All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
Go to the documentation of this file.
1 /*
2  * Spectral Band Replication definitions and structures
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
23 /**
24  * @file
25  * Spectral Band Replication definitions and structures
26  * @author Robert Swain ( rob opendot cl )
27  */
29 #ifndef AVCODEC_SBR_H
30 #define AVCODEC_SBR_H
32 #include <stdint.h>
33 #include "fft.h"
34 #include "aacps.h"
35 #include "sbrdsp.h"
37 typedef struct AACContext AACContext;
39 /**
40  * Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the previous header.
41  */
42 typedef struct SpectrumParameters {
47  /**
48  * @name Variables associated with bs_header_extra_1
49  * @{
50  */
54  /** @} */
57 #define SBR_SYNTHESIS_BUF_SIZE ((1280-128)*2)
59 /**
60  * Spectral Band Replication per channel data
61  */
62 typedef struct SBRData {
63  /**
64  * @name Main bitstream data variables
65  * @{
66  */
67  unsigned bs_frame_class;
76  unsigned bs_amp_res;
77  /** @} */
79  /**
80  * @name State variables
81  * @{
82  */
86  ///l_APrev and l_A
87  int e_a[2];
88  ///Chirp factors
90  ///QMF values of the original signal
91  INTFLOAT W[2][32][32][2];
92  ///QMF output of the HF adjustor
93  int Ypos;
94  DECLARE_ALIGNED(16, INTFLOAT, Y)[2][38][64][2];
96  AAC_FLOAT q_temp[42][48];
98  ///Envelope scalefactors
101  ///Noise scalefactors
104  ///Envelope time borders
106  ///Envelope time border of the last envelope of the previous frame
108  ///Noise time borders
110  unsigned f_indexnoise;
111  unsigned f_indexsine;
112  /** @} */
113 } SBRData;
117 /**
118  * aacsbr functions pointers
119  */
120 typedef struct AACSBRContext {
122  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
123  int buf_idx);
124  void (*sbr_hf_assemble)(INTFLOAT Y1[38][64][2],
125  const INTFLOAT X_high[64][40][2],
126  SpectralBandReplication *sbr, SBRData *ch_data,
127  const int e_a[2]);
128  int (*sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
129  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
130  const INTFLOAT X_low[32][40][2], int ch);
132  INTFLOAT (*alpha0)[2], INTFLOAT (*alpha1)[2],
133  const INTFLOAT X_low[32][40][2], int k0);
134 } AACSBRContext;
136 /**
137  * Spectral Band Replication
138  */
141  int start;
143  int id_aac;
144  int reset;
147  /**
148  * @name Variables associated with bs_header_extra_2
149  * @{
150  */
155  /** @} */
156  unsigned bs_coupling;
157  AAC_SIGNE k[5]; ///< k0, k1, k2
158  ///kx', and kx respectively, kx is the first QMF subband where SBR is used.
159  ///kx' is its value from the previous frame
161  ///M' and M respectively, M is the number of QMF subbands that use SBR.
163  unsigned kx_and_m_pushed;
164  ///The number of frequency bands in f_master
168  ///N_Low and N_High respectively, the number of frequency bands for low and high resolution
170  ///Number of noise floor bands
172  ///Number of limiter bands
174  ///The master QMF frequency grouping
175  uint16_t f_master[49];
176  ///Frequency borders for low resolution SBR
177  uint16_t f_tablelow[25];
178  ///Frequency borders for high resolution SBR
179  uint16_t f_tablehigh[49];
180  ///Frequency borders for noise floors
181  uint16_t f_tablenoise[6];
182  ///Frequency borders for the limiter
183  uint16_t f_tablelim[30];
187  ///QMF low frequency input to the HF generator
188  DECLARE_ALIGNED(16, INTFLOAT, X_low)[32][40][2];
189  ///QMF output of the HF generator
190  DECLARE_ALIGNED(16, INTFLOAT, X_high)[64][40][2];
191  ///QMF values of the reconstructed signal
192  DECLARE_ALIGNED(16, INTFLOAT, X)[2][2][38][64];
193  ///Zeroth coefficient used to filter the subband signals
195  ///First coefficient used to filter the subband signals
197  ///Dequantized envelope scalefactors, remapped
199  ///Dequantized noise scalefactors, remapped
201  ///Sinusoidal presence, remapped
203  ///Estimated envelope
205  ///Amplitude adjusted noise scalefactors
206  AAC_FLOAT q_m[7][48];
207  ///Sinusoidal levels
208  AAC_FLOAT s_m[7][48];
209  AAC_FLOAT gain[7][48];
215 };
217 #endif /* AVCODEC_SBR_H */
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
INTFLOAT synthesis_filterbank_samples[SBR_SYNTHESIS_BUF_SIZE]
Definition: sbr.h:83
unsigned bs_smoothing_mode
Definition: sbr.h:154
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
INTFLOAT bw_array[5]
Chirp factors.
Definition: sbr.h:89
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
INTFLOAT X[2][2][38][64]
QMF values of the reconstructed signal.
Definition: sbr.h:192
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:160
uint8_t noise_facs_q[3][5]
Noise scalefactors.
Definition: sbr.h:102
void(* sbr_hf_assemble)(INTFLOAT Y1[38][64][2], const INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:124
INTFLOAT X_low[32][40][2]
QMF low frequency input to the HF generator.
Definition: sbr.h:188
int(* sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Definition: sbr.h:128
FFTContext mdct
Definition: sbr.h:212
AAC_FLOAT gain[7][48]
Definition: sbr.h:209
uint8_t bs_xover_band
Definition: sbr.h:45
SpectrumParameters spectrum_params
Definition: sbr.h:145
unsigned kx_and_m_pushed
Definition: sbr.h:163
Definition: aac_defines.h:85
AAC_SIGNE num_patches
Definition: sbr.h:184
AAC_FLOAT noise_facs[3][5]
Definition: sbr.h:103
Number of limiter bands.
Definition: sbr.h:173
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:179
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:101
AAC_SIGNE bs_num_noise
Definition: sbr.h:71
uint8_t bs_df_noise[2]
Definition: sbr.h:73
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, INTFLOAT(*alpha0)[2], INTFLOAT(*alpha1)[2], const INTFLOAT X_low[32][40][2], int k0)
Definition: sbr.h:131
uint8_t patch_num_subbands[6]
Definition: sbr.h:185
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:181
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:109
INTFLOAT Y[2][38][64][2]
Definition: sbr.h:94
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:177
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
k0, k1, k2
Definition: sbr.h:157
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:162
INTFLOAT W[2][32][32][2]
QMF values of the original signal.
Definition: sbr.h:91
AAC_FLOAT g_temp[42][48]
Definition: sbr.h:95
unsigned bs_interpol_freq
Definition: sbr.h:153
FFTContext mdct_ana
Definition: sbr.h:211
uint8_t env_facs_q[6][48]
Envelope scalefactors.
Definition: sbr.h:99
unsigned f_indexnoise
Definition: sbr.h:110
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:107
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
uint8_t bs_freq_scale
Definition: sbr.h:51
unsigned bs_limiter_gains
Definition: sbr.h:152
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:198
Definition: aac_defines.h:88
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:202
INTFLOAT analysis_filterbank_samples[1312]
Definition: sbr.h:84
uint8_t bs_freq_res[7]
Definition: sbr.h:70
#define INTFLOAT
AAC_FLOAT q_temp[42][48]
Definition: sbr.h:96
AAC_SIGNE bs_num_env
Definition: sbr.h:69
Definition: sbr.h:57
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:200
INTFLOAT X_high[64][40][2]
QMF output of the HF generator.
Definition: sbr.h:190
#define W(a, i, v)
Definition: jpegls.h:122
int synthesis_filterbank_samples_offset
Definition: sbr.h:85
AAC_FLOAT q_m[7][48]
Amplitude adjusted noise scalefactors.
Definition: sbr.h:206
AAC_FLOAT env_facs[6][48]
Definition: sbr.h:100
uint8_t bs_noise_bands
Definition: sbr.h:53
main AAC context
Definition: aac.h:293
INTFLOAT alpha0[64][2]
Zeroth coefficient used to filter the subband signals.
Definition: sbr.h:194
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:165
AACSBRContext c
Definition: sbr.h:214
AAC_FLOAT e_curr[7][48]
Estimated envelope.
Definition: sbr.h:204
uint8_t bs_stop_freq
Definition: sbr.h:44
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:175
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
INTFLOAT qmf_filter_scratch[5][64]
Definition: sbr.h:210
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Definition: sbr.h:121
unsigned f_indexsine
Definition: sbr.h:111
uint8_t patch_start_subband[6]
Definition: sbr.h:186
unsigned AAC_SIGNE
Definition: aac_defines.h:89
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:105
aacsbr functions pointers
Definition: sbr.h:120
AAC_FLOAT s_m[7][48]
Sinusoidal levels.
Definition: sbr.h:208
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_YASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:183
Spectral Band Replication per channel data.
Definition: sbr.h:62
unsigned bs_limiter_bands
Definition: sbr.h:151
int Ypos
QMF output of the HF adjustor.
Definition: sbr.h:93
uint8_t bs_alter_scale
Definition: sbr.h:52
unsigned bs_frame_class
Definition: sbr.h:67
INTFLOAT alpha1[64][2]
First coefficient used to filter the subband signals.
Definition: sbr.h:196
uint8_t bs_df_env[5]
Definition: sbr.h:72
SBRDSPContext dsp
Definition: sbr.h:213
Number of noise floor bands.
Definition: sbr.h:171
unsigned bs_coupling
Definition: sbr.h:156
Spectral Band Replication.
Definition: sbr.h:139
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
PSContext ps
Definition: sbr.h:167
uint8_t bs_start_freq
Definition: sbr.h:43
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:169