00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00034 #include <math.h>
00035 #include <stddef.h>
00036 #include <stdio.h>
00037
00038 #include "avcodec.h"
00039 #include "get_bits.h"
00040 #include "dsputil.h"
00041 #include "fft.h"
00042 #include "libavutil/audioconvert.h"
00043 #include "sinewin.h"
00044
00045 #include "imcdata.h"
00046
00047 #define IMC_BLOCK_SIZE 64
00048 #define IMC_FRAME_ID 0x21
00049 #define BANDS 32
00050 #define COEFFS 256
00051
00052 typedef struct {
00053 AVFrame frame;
00054
00055 float old_floor[BANDS];
00056 float flcoeffs1[BANDS];
00057 float flcoeffs2[BANDS];
00058 float flcoeffs3[BANDS];
00059 float flcoeffs4[BANDS];
00060 float flcoeffs5[BANDS];
00061 float flcoeffs6[BANDS];
00062 float CWdecoded[COEFFS];
00063
00066 float mdct_sine_window[COEFFS];
00067 float post_cos[COEFFS];
00068 float post_sin[COEFFS];
00069 float pre_coef1[COEFFS];
00070 float pre_coef2[COEFFS];
00071 float last_fft_im[COEFFS];
00073
00074 int bandWidthT[BANDS];
00075 int bitsBandT[BANDS];
00076 int CWlengthT[COEFFS];
00077 int levlCoeffBuf[BANDS];
00078 int bandFlagsBuf[BANDS];
00079 int sumLenArr[BANDS];
00080 int skipFlagRaw[BANDS];
00081 int skipFlagBits[BANDS];
00082 int skipFlagCount[BANDS];
00083 int skipFlags[COEFFS];
00084 int codewords[COEFFS];
00085 float sqrt_tab[30];
00086 GetBitContext gb;
00087 int decoder_reset;
00088 float one_div_log2;
00089
00090 DSPContext dsp;
00091 FFTContext fft;
00092 DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS/2];
00093 float *out_samples;
00094 } IMCContext;
00095
00096 static VLC huffman_vlc[4][4];
00097
00098 #define VLC_TABLES_SIZE 9512
00099
00100 static const int vlc_offsets[17] = {
00101 0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
00102 4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE};
00103
00104 static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
00105
00106 static av_cold int imc_decode_init(AVCodecContext * avctx)
00107 {
00108 int i, j, ret;
00109 IMCContext *q = avctx->priv_data;
00110 double r1, r2;
00111
00112 if (avctx->channels != 1) {
00113 av_log_ask_for_sample(avctx, "Number of channels is not supported\n");
00114 return AVERROR_PATCHWELCOME;
00115 }
00116
00117 q->decoder_reset = 1;
00118
00119 for(i = 0; i < BANDS; i++)
00120 q->old_floor[i] = 1.0;
00121
00122
00123 ff_sine_window_init(q->mdct_sine_window, COEFFS);
00124 for(i = 0; i < COEFFS; i++)
00125 q->mdct_sine_window[i] *= sqrt(2.0);
00126 for(i = 0; i < COEFFS/2; i++){
00127 q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
00128 q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
00129
00130 r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
00131 r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
00132
00133 if (i & 0x1)
00134 {
00135 q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
00136 q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
00137 }
00138 else
00139 {
00140 q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
00141 q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
00142 }
00143
00144 q->last_fft_im[i] = 0;
00145 }
00146
00147
00148
00149 for(i = 0; i < 30; i++) {
00150 q->sqrt_tab[i] = sqrt(i);
00151 }
00152
00153
00154 for(i = 0; i < 4 ; i++) {
00155 for(j = 0; j < 4; j++) {
00156 huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
00157 huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
00158 init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
00159 imc_huffman_lens[i][j], 1, 1,
00160 imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
00161 }
00162 }
00163 q->one_div_log2 = 1/log(2);
00164
00165 if ((ret = ff_fft_init(&q->fft, 7, 1))) {
00166 av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
00167 return ret;
00168 }
00169 dsputil_init(&q->dsp, avctx);
00170 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00171 avctx->channel_layout = AV_CH_LAYOUT_MONO;
00172
00173 avcodec_get_frame_defaults(&q->frame);
00174 avctx->coded_frame = &q->frame;
00175
00176 return 0;
00177 }
00178
00179 static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
00180 float* flcoeffs3, float* flcoeffs5)
00181 {
00182 float workT1[BANDS];
00183 float workT2[BANDS];
00184 float workT3[BANDS];
00185 float snr_limit = 1.e-30;
00186 float accum = 0.0;
00187 int i, cnt2;
00188
00189 for(i = 0; i < BANDS; i++) {
00190 flcoeffs5[i] = workT2[i] = 0.0;
00191 if (bandWidthT[i]){
00192 workT1[i] = flcoeffs1[i] * flcoeffs1[i];
00193 flcoeffs3[i] = 2.0 * flcoeffs2[i];
00194 } else {
00195 workT1[i] = 0.0;
00196 flcoeffs3[i] = -30000.0;
00197 }
00198 workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
00199 if (workT3[i] <= snr_limit)
00200 workT3[i] = 0.0;
00201 }
00202
00203 for(i = 0; i < BANDS; i++) {
00204 for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
00205 flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
00206 workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
00207 }
00208
00209 for(i = 1; i < BANDS; i++) {
00210 accum = (workT2[i-1] + accum) * imc_weights1[i-1];
00211 flcoeffs5[i] += accum;
00212 }
00213
00214 for(i = 0; i < BANDS; i++)
00215 workT2[i] = 0.0;
00216
00217 for(i = 0; i < BANDS; i++) {
00218 for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
00219 flcoeffs5[cnt2] += workT3[i];
00220 workT2[cnt2+1] += workT3[i];
00221 }
00222
00223 accum = 0.0;
00224
00225 for(i = BANDS-2; i >= 0; i--) {
00226 accum = (workT2[i+1] + accum) * imc_weights2[i];
00227 flcoeffs5[i] += accum;
00228
00229 }
00230 }
00231
00232
00233 static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
00234 {
00235 int i;
00236 VLC *hufftab[4];
00237 int start = 0;
00238 const uint8_t *cb_sel;
00239 int s;
00240
00241 s = stream_format_code >> 1;
00242 hufftab[0] = &huffman_vlc[s][0];
00243 hufftab[1] = &huffman_vlc[s][1];
00244 hufftab[2] = &huffman_vlc[s][2];
00245 hufftab[3] = &huffman_vlc[s][3];
00246 cb_sel = imc_cb_select[s];
00247
00248 if(stream_format_code & 4)
00249 start = 1;
00250 if(start)
00251 levlCoeffs[0] = get_bits(&q->gb, 7);
00252 for(i = start; i < BANDS; i++){
00253 levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
00254 if(levlCoeffs[i] == 17)
00255 levlCoeffs[i] += get_bits(&q->gb, 4);
00256 }
00257 }
00258
00259 static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
00260 float* flcoeffs2)
00261 {
00262 int i, level;
00263 float tmp, tmp2;
00264
00265
00266 flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945);
00267 flcoeffs2[0] = log(flcoeffs1[0])/log(2);
00268 tmp = flcoeffs1[0];
00269 tmp2 = flcoeffs2[0];
00270
00271 for(i = 1; i < BANDS; i++) {
00272 level = levlCoeffBuf[i];
00273 if (level == 16) {
00274 flcoeffs1[i] = 1.0;
00275 flcoeffs2[i] = 0.0;
00276 } else {
00277 if (level < 17)
00278 level -=7;
00279 else if (level <= 24)
00280 level -=32;
00281 else
00282 level -=16;
00283
00284 tmp *= imc_exp_tab[15 + level];
00285 tmp2 += 0.83048 * level;
00286 flcoeffs1[i] = tmp;
00287 flcoeffs2[i] = tmp2;
00288 }
00289 }
00290 }
00291
00292
00293 static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
00294 float* flcoeffs2) {
00295 int i;
00296
00297
00298
00299 for(i = 0; i < BANDS; i++) {
00300 flcoeffs1[i] = 0;
00301 if(levlCoeffBuf[i] < 16) {
00302 flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
00303 flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i];
00304 } else {
00305 flcoeffs1[i] = old_floor[i];
00306 }
00307 }
00308 }
00309
00313 static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
00314 int i, j;
00315 const float limit = -1.e20;
00316 float highest = 0.0;
00317 int indx;
00318 int t1 = 0;
00319 int t2 = 1;
00320 float summa = 0.0;
00321 int iacc = 0;
00322 int summer = 0;
00323 int rres, cwlen;
00324 float lowest = 1.e10;
00325 int low_indx = 0;
00326 float workT[32];
00327 int flg;
00328 int found_indx = 0;
00329
00330 for(i = 0; i < BANDS; i++)
00331 highest = FFMAX(highest, q->flcoeffs1[i]);
00332
00333 for(i = 0; i < BANDS-1; i++) {
00334 q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
00335 }
00336 q->flcoeffs4[BANDS - 1] = limit;
00337
00338 highest = highest * 0.25;
00339
00340 for(i = 0; i < BANDS; i++) {
00341 indx = -1;
00342 if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
00343 indx = 0;
00344
00345 if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
00346 indx = 1;
00347
00348 if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
00349 indx = 2;
00350
00351 if (indx == -1)
00352 return AVERROR_INVALIDDATA;
00353
00354 q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
00355 }
00356
00357 if (stream_format_code & 0x2) {
00358 q->flcoeffs4[0] = limit;
00359 q->flcoeffs4[1] = limit;
00360 q->flcoeffs4[2] = limit;
00361 q->flcoeffs4[3] = limit;
00362 }
00363
00364 for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
00365 iacc += q->bandWidthT[i];
00366 summa += q->bandWidthT[i] * q->flcoeffs4[i];
00367 }
00368 q->bandWidthT[BANDS-1] = 0;
00369 summa = (summa * 0.5 - freebits) / iacc;
00370
00371
00372 for(i = 0; i < BANDS/2; i++) {
00373 rres = summer - freebits;
00374 if((rres >= -8) && (rres <= 8)) break;
00375
00376 summer = 0;
00377 iacc = 0;
00378
00379 for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
00380 cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
00381
00382 q->bitsBandT[j] = cwlen;
00383 summer += q->bandWidthT[j] * cwlen;
00384
00385 if (cwlen > 0)
00386 iacc += q->bandWidthT[j];
00387 }
00388
00389 flg = t2;
00390 t2 = 1;
00391 if (freebits < summer)
00392 t2 = -1;
00393 if (i == 0)
00394 flg = t2;
00395 if(flg != t2)
00396 t1++;
00397
00398 summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
00399 }
00400
00401 for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
00402 for(j = band_tab[i]; j < band_tab[i+1]; j++)
00403 q->CWlengthT[j] = q->bitsBandT[i];
00404 }
00405
00406 if (freebits > summer) {
00407 for(i = 0; i < BANDS; i++) {
00408 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
00409 }
00410
00411 highest = 0.0;
00412
00413 do{
00414 if (highest <= -1.e20)
00415 break;
00416
00417 found_indx = 0;
00418 highest = -1.e20;
00419
00420 for(i = 0; i < BANDS; i++) {
00421 if (workT[i] > highest) {
00422 highest = workT[i];
00423 found_indx = i;
00424 }
00425 }
00426
00427 if (highest > -1.e20) {
00428 workT[found_indx] -= 2.0;
00429 if (++(q->bitsBandT[found_indx]) == 6)
00430 workT[found_indx] = -1.e20;
00431
00432 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
00433 q->CWlengthT[j]++;
00434 summer++;
00435 }
00436 }
00437 }while (freebits > summer);
00438 }
00439 if (freebits < summer) {
00440 for(i = 0; i < BANDS; i++) {
00441 workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
00442 }
00443 if (stream_format_code & 0x2) {
00444 workT[0] = 1.e20;
00445 workT[1] = 1.e20;
00446 workT[2] = 1.e20;
00447 workT[3] = 1.e20;
00448 }
00449 while (freebits < summer){
00450 lowest = 1.e10;
00451 low_indx = 0;
00452 for(i = 0; i < BANDS; i++) {
00453 if (workT[i] < lowest) {
00454 lowest = workT[i];
00455 low_indx = i;
00456 }
00457 }
00458
00459 workT[low_indx] = lowest + 2.0;
00460
00461 if (!(--q->bitsBandT[low_indx]))
00462 workT[low_indx] = 1.e20;
00463
00464 for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
00465 if(q->CWlengthT[j] > 0){
00466 q->CWlengthT[j]--;
00467 summer--;
00468 }
00469 }
00470 }
00471 }
00472 return 0;
00473 }
00474
00475 static void imc_get_skip_coeff(IMCContext* q) {
00476 int i, j;
00477
00478 memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
00479 memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
00480 for(i = 0; i < BANDS; i++) {
00481 if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
00482 continue;
00483
00484 if (!q->skipFlagRaw[i]) {
00485 q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
00486
00487 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00488 if ((q->skipFlags[j] = get_bits1(&q->gb)))
00489 q->skipFlagCount[i]++;
00490 }
00491 } else {
00492 for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
00493 if(!get_bits1(&q->gb)){
00494 q->skipFlagBits[i]++;
00495 q->skipFlags[j]=1;
00496 q->skipFlags[j+1]=1;
00497 q->skipFlagCount[i] += 2;
00498 }else{
00499 if(get_bits1(&q->gb)){
00500 q->skipFlagBits[i] +=2;
00501 q->skipFlags[j]=0;
00502 q->skipFlags[j+1]=1;
00503 q->skipFlagCount[i]++;
00504 }else{
00505 q->skipFlagBits[i] +=3;
00506 q->skipFlags[j+1]=0;
00507 if(!get_bits1(&q->gb)){
00508 q->skipFlags[j]=1;
00509 q->skipFlagCount[i]++;
00510 }else{
00511 q->skipFlags[j]=0;
00512 }
00513 }
00514 }
00515 }
00516
00517 if (j < band_tab[i+1]) {
00518 q->skipFlagBits[i]++;
00519 if ((q->skipFlags[j] = get_bits1(&q->gb)))
00520 q->skipFlagCount[i]++;
00521 }
00522 }
00523 }
00524 }
00525
00529 static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
00530 float workT[32];
00531 int corrected = 0;
00532 int i, j;
00533 float highest = 0;
00534 int found_indx=0;
00535
00536 for(i = 0; i < BANDS; i++) {
00537 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
00538 }
00539
00540 while (corrected < summer) {
00541 if(highest <= -1.e20)
00542 break;
00543
00544 highest = -1.e20;
00545
00546 for(i = 0; i < BANDS; i++) {
00547 if (workT[i] > highest) {
00548 highest = workT[i];
00549 found_indx = i;
00550 }
00551 }
00552
00553 if (highest > -1.e20) {
00554 workT[found_indx] -= 2.0;
00555 if (++(q->bitsBandT[found_indx]) == 6)
00556 workT[found_indx] = -1.e20;
00557
00558 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
00559 if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
00560 q->CWlengthT[j]++;
00561 corrected++;
00562 }
00563 }
00564 }
00565 }
00566 }
00567
00568 static void imc_imdct256(IMCContext *q) {
00569 int i;
00570 float re, im;
00571
00572
00573 for(i=0; i < COEFFS/2; i++){
00574 q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
00575 (q->pre_coef2[i] * q->CWdecoded[i*2]);
00576 q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
00577 (q->pre_coef1[i] * q->CWdecoded[i*2]);
00578 }
00579
00580
00581 q->fft.fft_permute(&q->fft, q->samples);
00582 q->fft.fft_calc (&q->fft, q->samples);
00583
00584
00585 for(i = 0; i < COEFFS/2; i++){
00586 re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
00587 im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
00588 q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
00589 q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
00590 q->last_fft_im[i] = im;
00591 }
00592 }
00593
00594 static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
00595 int i, j;
00596 int middle_value, cw_len, max_size;
00597 const float* quantizer;
00598
00599 for(i = 0; i < BANDS; i++) {
00600 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00601 q->CWdecoded[j] = 0;
00602 cw_len = q->CWlengthT[j];
00603
00604 if (cw_len <= 0 || q->skipFlags[j])
00605 continue;
00606
00607 max_size = 1 << cw_len;
00608 middle_value = max_size >> 1;
00609
00610 if (q->codewords[j] >= max_size || q->codewords[j] < 0)
00611 return AVERROR_INVALIDDATA;
00612
00613 if (cw_len >= 4){
00614 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
00615 if (q->codewords[j] >= middle_value)
00616 q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
00617 else
00618 q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
00619 }else{
00620 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
00621 if (q->codewords[j] >= middle_value)
00622 q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
00623 else
00624 q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
00625 }
00626 }
00627 }
00628 return 0;
00629 }
00630
00631
00632 static int imc_get_coeffs (IMCContext* q) {
00633 int i, j, cw_len, cw;
00634
00635 for(i = 0; i < BANDS; i++) {
00636 if(!q->sumLenArr[i]) continue;
00637 if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
00638 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00639 cw_len = q->CWlengthT[j];
00640 cw = 0;
00641
00642 if (get_bits_count(&q->gb) + cw_len > 512){
00643
00644 return AVERROR_INVALIDDATA;
00645 }
00646
00647 if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
00648 cw = get_bits(&q->gb, cw_len);
00649
00650 q->codewords[j] = cw;
00651 }
00652 }
00653 }
00654 return 0;
00655 }
00656
00657 static int imc_decode_frame(AVCodecContext * avctx, void *data,
00658 int *got_frame_ptr, AVPacket *avpkt)
00659 {
00660 const uint8_t *buf = avpkt->data;
00661 int buf_size = avpkt->size;
00662
00663 IMCContext *q = avctx->priv_data;
00664
00665 int stream_format_code;
00666 int imc_hdr, i, j, ret;
00667 int flag;
00668 int bits, summer;
00669 int counter, bitscount;
00670 LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
00671
00672 if (buf_size < IMC_BLOCK_SIZE) {
00673 av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
00674 return AVERROR_INVALIDDATA;
00675 }
00676
00677
00678 q->frame.nb_samples = COEFFS;
00679 if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
00680 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00681 return ret;
00682 }
00683 q->out_samples = (float *)q->frame.data[0];
00684
00685 q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
00686
00687 init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
00688
00689
00690 imc_hdr = get_bits(&q->gb, 9);
00691 if (imc_hdr != IMC_FRAME_ID) {
00692 av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
00693 av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
00694 return AVERROR_INVALIDDATA;
00695 }
00696 stream_format_code = get_bits(&q->gb, 3);
00697
00698 if(stream_format_code & 1){
00699 av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
00700 return AVERROR_INVALIDDATA;
00701 }
00702
00703
00704
00705 if (stream_format_code & 0x04)
00706 q->decoder_reset = 1;
00707
00708 if(q->decoder_reset) {
00709 memset(q->out_samples, 0, sizeof(q->out_samples));
00710 for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
00711 for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
00712 q->decoder_reset = 0;
00713 }
00714
00715 flag = get_bits1(&q->gb);
00716 imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
00717
00718 if (stream_format_code & 0x4)
00719 imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
00720 else
00721 imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
00722
00723 memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
00724
00725 counter = 0;
00726 for (i=0 ; i<BANDS ; i++) {
00727 if (q->levlCoeffBuf[i] == 16) {
00728 q->bandWidthT[i] = 0;
00729 counter++;
00730 } else
00731 q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
00732 }
00733 memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
00734 for(i = 0; i < BANDS-1; i++) {
00735 if (q->bandWidthT[i])
00736 q->bandFlagsBuf[i] = get_bits1(&q->gb);
00737 }
00738
00739 imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
00740
00741 bitscount = 0;
00742
00743 if (stream_format_code & 0x2) {
00744 bitscount += 15;
00745
00746 q->bitsBandT[0] = 5;
00747 q->CWlengthT[0] = 5;
00748 q->CWlengthT[1] = 5;
00749 q->CWlengthT[2] = 5;
00750 for(i = 1; i < 4; i++){
00751 bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
00752 q->bitsBandT[i] = bits;
00753 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00754 q->CWlengthT[j] = bits;
00755 bitscount += bits;
00756 }
00757 }
00758 }
00759
00760 if((ret = bit_allocation (q, stream_format_code,
00761 512 - bitscount - get_bits_count(&q->gb), flag)) < 0) {
00762 av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
00763 q->decoder_reset = 1;
00764 return ret;
00765 }
00766
00767 for(i = 0; i < BANDS; i++) {
00768 q->sumLenArr[i] = 0;
00769 q->skipFlagRaw[i] = 0;
00770 for(j = band_tab[i]; j < band_tab[i+1]; j++)
00771 q->sumLenArr[i] += q->CWlengthT[j];
00772 if (q->bandFlagsBuf[i])
00773 if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
00774 q->skipFlagRaw[i] = 1;
00775 }
00776
00777 imc_get_skip_coeff(q);
00778
00779 for(i = 0; i < BANDS; i++) {
00780 q->flcoeffs6[i] = q->flcoeffs1[i];
00781
00782 if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
00783 q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
00784 q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
00785 }
00786 }
00787
00788
00789 bits = summer = 0;
00790
00791 for(i = 0; i < BANDS; i++) {
00792 if (q->bandFlagsBuf[i]) {
00793 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00794 if(q->skipFlags[j]) {
00795 summer += q->CWlengthT[j];
00796 q->CWlengthT[j] = 0;
00797 }
00798 }
00799 bits += q->skipFlagBits[i];
00800 summer -= q->skipFlagBits[i];
00801 }
00802 }
00803 imc_adjust_bit_allocation(q, summer);
00804
00805 for(i = 0; i < BANDS; i++) {
00806 q->sumLenArr[i] = 0;
00807
00808 for(j = band_tab[i]; j < band_tab[i+1]; j++)
00809 if (!q->skipFlags[j])
00810 q->sumLenArr[i] += q->CWlengthT[j];
00811 }
00812
00813 memset(q->codewords, 0, sizeof(q->codewords));
00814
00815 if(imc_get_coeffs(q) < 0) {
00816 av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
00817 q->decoder_reset = 1;
00818 return AVERROR_INVALIDDATA;
00819 }
00820
00821 if(inverse_quant_coeff(q, stream_format_code) < 0) {
00822 av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
00823 q->decoder_reset = 1;
00824 return AVERROR_INVALIDDATA;
00825 }
00826
00827 memset(q->skipFlags, 0, sizeof(q->skipFlags));
00828
00829 imc_imdct256(q);
00830
00831 *got_frame_ptr = 1;
00832 *(AVFrame *)data = q->frame;
00833
00834 return IMC_BLOCK_SIZE;
00835 }
00836
00837
00838 static av_cold int imc_decode_close(AVCodecContext * avctx)
00839 {
00840 IMCContext *q = avctx->priv_data;
00841
00842 ff_fft_end(&q->fft);
00843
00844 return 0;
00845 }
00846
00847
00848 AVCodec ff_imc_decoder = {
00849 .name = "imc",
00850 .type = AVMEDIA_TYPE_AUDIO,
00851 .id = CODEC_ID_IMC,
00852 .priv_data_size = sizeof(IMCContext),
00853 .init = imc_decode_init,
00854 .close = imc_decode_close,
00855 .decode = imc_decode_frame,
00856 .capabilities = CODEC_CAP_DR1,
00857 .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
00858 };