV_PKT_FLAG_KEY)) {
3087  rv = 0;
3088  break;
3089  }
3090  }
3091  avio_seek(s->pb, before_pos, SEEK_SET);
3092  return rv;
3093 }
3094 
3095 static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps,
3096  double min_buffer, double* buffer,
3097  double* sec_to_download, AVFormatContext *s,
3098  int64_t cues_start)
3099 {
3100  double nano_seconds_per_second = 1000000000.0;
3101  double time_sec = time_ns / nano_seconds_per_second;
3102  int rv = 0;
3103  int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second);
3104  int64_t end_time_ns = time_ns + time_to_search_ns;
3105  double sec_downloaded = 0.0;
3106  CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start);
3107  if (desc_curr.start_time_ns == -1)
3108  return -1;
3109  *sec_to_download = 0.0;
3110 
3111  // Check for non cue start time.
3112  if (time_ns > desc_curr.start_time_ns) {
3113  int64_t cue_nano = desc_curr.end_time_ns - time_ns;
3114  double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns);
3115  double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent;
3116  double timeToDownload = (cueBytes * 8.0) / bps;
3117 
3118  sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload;
3119  *sec_to_download += timeToDownload;
3120 
3121  // Check if the search ends within the first cue.
3122  if (desc_curr.end_time_ns >= end_time_ns) {
3123  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3124  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3125  sec_downloaded = percent_to_sub * sec_downloaded;
3126  *sec_to_download = percent_to_sub * *sec_to_download;
3127  }
3128 
3129  if ((sec_downloaded + *buffer) <= min_buffer) {
3130  return 1;
3131  }
3132 
3133  // Get the next Cue.
3134  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3135  }
3136 
3137  while (desc_curr.start_time_ns != -1) {
3138  int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset;
3139  int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns;
3140  double desc_sec = desc_ns / nano_seconds_per_second;
3141  double bits = (desc_bytes * 8.0);
3142  double time_to_download = bits / bps;
3143 
3144  sec_downloaded += desc_sec - time_to_download;
3145  *sec_to_download += time_to_download;
3146 
3147  if (desc_curr.end_time_ns >= end_time_ns) {
3148  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3149  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3150  sec_downloaded = percent_to_sub * sec_downloaded;
3151  *sec_to_download = percent_to_sub * *sec_to_download;
3152 
3153  if ((sec_downloaded + *buffer) <= min_buffer)
3154  rv = 1;
3155  break;
3156  }
3157 
3158  if ((sec_downloaded + *buffer) <= min_buffer) {
3159  rv = 1;
3160  break;
3161  }
3162 
3163  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3164  }
3165  *buffer = *buffer + sec_downloaded;
3166  return rv;
3167 }
3168 
3169 /* This function computes the bandwidth of the WebM file with the help of
3170  * buffer_size_after_time_downloaded() function. Both of these functions are
3171  * adapted from WebM Tools project and are adapted to work with FFmpeg's
3172  * Matroska parsing mechanism.
3173  *
3174  * Returns the bandwidth of the file on success; -1 on error.
3175  * */
3176 static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start)
3177 {
3178  MatroskaDemuxContext *matroska = s->priv_data;
3179  AVStream *st = s->streams[0];
3180  double bandwidth = 0.0;
3181  int i;
3182 
3183  for (i = 0; i < st->nb_index_entries; i++) {
3184  int64_t prebuffer_ns = 1000000000;
3185  int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale;
3186  double nano_seconds_per_second = 1000000000.0;
3187  int64_t prebuffered_ns = time_ns + prebuffer_ns;
3188  double prebuffer_bytes = 0.0;
3189  int64_t temp_prebuffer_ns = prebuffer_ns;
3190  int64_t pre_bytes, pre_ns;
3191  double pre_sec, prebuffer, bits_per_second;
3192  CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start);
3193 
3194  // Start with the first Cue.
3195  CueDesc desc_end = desc_beg;
3196 
3197  // Figure out how much data we have downloaded for the prebuffer. This will
3198  // be used later to adjust the bits per sample to try.
3199  while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) {
3200  // Prebuffered the entire Cue.
3201  prebuffer_bytes += desc_end.end_offset - desc_end.start_offset;
3202  temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns;
3203  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3204  }
3205  if (desc_end.start_time_ns == -1) {
3206  // The prebuffer is larger than the duration.
3207  if (matroska->duration * matroska->time_scale >= prebuffered_ns)
3208  return -1;
3209  bits_per_second = 0.0;
3210  } else {
3211  // The prebuffer ends in the last Cue. Estimate how much data was
3212  // prebuffered.
3213  pre_bytes = desc_end.end_offset - desc_end.start_offset;
3214  pre_ns = desc_end.end_time_ns - desc_end.start_time_ns;
3215  pre_sec = pre_ns / nano_seconds_per_second;
3216  prebuffer_bytes +=
3217  pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec);
3218 
3219  prebuffer = prebuffer_ns / nano_seconds_per_second;
3220 
3221  // Set this to 0.0 in case our prebuffer buffers the entire video.
3222  bits_per_second = 0.0;
3223  do {
3224  int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset;
3225  int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns;
3226  double desc_sec = desc_ns / nano_seconds_per_second;
3227  double calc_bits_per_second = (desc_bytes * 8) / desc_sec;
3228 
3229  // Drop the bps by the percentage of bytes buffered.
3230  double percent = (desc_bytes - prebuffer_bytes) / desc_bytes;
3231  double mod_bits_per_second = calc_bits_per_second * percent;
3232 
3233  if (prebuffer < desc_sec) {
3234  double search_sec =
3235  (double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second;
3236 
3237  // Add 1 so the bits per second should be a little bit greater than file
3238  // datarate.
3239  int64_t bps = (int64_t)(mod_bits_per_second) + 1;
3240  const double min_buffer = 0.0;
3241  double buffer = prebuffer;
3242  double sec_to_download = 0.0;
3243 
3244  int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps,
3245  min_buffer, &buffer, &sec_to_download,
3246  s, cues_start);
3247  if (rv < 0) {
3248  return -1;
3249  } else if (rv == 0) {
3250  bits_per_second = (double)(bps);
3251  break;
3252  }
3253  }
3254 
3255  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3256  } while (desc_end.start_time_ns != -1);
3257  }
3258  if (bandwidth < bits_per_second) bandwidth = bits_per_second;
3259  }
3260  return (int64_t)bandwidth;
3261 }
3262 
3264 {
3265  MatroskaDemuxContext *matroska = s->priv_data;
3266  EbmlList *seekhead_list = &matroska->seekhead;
3267  MatroskaSeekhead *seekhead = seekhead_list->elem;
3268  char *buf;
3269  int64_t cues_start = -1, cues_end = -1, before_pos, bandwidth;
3270  int i;
3271 
3272  // determine cues start and end positions
3273  for (i = 0; i < seekhead_list->nb_elem; i++)
3274  if (seekhead[i].id == MATROSKA_ID_CUES)
3275  break;
3276 
3277  if (i >= seekhead_list->nb_elem) return -1;
3278 
3279  before_pos = avio_tell(matroska->ctx->pb);
3280  cues_start = seekhead[i].pos + matroska->segment_start;
3281  if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) {
3282  // cues_end is computed as cues_start + cues_length + length of the
3283  // Cues element ID + EBML length of the Cues element. cues_end is
3284  // inclusive and the above sum is reduced by 1.
3285  uint64_t cues_length = 0, cues_id = 0, bytes_read = 0;
3286  bytes_read += ebml_read_num(matroska, matroska->ctx->pb, 4, &cues_id);
3287  bytes_read += ebml_read_length(matroska, matroska->ctx->pb, &cues_length);
3288  cues_end = cues_start + cues_length + bytes_read - 1;
3289  }
3290  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
3291  if (cues_start == -1 || cues_end == -1) return -1;
3292 
3293  // parse the cues
3294  matroska_parse_cues(matroska);
3295 
3296  // cues start
3297  av_dict_set_int(&s->streams[0]->metadata, CUES_START, cues_start, 0);
3298 
3299  // cues end
3300  av_dict_set_int(&s->streams[0]->metadata, CUES_END, cues_end, 0);
3301 
3302  // bandwidth
3303  bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start);
3304  if (bandwidth < 0) return -1;
3305  av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, bandwidth, 0);
3306 
3307  // check if all clusters start with key frames
3309 
3310  // store cue point timestamps as a comma separated list for checking subsegment alignment in
3311  // the muxer. assumes that each timestamp cannot be more than 20 characters long.
3312  buf = av_malloc(s->streams[0]->nb_index_entries * 20 * sizeof(char));
3313  if (!buf) return -1;
3314  strcpy(buf, "");
3315  for (i = 0; i < s->streams[0]->nb_index_entries; i++) {
3316  snprintf(buf, (i + 1) * 20 * sizeof(char),
3317  "%s%" PRId64, buf, s->streams[0]->index_entries[i].timestamp);
3318  if (i != s->streams[0]->nb_index_entries - 1)
3319  strncat(buf, ",", sizeof(char));
3320  }
3321  av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0);
3322  av_free(buf);
3323 
3324  return 0;
3325 }
3326 
3328 {
3329  char *buf;
3330  int ret = matroska_read_header(s);
3331  MatroskaTrack *tracks;
3332  MatroskaDemuxContext *matroska = s->priv_data;
3333  if (ret) {
3334  av_log(s, AV_LOG_ERROR, "Failed to read file headers\n");
3335  return -1;
3336  }
3337 
3338  // initialization range
3339  // 5 is the offset of Cluster ID.
3341 
3342  // basename of the file
3343  buf = strrchr(s->filename, '/');
3344  av_dict_set(&s->streams[0]->metadata, FILENAME, buf ? ++buf : s->filename, 0);
3345 
3346  // duration
3347  buf = av_asprintf("%g", matroska->duration);
3348  if (!buf) return AVERROR(ENOMEM);
3349  av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0);
3350  av_free(buf);
3351 
3352  // track number
3353  tracks = matroska->tracks.elem;
3354  av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0);
3355 
3356  // parse the cues and populate Cue related fields
3357  return webm_dash_manifest_cues(s);
3358 }
3359 
3361 {
3362  return AVERROR_EOF;
3363 }
3364 
3366  .name = "matroska,webm",
3367  .long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
3368  .extensions = "mkv,mk3d,mka,mks",
3369  .priv_data_size = sizeof(MatroskaDemuxContext),
3375  .mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska"
3376 };
3377 
3379  .name = "webm_dash_manifest",
3380  .long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"),
3381  .priv_data_size = sizeof(MatroskaDemuxContext),
3385 };